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Cyclable sets of vertices in 3-connected graphs

Hao Li and Yan Zhu

Given a graph G, a set S ⊆ V (G) is called cyclable (in G) if G has
a cycle containing every vertex of S; G is hamiltonian if V (G) is cy-
clable in G. Beginning with a result of Dirac in 1952, many results
on sufficient conditions that relate degree sum and neighborhood
conditions for hamiltonicity and cyclability, have been obtained.
We give a new sufficient condition on degree sums and neighbor-
hoods of any four independent vertices in a graph. We also study
the extremal cases of this condition.

1. Introduction and notation

All the graphs considered in this paper are undirected and simple. We use the
notation and terminology in [3]. In addition, for a graph G = (V (G), E(G))
and a subgraph H of G, the neighborhood in H of a vertex u ∈ V (G) is
{v ∈ V (H) : uv ∈ E(G)} and is denoted by NH(u) and the degree of u
in H is dH(u) := |NH(u)|. In the case H = G, we use N(u), d(u) instead of
NG(u), dG(u), respectively.

If C = c1c2 · · · · · · cpc1 is a cycle, we let C[ci, cj ] (C[ci, cj ], resp.) be the
sub-path cici+1 · · · cj (cici−1 · · · cj , resp.), where the indices are taken mod-
ulo p. We will consider C[ci, cj ] both as paths and as vertex sets. Define
C(ci, cj ] = C[ci+1, cj ], C[ci, cj) = C[ci, cj−1] and C(ci, cj) = C[ci+1, cj−1].
For any i, we put c+i = ci+1, c−i = ci−1, c+2

i = ci+2 and c−2
i = ci−2.

For V (A) ⊆ V (C), we set V (A)+ = {v+|v ∈ V (A)}, V (A)− = {v−|v ∈
V (A)}, V (A)+2 = (V (A)+)

+
and V (A)−2 = (V (A)−)−. We will use similar

definitions for a path.
For any subset S of V (G) and any integer k ≥ 1, denote by

σk(S) = min{
∑k

i=1 d(vi) : {v1, v2, · · · , vk} is an independent set in S},
σk(S) = min{

∑k
i=1 d(vi) − |

⋂k
i=1N(vi)| : {v1, v2, · · · , vk} is an indepen-

dent set in S} and
σ∗
k(S) = min{

∑k
i=1 d(vi) + |

⋃k
i=1N(vi)| − |

⋂k
i=1N(vi)| : {v1, v2, · · · , vk}

is an independent set in S}.
So σ1(S) = δ(S) which we often use for the minimum degree (in G) of
the vertices of S. If S = V (G), we denote σk = σk(G), σk = σk(G) and
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σ∗
k = σ∗

k(G) respectively. A vertex v is called an S-vertex if v ∈ S. By G[S]
we denote the subgraph of G induced by S. Let α(S) be the number of
vertices of a maximum independent set of G[S], obviously α(S) ≥ k.

A subset S of V (G) is called cyclable in G if all the vertices of S belong
to a common cycle in G. A cycle C of G is called S-maximum if |V (C)∩ S|
is maximum. Obviously, a V (G)-maximum cycle is a longest cycle in G. A
graph G is hamiltonian if V (G) is cyclable in G, i.e., there is a cycle that
contains all vertices of G. For example, the complete bipartite graph Ks,t

with s < t is not hamiltonian and the subset of vertices in the part of s
vertices is cyclable and the subset of vertices in the part of t vertices is
not cyclable. A cycle C is called S-weak-dominating if every component in
G− V (C) contains at most one S-vertex. A cycle C is called S-dominating
if every component in G − V (C) that has S-vertex is of cardinality one. It
is clear that when S = V (G), an S-weak-dominating cycle is a dominating
cycle of G, (where a cycle C is dominating if no component in G − V (C)
has more than one vertex).

The first important result in extremal hamiltonian graph theory is due
to Dirac.

Theorem 1 (Dirac 1952 [5]). If G is a graph of order n ≥ 3 such that
σ1 ≥ n

2 , then G is hamiltonian. The bound is sharp.
Dirac’s theorem concerns a condition of σ1(G), i.e., a degree condition

on every vertex. It is natural to generalize them into degree conditions on
more independent vertices for hamiltonicity. We summarize some of them
in the following theorem.

Theorem 2.

–(1) (Ore, 1960 [14]) Let G be a graph of order n ≥ 3 such that σ2 ≥ n.
Then G is hamiltonian. The bound is sharp.

–(2) (Schmeichel and Hayes, 1985 [15]) Let G be a 2-connected graph of
order n such that σ2 ≥ n − 1. Then G is hamiltonian unless G is the
class of graphs that can be obtained from K(n−1)/2,(n+1)/2 by adding

some edges in the n−1
2 -part.

–(3) (Bondy, 1980 [2]) Let G be a k-connected graph of order n ≥ 3. If
σk+1(G) > 1

2(k + 1)(n − 1), then G is hamiltonian. The bound is
sharp.

–(4) (Harkat, Li and Tian, 2000 [10]) Let G be a 3-connected graph of order
n. If σ4 ≥ n+ 2α− 2, then G is hamiltonian. The bound is sharp.

By an observation, the degree sums or neighborhood unions count rough-
ly 1

2n for each vertex. For more results on sufficient conditions with degree
sums or neighborhood unions, please see [6],[7],[9] and [10].
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Cyclability is a natural generalization of hamiltonicity since clearly, if
S = V (G), “S is cyclable” is equivalent to “G is hamiltonian”. We summa-
rize the results related to the above ones in the following theorem.

Theorem 3.

–(1) (Bollobás and Brightwell, 1993 [1] and independently Shi,1992 [16])
Let G be a 2-connected graph of order n and let S ⊆ V (G). If σ1(S) ≥
1
2n, then S is cyclable. (in fact, this is a special case of a more general
result obtained in [1]).

–(2) (Ota, 1995 [13]) Let G be a 2-connected graph of order n and let
S ⊆ V (G). If σ2(S) ≥ n, then S is cyclable.

–(3) (Favaron, Flandrin, Li, Liu, Tian and Wu, 1996 [8]) Let G be a 2-
connected graph of order n and let S ⊆ V (G). If σ3(S) ≥ n, then S is
cyclable in G.

–(4) (Harkat, Tian and Li, 2000 [10]) Let G be a 3-connected graph of order
n. If S ⊆ V (G) such that σ4(S) ≥ n+2α(S)− 2, then S is cyclable in
G.

–(5) (Li, 2000 [11]) Let G be a 3-connected graph of order n. If S ⊆
V (G) such that σ4(S) ≥ n + 3, then G has an S-weak-dominating
S-maximum cycle.

The main result of this paper is about sufficient conditions on four in-
dependent vertices. We first define

– AS is the class of graphs that can be obtained from K(n−1)/2,(n+1)/2 in

which the n+1
2 -part entirely and exactly belongs to S, and then by

adding some edges (possibly no) to the n−1
2 -part.

– BS is the class of graphs in each G of which there are three vertices
v1, v2, v3 such that G−{v1, v2, v3} is an union of four disjoint subgraphs
Hi (1 ≤ i ≤ 4) such that for 1 ≤ i ≤ 4, there exists at least one S-vertex
in Hi, and for every S-vertex u in Hi, N(u) = (Hi−{u})∪{v1, v2, v3}.

Theorem 4 (the main theorem). Let G be a 3-connected graph of order n.
If S ⊆ V (G), then

– if σ∗
4(S) ≥ 2n− 1, S is cyclable in G and

– if σ∗
4(S) = 2n− 2, S is cyclable in G or G ∈ AS ∪BS or G is the Petersen
graph with S = V (G).

2. Proof of the main theorem

We shall use the following lemma.
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Lemma 1 ([11]). Let G = (V,E) be a graph, P = v1v2...vp a path in G
and u1, u2, u3 three vertices in V (G)− V (P ) such that for every i ∈ {2, 3},
NP (ui) ∩NP (ui)

+ = ∅ and for 1 ≤ i < j ≤ 3, NP (ui) ∩NP (uj)
+ = ∅. Then

3∑
i=1

dP (ui) ≤
{

p+ λ(P ) + 1, if vp /∈
⋂3

i=1NP (ui)

p+ λ(P ) + 2, if vp ∈
⋂3

i=1NP (ui),

where λ(P ) = |Λu1,u2,u3
(P )| with Λu1,u2,u3

(P ) = (
⋂3

i=1NP (ui))
+
⋂
(NP (u1)∪

NP (u2))
−.

Corollary A. Under the conditions of Lemma 1, we have

3∑
i=1

dP (ui) ≤
{
|P |+ |V (P )− {vp} −

⋃3
i=1NP (ui)|+ 1, if vp /∈

⋂3
i=1NP (ui)

|P |+ |V (P )− {vp} −
⋃3

i=1NP (ui)|+ 2, if vp ∈
⋂3

i=1NP (ui).

Proof of Corollary A. Since for every i ∈ {2, 3}, NP (ui)∩NP (ui)
+ = ∅ and

for 1 ≤ i < j ≤ 3, NP (ui) ∩ NP (uj)
+ = ∅, the corollary follows directly

from the fact that (
⋂3

i=1NP (ui))
+
⋂
(NP (u1) ∪NP (u2))

− ⊆ V (P )− {vp} −⋃3
i=1NP (ui).

In the following two corollaries, we discuss the extremal cases.

Corollary B. Under the conditions of Lemma 1 and if
(1)
3∑

i=1

dP (ui) =

{
p+ |V (P )− {vp} −

⋃3
i=1NP (ui)|+ 1, if vp /∈

⋂3
i=1NP (ui)

p+ |V (P )− {vp} −
⋃3

i=1NP (ui)|+ 2, if vp ∈
⋂3

i=1NP (ui).

then there are 1 = i1 ≤ j1 < i2 ≤ j2 < · · · < iq ≤ jq = p with if+1 ≥ jf + 2
for all f such that v+jf /∈ ∪3

i=1NP (ui) for 1 ≤ f ≤ q − 1 and for any subpath
Pf = P [vif , vjf ], when 1 ≤ f ≤ q− 1, we have Pf ⊂ NP (u1), NP (u2)∩Pf =
NP (u3) ∩ Pf = {vjf} and for Pq one of the following six cases occurs:

–(a) Pq = NP (u1) and NP (u2) = NP (u3) = {vp};
–(b) Pq = NP (u1), NP (u2) = {vp} and NP (u3) = ∅;
–(c) Pq = NP (u1), NP (u3) = {vp} and NP (u2) = ∅;
–(d) Pq − {vp} = NP (u1) and NP (u2) = NP (u3) = {vp};
–(e) Pq − {vp} = NP (u1) and NP (u2) = NP (u3) = {vp−1}; and
–(f) Pq − {vp} = NP (u1), NP (u2) = {vp−1} and NP (u3) = {vp}.

Proof of Corollary B. Suppose that (1) holds. It follows that
(
⋂3

i=1NP (ui))
+
⋂
(NP (u1) ∪NP (u2))

− = V (P )− {vp} −
⋃3

i=1NP (ui).
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We use induction on p. When p = 1 and p = 2 the corollary can be
directly verified. Assume that it is also true for any path of fewer than p
vertices.

Suppose that u3vd ∈ E(G) for some 1 ≤ d ≤ p − 2 and d is minimum.
Then by the condition of Lemma 1, vd+1 /∈

⋃3
j=1NP (uj) and hence vd+1 ∈

(
⋂3

i=1NP (ui))
+
⋂
(NP (u1) ∪NP (u2))

−.
Since vd ∈

⋂3
i=1NP (ui), from the condition that for every i ∈ {2, 3},

NP (ui) ∩NP (ui)
+ = ∅, it follows that either vd−1 /∈

⋃3
i=1NP (ui) or vd−1 ∈

NP (u1) − NP (u2) ∪ NP (u3). In the case that vd−1 ∈ NP (u1) − NP (u2) ∪
NP (u3), we deduce that vd−2 ∈ NP (u2) ∪ NP (u3). If vd−2 /∈ NP (u1) then
vd−3 /∈ NP (u2)∪NP (u3). We continue and let f = min{t : vt, vt+1, · · · , vd ∈
NP (u1) and either t = 1 or vt−1 /∈

⋃3
i=1NP (ui)}.

Put P1 = v1v2 · · · vd and P2 = vd+2vd+3 · · · vp. Since
∑3

i=1 dP1
(ui) =

|P1|+ 2, it gives∑3
i=1 dP2

(ui) =
∑3

i=1 dP (ui)−
∑3

i=1 dP1
(ui)

=

{
p+ |V (P )− {vp} −

⋃3
i=1NP (ui)|+ 1− d− 2, if vp /∈

⋂3
i=1NP (ui)

p+ |V (P )− {vp} −
⋃3

i=1NP (ui)|+ 2− d− 2, if vp ∈
⋂3

i=1NP (ui).

=

{
|P2|+ |V (P2)− {vp} −

⋃3
i=1NP2

(ui)|+ 1, if vp /∈
⋂3

i=1NP (ui)

|P2|+ |V (P2)− {vp} −
⋃3

i=1NP2
(ui)|+ 2, if vp ∈

⋂3
i=1NP (ui).

Then by using the induction hypothesis, we obtain the conclusion. Hence
we assume that NP (u3) ∩ {v1, v2, · · · , vp−2} = ∅.

If u3vp−1 ∈ E(G), vp /∈ NP (u1)∪NP (u2)∪NP (u3). We use Lemma 1 on
the subpath P ′ = P [v1, vp−1] and the induction hypothesis. By the equality
condition in the corollary, we deduce that the only case (e) follows. So we
assume NP (u3) ⊆ {vp}.

It gives that λ(P ) = 0 and so V (P ) ⊆ NP (u1) ∪ NP (u2) ∪ NP (u3). If
u2vd ∈ E(G) with 1 ≤ d ≤ p− 2 it implies that vd+1 /∈ NP (u1) ∪NP (u2) ∪
NP (u3), a contradiction. We obtain that P [v1, vp−2] ⊆ NP (u1). Moreover,
we can easily see that |NP (u2)∩ {vp−1, vp}|+ |NP (u3)∩ {vp−1, vp}| ≤ 2. We
deduce that NP (u1)∩{vp−1, vp} 
= ∅. When NP (u1)∩{vp−1, vp} = {vp−1} we
have the cases (d), (e) and (f). When vp ∈ NP (u1), vp−1 /∈ NP (u2)∪NP (u3)
and thus vp−1 ∈ NP (u1). We finally obtain cases (a), (b) and (c).

The following corollary follows directly from Corollary B.

Corollary C. Under the conditions of Lemma 1 and (1), if NP (u1) ∩
NP (u1)

+ = ∅, then
– {v1, v3, · · · , vp−4, vp−2} ⊆ NP (u1) ∩NP (u2) ∩NP (u3) and vp is adjacent

to at least two of the u1, u2, u3’s, when p is odd;
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– NP (u1) = {v1, v3, · · · , vp−5, vp−3, vp−1} and either NP (u2) = NP (u3) =
{v1, v3, , · · · , vp−5, vp−3, vp} or NP (u2) = NP (u3) = {v1, v3, · · · ,
vp−5, vp−3, vp−1} or NP (u2) = {v1, v3, · · · , vp−5, vp−3, vp−1} and
NP (u3) = {v1, v3, · · · , vp−5, vp−3, vp}, when p is even.

Proof of Theorem 4. To prove Theorem 4 by contradiction, suppose that a
graph G = (V,E) and a subset S of V that verify the condition of Theorem 4
are given. Assume that S is not cyclable.

The inserting method was be introduced for use on longest cycle prob-
lems in claw-free graphs by Zhang [17] and then has been widely developed
by many colleagues. It was generalized into the inserting methods on an S-
maximal cycle by in [8] and [10]. We follow [10] and [11] to have some basic
definitions and facts on the structures. The definitions and the lemmas 2, 3, 4
with their proofs can be found in [10] and [11].

Suppose that C = c1c2c3 · · · cpc1 is a cycle with an implicit orientation
according to the increasing subscripts in G such that

(I) C is an S-maximum cycle of G (i.e., C contains maximum number of
S-vertices).

Since S is not cyclable, there exists a component H of G − V (C) with
V (H)∩S 
= ∅. Pick a vertex x0 ∈ V (H)∩S. Suppose that there are t paths
P ′
1[x0, v

′
1], P

′
2[x0, v

′
2],..., and P ′

t [x0, v
′
t] from x0 to C having only x0 in common

pairwisely. We have t ≥ 3 since S is 3-connected. Let V (P ′
i ) ∩ V (C) = {v′i}

for each i, and v′1, v
′
2, ..., v

′
t occur in this order along the orientation of C. For

each i ∈ {1, 2, ..., t}, let ui be the last S-vertex of P ′
i [x0, v

′
i) ( the vertex ui

may be x0), and let vi be the last vertex of C[v′i, v
′
i+1) adjacent to P ′

i (ui, v
′
i)

if P ′
i (ui, v

′
i) 
= ∅; otherwise let vi = v′i, where the indices are taken modulo t.

Denote Pi[x0, vi] = P ′
i [x0, u

′
i]vi where u

′
i ∈ N(vi)∩P ′

i (ui, v
′
i), if P

′
i (ui, v

′
i) 
= ∅;

otherwise let Pi[x0, vi] = P ′
i [x0, v

′
i]. We assume that

(II) Subject to (I), the path system is chosen in such a way that t is as large
as possible.

Since C is an S-maximum cycle of G, we have the followings.

Lemma 2 ([10]). Suppose that {u, v} ⊂ V (C). If there is a path Q[u, v]
such that Q(u, v) ∩ V (C) = ∅ and Q(u, v) ∩ S 
= ∅, then C(u, v) ∩ S 
= ∅. In
particular, C(vi, v

′
i+1) ∩ S 
= ∅.

Now we give some definitions.

A segment C[u, v] is a set of consecutive vertices between u and v on C.
Two segments of C are intersecting if their intersection contains at least two
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vertices. A segment is called a non-S-segment if it contains no S-vertices. If

x1, x2, y1, y2 are vertices of C such that y2 ∈ C(y1, x1), x2 ∈ C(x1, y1) and

C(y1, y2) is a non-S-segment, the two edges x1y1 and x2y2 are called crossing

diagonals at x1 and x2. An S-vertex u of a segment Ci = C(vi, vi+1) defined

above is said to be insertible if there is a non-S-segment C(x, y) ⊆ C(vi+1, vi)

such that ux and uy belong to E(G). In this case, the segment C[x, y] is

called an inserting segment for u.

Lemma 3 ([10]). Let i ∈ {1, 2, · · · , t} and u ∈ C(vi, vi+1]. If there ex-

ists a path Q[u, vi] such that Q(u, vi) ∩ V (C) = ∅ and Q(u, vi) ∩ S 
= ∅,
then C(vi, u) contains at least one non-insertible S- vertex. In particular,

C(vi, v
′
i+1) contains at least one non-insertible S-vertex.

For each i ∈ {1, 2, · · · , t}, let xi (yi, resp.) be the first (last, resp.)

non-insertible S-vertex of C(vi, vi+1). Obviously, xi ∈ C(vi, v
′
i+1) and hence

N(xi) ∩ Pi(ui, vi) = ∅.

Remark 1 ([10]). For each wi ∈ C(vi, xi], 1 ≤ i ≤ t, wi has no neighbor in

∪t
j=1Pi[x0, vj). In particular, x0xi /∈ E(G).

Remark 2 ([10]). For each wi ∈ C(vi, xi], 1 ≤ i ≤ t, G contains no path

P [x0, wi] of length at most 2 such that P [x0, wi) ∩ V (C) = ∅, i.e., N(wi) ∩
N(x0) ∩H = ∅ and wix0 /∈ E(G).

Remark 3 ([10]). C(vj , y) ∩ S 
= ∅ for any v ∈ C(vi, xi) and y ∈ N(v) ∩
C(vj , vj+1), i 
= j.

Lemma 4 ([10]). Let 1 ≤ i 
= j ≤ t, then for each wi ∈ C(vi, xi] and each

wj ∈ C(vj , xj ]

(1) G contains no path P [wi, wj ] of length at most 2 that is internally

disjoint from C. In particular, wiwj /∈ E(G);

(2) There are no crossing diagonals at wi and wj .

Remark 4. Let x′i, 1 ≤ i ≤ t, be any vertex in C[xi, v
−2
i+1] such that there is

a hamiltonian path Ji[x
′
i, v

−
i+1] of G[C[xi, v

−
i+1]] connecting x′i and v−i+1. Then

by using Ji instead of C[xi, v
−
i+1] and by the same proof, we can show that

x′i has the same properties as xi in the above Lemma 4 and Remarks 1, 2, 3.

Remark 5. X := {x0, x′1, · · · , x′t} is an independent set of G and any pair

of them do not have a common neighbor in G− V (C).
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Now since t ≥ 3, by Remark 4 and by putting xi0 = x0, we consider an

independent set {xi0 , xi1 , xi2 , xi3}. Directly, we have

(2)

3∑
h=0

|NG−V (C)(xih)| ≤ |G− V (C)− {xi0}| = n− |V (C)| − 1.

Take any segment C(vf , vf+1], 1 ≤ f ≤ t (with vt+1 = v1) and without

loss of generality we assumeHf = C(v+f , vf+1] := cdcd+1 · · · cd+s ⊆ C(v3, v1].

Then xi1 , xi2 , xi3 are not in Hf . Since they are non-insertible, for every h ∈
{2, 3}, NHf

(xih) ∩ NHf
(xih)

+ = ∅. From Lemma 4 (2), we have that for

1 ≤ h < k ≤ 3, NHf
(xih) ∩NHf

(xik)
+ = ∅. It follows from Corollary A that

(3)

3∑
h=1

dHf
(xih)

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
|Hf |+ |V (Hf )−{vf+1}−

3⋃
h=1

NHf
(xih)|+1, if cd+s /∈

⋂3
h=1NHf

(xih)

|Hf |+ |V (Hf )−{vf+1}−
3⋃

h=1

NHf
(xih)|+2, if cd+s ∈

⋂3
h=1NHf

(xih).

Note that by Lemma 4(1), v+f /∈
⋃3

h=0N(xih). It is easy to see that

|{vi : 1 ≤ i ≤ t, vi ∈
3⋂

h=1

N(xih)}|+ |N(xi0) ∩ {v1, v2, ..., vt}|(4)

≤ |
3⋂

h=0

N(xih)|+ t.

By using (2), (3) and (4) and by the fact that every vertex not in C is

adjacent to at most one of the xih ’s, we finally get

3∑
h=0

d(xih) ≤ n− |V (C)| − 1

+

t∑
f=1

(|Hf |+ |V (Hf )− {vf+1} −
3⋃

h=1

NHf
(xih)|+ 1)
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+ |{vi : 1 ≤ i ≤ t, vi ∈
3⋂

h=1

N(xih)}|

+ |N(xi0) ∩ {v1, v2, ..., vt}|

≤ n− |V (C)| − 1 + 2

t∑
f=1

|Hf | −
t∑

f=1

|
3⋃

h=1

NHf
(xih)|

+ |
3⋂

h=0

N(xih)|+ t

≤ n− |V (C)| − 1 + 2(|V (C)− {v+1 , v+2 , · · · , v+t }|)

− |
3⋃

h=1

NC(xih)|+ |
3⋂

h=0

N(xih)|+ t

≤ n− 1 + |V (C)| − t− |
3⋃

h=1

NC(xih)|+ |
3⋂

h=0

N(xih)|

≤ n− 1 + n− 1− (n− 1− |V (C)|+ t+ |
3⋃

h=1

NC(xih)|)

+ |
3⋂

h=0

N(xih)|

≤ 2n− 2− |
3⋃

h=0

NC(xih)|+ |
3⋂

h=0

N(xih)|.

It follows that the equalities above hold and hence the equality (3) holds for
every Hf and ∀i1, i2, i3. Moreover we deduce

Remark 6. If t ≥ 4 or t = 3 and either x+i xj ∈ E(G) for i 
= j or⋃3
i=1(Λx1,x2,x3

(C(xi, vi+1])) 
= ∅, then G−C = {x0}, xi = v+i and yi = v−i+1.

We give a short proof of Remark 6. When t ≥ 4, pick any C(xi, vi+1] and
we have i1, i2, i3 
= i. Then by the equalities above, one of the i1, i2, i3, say i1
is adjacent to x+i , then we obtain a cycle obtained from
Pi[x0, vi)C[vi, xi1)xi1x

+
i C(x+i , vi1)P i[vi1 , x0] by inserting the vertices in

C(vi, x
−
i ] ∪ C(vi1 , x

−
i1
], which contains V (C) ∪ {x0} − {xi}. By the choice

of C and G − C = ∪3
j=0NG−C(xij ), we deduce C(vi, x

−
i ] = ∅ and N(xi) ∩

(G − C) = ∅. When t = 3 and
⋃3

i=1(Λx1,x2,x3
(C(xi, vi+1])) 
= ∅, we have

a similar proof from a cycle containing V (C) ∪ {x0} − {v} for a vertex
v ∈

⋃3
i=1(Λx1,x2,x3

(C(xi, vi+1])) 
= ∅.
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We will use the following claim:

Claim.

–(a) For any 1 ≤ i < j ≤ t, |{x′ivj , yj−1xj}∩E(G)| ≤ 1 since otherwise the
cycle

Pj [x0, vj)vjx
′
iQ(x′i, yi)C[yi, yj−1)yj−1xjC(xj , vi)P i[vi, x0]

(where Q(x′i, yi) is a hamiltonian path of C[xi, yi] between x′i and yi)
contains more S vertices than C, a contradiction.

–(b) For any 1 ≤ i ≤ t, there don’t have two consecutive vertices w′,
w” /∈ C[vi, vi+1] such that w′x′i, w”yi ∈ E(G) since otherwise the cycle

Pi+1[x0, vi+1)C[vi+1, w
′)w′x′iQ(x′i, yi)yiw”C[w”, vi)P i[vi, x0]

contains more S vertices than C, a contradiction.

We also have

Remark 7 (Claims 2 and 3 in [10]). X
⋃
(
⋃t

j=1 Λxi1 ,xi2 ,xi3
(C(xj , vj+1]) is

independent.

We first discuss the case that t ≥ 4.

Pick up any segment, say H1 = C[x+1 , x
−
2 ] = r1r2 · · · rp. By Corol-

lary C and since x2,xt−1 and xt are not insertible, then either |H1| is
odd and {r1, r3, · · · , rp−4, rp−2} ⊆ NH(xt) ∩ NH(xt−1) ∩ NH(x2) and vp
is adjacent to at least two of the xt, xt−1, x2’s, or p is
even, NH(xt) = {rp−1, rp−3, rp−5, · · · , r3, r1} and either NH(xt−1) =
NH(x2) = {rp, rp−3, rp−5, · · · , r3, r1} or NH(xt−1) = NH(x2) =
{rp−1, rp−3, rp−5, · · · , r3, r1} or NH(xt−1) = {rp−1, rp−3, rp−5, · · · , r3, r1}
and NH(x2) = {rp, rp−3, rp−5, · · · , r3, r1}.

Now we take x1, xt−1, x2 and from the positions of the vertices adjacent
to xt−1 or x2 we deduce that when |H1| is odd, {r1, r3, · · · , rp−4, rp−2} ⊆
NH(x1) and |H1| is even, NH(x1) = {rp−1, rp−3, rp−5, · · · , r3, r1}.

We will show that if |H1| is even, then |H1| = 2. Suppose to the con-
trary that |H1| ≥ 4. Then v−2 x1 ∈ E(G) and by considering (1, t, t− 1) and
(t, t − 1, 2) respectively, we obtain either xt−1v2 ∈ E(G) and v2x

+
1 ∈ E(G)

or xt−1v
−
2 , xtv

−
2 ∈ E(G) and v2x

+
1 , vt−1x

+
1 , vtx

+
1 ∈ E(G). When xt−1v2 ∈

E(G) and v2x
+
1 ∈ E(G) we get a contradiction from Claim (b). When

xt−1v
−
2 , xtv

−
2 ∈ E(G) and v2x

+
1 , vt−1x

+
1 , vtx

+
1 ∈ E(G), we consider yi’s in-

stead of xi’s and since H1 is even and |H1| ≥ 4, we deduce that yt−1x1 ∈
E(G). We have a contradiction from Claim (a).
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Suppose |H1| = 2. By Corollary C and by considering (t, t − 1, 2), we
have xty1 ∈ E(G) and either xt−1v2 ∈ E(G) or xt−1v

−
2 ∈ E(G). Similarly,

we have y2x1 ∈ E(G) and either yt−1v1 ∈ E(G) or yt−1x1 ∈ E(G). But
if xt−1v

−
2 ∈ E(G), by Claim (a) we have yt−1x1 /∈ E(G) which implies

yt−1v1 ∈ E(G). So without loss of generality we assume xt−1v2 ∈ E(G). By
Claim (a), we have x2yt−1 /∈ E(G). By considering xt, x1, x2 and by using
Corollary C, we deduce that vtx1 ∈ E(G). Now the cycle

P1[x0, v1)C[v1, xt)xty1x1vtC[vt, xt−1)xt−1v2C(v2, vt−1)P t−1[vt−1, x0],

gives a contradiction.
We assume now that |Hi| is odd for ∀1 ≤ i ≤ t. Let Hf = C[x+f , vf+1] =

a1a3 · · · ap, with p odd. Put Of = {a1, a2, · · · , ap−4, ap−2}. By Corollary C,
for any i1, i2, i3 
= f , Of ⊆ N(xi1) ∩ N(xi2) ∩ N(xi3). Then by considering
xf , xi1 , xi2 , and by using Corollary C, we deduce Of ⊆ N(xf ).

Let O = ∪t
i=1Oi. We have O ⊆ N(xi) for ∀i and by the definition O+ ⊆

∪t
i=1Λx1,x2,x3

(C(xi, vi+1]). By Remark 7, {x0, x1, · · · , xt}∪O+ is an indepen-
dent set of n+1

2 vertices and we obtain that G ∈ AS and {x0, x1, · · · , xt} ∪
O+ ⊆ S.

Suppose now that t = 3.

Suppose that |
⋃3

i=1(Λx1,x2,x3
(C(xi, vi+1]))| ≥ 2. Without loss of general-

ity we have w1 is the first vertex (direction of the cycle C) in
Λx1,x2,x3

(C(x1, v2]) and w2 ∈
⋃3

i=1(Λx1,x2,x3
(C(xi, vi+1])). Then we have

C(x1, w
−
1 ] ⊆ N(x1). Since there is a path C[w1, x1)x1w

+
1 C(w+

1 , v2], we can
use w1 instead of x1 and consider x0, w1, x2, x3. It can be obtained that ei-
ther C(x1, w

−2
1 ] ⊆ N(w1) or it is empty. Let P = C[x+1 , v2] = z1z2 · · · zp with

w1 = zd. Suppose now that there is a vertex zi ∈ Λx1,x2,x3
(C[x1, x

−
2 ]). A path

C(z−d , zi+1)zi+1z1C(z1, zi)zizdC(zd, zp] and the edge zdx2 contradict Remark
5. So Λx1,x2,x3

(C[x1, x
−
2 ]) = ∅ and hence by Remark 6, d(x1) = d(w1) =

d(w2) = d(x0) = 3. It follows that

2n− 2 ≤ d(x1) + d(w1) + d(w2) + d(x0)

+ |N(x1) ∪N(w1) ∪N(w2) ∪N(x0)|
= 12 + (n− 4),

and hence n ≤ 10. But we have 11 vertices x0, v1, v2, v3, x1, x2, x3, w1, w
−
1 , w2

and w−
2 , a contradiction.

Assume that |
⋃3

i=1(Λx1,x2,x3
(C(xi, vi+1]))| = 1 and without loss of gen-

erality, ∃w1 ∈ Λx1,x2,x3
(C(x1, v2]) (so w1 = x+2

1 ). By the same argument
as above, we have d(x1) = d(w1) = d(x0) = 3. And without loss of gen-
erality, we assume |C(x2, v3]| ≤ |C(x3, v1]|. Then by Corollary C, |N(x2) ∩
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C(x3, v1]| ≤ 1 and |N(x2) ∩ C[x1, v2]| ≤ |C[x1,v2]|
2 . These gives that d(x2) ≤

|C[x2, v3]|−1+ |C[x1,v2]|
2 +1 ≤ |C[x2,v3]|+|C[x2,v1]|+|C[x1,v2]|

2 = n−1
2 . We see that

v2 ∈ N(x0) ∩N(w1) ∩N(x1) ∩N(x2). It follows that

2n− 2 ≤ d(x0) + d(w1) + d(x1) + d(x2)

+ |N(x0) ∪N(w1) ∪N(x1) ∪N(x2)|
− |N(x0) ∩N(w1) ∩N(x1) ∩N(x2)|

= 9 +
n− 1

2
+ (n− 5)− 1

and n ≤ 9, which implies v2 = x+1 , v3 = x+2 and then w1v3 ∈ E(G). So
v3 ∈ N(x0) ∩N(w1) ∩N(x1) ∩N(x2). Now

2n− 2 ≤ d(x0) + d(w1) + d(x1) + d(x2)

+ |N(x0) ∪N(w1) ∪N(x1) ∪N(x2)|
− |N(x0) ∩N(w1) ∩N(x1) ∩N(x2)|

= 9 +
n− 1

2
+ (n− 5)− 2

and n ≤ 7 which is not possible.
So we may suppose that

⋃3
i=1(Λx1,x2,x3

(C(xi, vi+1])) = ∅. It follows from
Corollaries B and C, that C(xi, v

−
i ] ⊂ N(xi) for i = 1, 2, 3. Similarly we

have C[xi, y
−
i ] ⊂ N(yi) for i = 1, 2, 3.

Suppose that C[x1, y1] contains at least three vertices. Since G is 3-
connected, it is easy to prove that either there is a vertex w1 ∈ C[x+1 , y

−
1 ]

which is adjacent to a vertex w2 in C[x2, y3] or one of y1 and x1, say y1
is adjacent to a vertex w2 in C[x2, y3] and v2 is adjacent to one vertex
z ∈ C[x1, y

−
1 ]. By Remark 4, w2 /∈ C[x2, y2] ∪ C[x3, y3] and hence w2 =

v3. If y1v3 ∈ E(G), since y1 is not insertible, we have y1x3 /∈ E(G). If
y1x3, v2z ∈ E(G), by Claim (a), we have a contradiction from a hamiltonian
path C[y1, z

+)z+x1C(x1, z] of C[x1, y1]. So we get y1x3 /∈ E(G). Similarly
from C[x1, z

−)z−y1C(y1, z] and by Claim (a), we have y2x1 /∈ E(G).
Suppose G /∈ BS . Since G−{v1, v2, v3} is not a union of the 4 connected

components G(C[x1, y1]), G(C[x2, y2]), G(C[x3, y3]) and G − C, we deduce
|C[x2, y2]| ≥ 2, |C[x3, y3]| ≥ 2 and x2y3 ∈ E(G). By Claim (a), no vertex in
C[x3, y

−
3 ] is adjacent to v2. If v1 is adjacent to a vertex z ∈ C[x3, y

−
3 ], then

a cycle

P2[x0, v2)C[v2, v1)v1zC(z, x3)x3z
+C(z+, y3)y3x2C(x2, v3)P 3[v3, x0]

gives a contradiction. So we have shown that there is no edge between
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C[x3, y
−
3 ] and C[v1, y2] and therefore {v3, y3} is a cutset, a contradiction.

So we may assume that for any 1 ≤ i ≤ 3, C[xi, yi] contains at most two
vertices.

Suppose that G /∈ BS . It is easy to see, without loss of generality, that
|C[x1, y1]| = |C[x2, y2]| = 2 and x1y2 ∈ E(G). By a similar proof as above,
we may obtain that x2 is not adjacent to x1, y1, v1, x3, v3. Since {v2, y2} is
not a cutset, it follows that x2y3 ∈ E(G). By the same argument, we get
x3y1 ∈ E(G). Now G is the Petersen graph.

This completes the proof of Theorem 4.
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