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Narrowing down the gap on cycle-star Ramsey
numbers∗

Yanbo Zhang, Hajo Broersma, and Yaojun Chen

Given two graphs G1 and G2, the Ramsey number R(G1, G2) is the
smallest integer N such that, for any graph G of order N , either
G1 is a subgraph of G, or G2 is a subgraph of the complement of
G. Let Cm denote a cycle of order m, K1,n a star of order n + 1
and Wn a wheel of order n + 1. Already back in the 1970s, exact
values of the Ramsey numbers R(Cm,K1,n) have been determined
for all m ≥ 2n and for all odd m ≤ 2n − 1, but for even m < 2n
not many exact values are known. In this paper, we use a result of
Bondy on pancyclicity to fill a considerable part of this gap. We
show that R(Cm,K1,n) = 2n for even m with n < m < 2n, and
that R(Cm,K1,n) = 2m− 1 for even m with 3n/4+1 ≤ m ≤ n. In
addition, we determine another six formerly unknown exact values
of Ramsey numbers, namely R(C6,K1,n) for 7 ≤ n ≤ 11, and
R(C6,W9).
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1. Introduction

In this note we deal with finite simple graphs only. We refer to the textbook
of Bondy and Murty [4] for any undefined terminology and notation. For
convenience, we repeat some of the key definitions and notation.

A complete bipartite graph with bipartition classes of cardinalities m
and n is denoted by Km,n. Let Cm be a cycle of order m, K1,n a star of
order n + 1 and Wn a wheel of order n + 1. We use G1 ∪ G2 to denote the
disjoint union of two vertex-disjoint graphs G1 and G2, and we use kKn to
denote the disjoint union of k ≥ 2 copies of Kn. The minimum degree, the
maximum degree, the length of a shortest cycle, the length of a longest cycle,
and the number of components of G are denoted by δ(G), Δ(G), g(G), c(G),
and ω(G), respectively. Given two graphs G1 and G2, the Ramsey number
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R(G1, G2) is the smallest integer N such that, for any graph G of order N ,

either G contains G1 or G contains G2, where G is the complement of G.

The concept of pancyclicity for undirected graphs was introduced and

studied by Bondy [2] in the early 1970s. A graph G is pancyclic if it contains

cycles of every length between 3 and |V (G)|. Bondy established several suf-

ficient conditions for a graph to be pancyclic. A typical degree condition is

given below.

Theorem 1 (Bondy [2]). If G is a graph with δ(G) ≥ |V (G)|/2, then G is

pancyclic, or G = Kr,r with r = |V (G)|/2.

The above result is interesting by itself, but also played a key role in

determining exact values of cycle-star Ramsey numbers. We will use it as

one of the ingredients to deduce new exact values of cycle-star Ramsey

numbers.

From the early 1970s, cycles and stars have been well-studied in graph

Ramsey theory. The following well-known theorem on cycle-star Ramsey

numbers is due to Lawrence [7] and dates back to 1973; a proof of this result

can also be found in [10].

Theorem 2 (Lawrence [7]).

R(Cm,K1,n) =

{
2n+ 1 for odd m ≤ 2n− 1,

m for m ≥ 2n.

In fact, Kn,n and Km−1 establish the lower bounds on R(Cm,K1,n) for

odd m ≤ 2n−1 and m ≥ 2n, respectively. For the upper bounds, both cases

may be viewed as a direct corollary of Theorem 1.

For even m < 2n, not many results on exact values of these Ramsey

numbers are known. In fact, all generic results we know of deal with the

case that m = 4. Parsons [9] established the following theorem.

Theorem 3 (Parsons [9]). R(K1,n, C4) ≤ n + �
√
n− 1� + 2 for all n ≥ 2,

and if n = q2 + 1 and q ≥ 1, then R(K1,n, C4) ≤ n+ �
√
n− 1�+ 1. If q is a

prime power, then R(K1,q2 , C4) = q2+q+1 and R(K1,q2+1, C4) = q2+q+2.

In the majority of the other cases, to the best of our knowledge exact

values of R(C4,K1,n) are still unknown.

In this paper, we study the Ramsey numbers R(Cm,K1,n) for values of

m that are even and not too small relative to n. In particular, we prove the

following theorem in Section 3.
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Theorem 4.

R(Cm,K1,n) =

{
2n for even m with n < m ≤ 2n,

2m− 1 for even m with 3n/4 + 1 ≤ m ≤ n.

Our techniques cannot be used to obtain exact values of R(Cm,K1,n)
for even m below 3n/4 + 1, but we can give a lower bound on R(Cm,K1,n)
for even m in the interval �n/2�+2 ≤ m ≤ 3(n+1)/4. This bound is based
on the following graphs.

Let G1 = G2 = K�n/2�, G3 = K�n/2�+1, and vi ∈ V (Gi) for i = 1, 2, 3.
Consider the graph G obtained from G1 ∪ G2 ∪ G3 by identifying v1, v2, v3
(merging them into one vertex, while keeping the remaining parts of the
graphs G1, G2, G3 mutually disjoint). It is straightforward to check that G
is a graph of order 
3n/2� − 1, that G contains no cycle of length m ≥
�n/2� + 2, and that δ(G) = 
n/2� − 1. This implies that Δ(G) = n − 1,
hence that G contains no K1,n. Thus, for �n/2� + 2 ≤ m ≤ 3(n + 1)/4,
R(Cm,K1,n) ≥ 
3n/2�. In fact, we expect that equality holds in the latter
inequality. This motivates the following conjecture.

Conjecture 1. R(Cm,K1,n) = 
3n/2� for even m with �n/2� + 2 ≤ m ≤
3(n+ 1)/4.

Note that, for proving the statement in the above conjecture, by the
above examples it suffices to show R(Cm,K1,n) ≤ 
3n/2� for these values
of m. Since R(C4,K1,5) = 8 by Parsons [9], Conjecture 1 is true for m = 4
(and n = 5; this is the only value of n for which m = 4 lies in the specified
interval).

We also confirm that Conjecture 1 holds for m = 6. From �n/2� + 2 ≤
6 ≤ 3(n+ 1)/4, it follows that 7 ≤ n ≤ 9. We prove the following results in
Sections 4 and 5.

Theorem 5. R(C6,K1,n) = n+ 4 for n = 7, 8.

Since 
3n/2� = 11, 12 for n = 7, 8, respectively, the above result shows
that Conjecture 1 holds for m = 6 and n = 7, 8.

Theorem 6. R(C6,K1,n) = n+ 5 for n = 9, 10, 11.

Since 
3n/2� = 14 for n = 9, the above result shows that Conjecture 1
holds for m = 6 and n = 9. From the above observations, we deduce that
Conjecture 1 holds for m = 6.

We can summarize the known exact values of R(C6,K1,n) as follows.
The values for 4 ≤ n ≤ 11 are obtained from the results in this note.
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Table 1: Exact values of R(C6,K1,n) for 1 ≤ n ≤ 11

n 1 2 3 4 5 6 7 8 9 10 11
R(C6,K1,n) 6 6 6 8 10 11 11 12 14 15 16

Luo et al. [8] reported that they calculated 11 exact values of the Ramsey
numbers R(Cm,Wn) by using an efficient algorithm which they called the
one-vertex extension method. The 11 values include R(C6,Wn) for n =
6, 7, 8. Together with the fact that R(C6, Cn) = max{n + 2, 11} for odd n
[11], we can show that R(C6,Wn) = 16 for n = 3, 5, 7, 9 as an immediate
corollary of Theorem 6. In particular, this implies that R(C6,W9) = 16, and
establishes a new exact value of R(Cm,Wn) to the best of our knowledge.

Corollary 1. R(C6,Wn) = 16 for n = 3, 5, 7, 9.

Proof. Since 3K5 contains no C6 and its complement contains no Wn for
odd n, we have R(C6,Wn) ≥ 16 for n = 3, 5, 7, 9. Let G be a graph of order
16 and suppose that G contains no C6. We will show that G contains Wn.
By Theorem 6, G contains K1,11. In particular, this implies there exists a
vertex v such that d(v) ≥ 11 in G. Since G[NG(v)] contains no C6, and
R(C6, Cn) = max{n+2, 11} for odd n, it follows that G[NG(v)] contains Cn

for n = 3, 5, 7, 9. These cycles together with v formWns inG for n = 3, 5, 7, 9.
This completes the proof.

Recall that to prove Conjecture 1 it suffices to show R(Cm,K1,n) ≤

3n/2� for the values of m stated in Conjecture 1. Notice that to prove
R(Cm,K1,n) ≤ 
3n/2� one actually has to show that any graph G with
|V (G)| = 
3n/2� and δ(G) ≥ 
n/2� contains cycles of every even length
between �n/2�+ 2 and 3(n+ 1)/4. Allen [1] proved the following extension
of Theorem 1: there exists a positive integer n0 such that any graph G with
|V (G)| = n ≥ n0 and δ(G) ≥ n/3 contains cycles of every even length
between 4 and 
n/2�. It is not difficult to check that this implies that there
exists a positive integer m0, such that Conjecture 1 holds for all m ≥ m0.

2. Preliminaries

Apart from Theorem 1, we need the following auxiliary results for our proofs
of Theorem 4, Theorem 5 and Theorem 6.

Lemma 1 (Brandt et al. [5]). Let G be a nonbipartite graph with δ(G) ≥
(|V (G)| + 2)/3. Then G contains cycles of every length between g(G) and
c(G), and g(G) = 3 or 4.
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Corollary 2. Let G be a graph with δ(G) ≥ (|V (G)|+2)/3. Then G contains

cycles of every even length between 4 and c(G).

Proof. If G is a nonbipartite graph, the result follows directly from Lemma

1. If G is a bipartite graph, let X and Y denote the partition classes of G,

and consider a vertex x ∈ X. Since the conditions imply that δ(G) ≥ 2, x has

at least two neighbors x1 and x2, and obviously x1, x2 ∈ Y . Now construct

a new graph G′ from G by adding the edge x1x2. Then, clearly G′ is not

bipartite. Since δ(G′) ≥ (|V (G)|+2)/3 and |V (G′)| = |V (G)|, by Lemma 1,

G′ contains cycles of every length between 4 and c(G′). Since c(G′) ≥ c(G), it

remains to prove that every even cycle in G′ is also a cycle in G. If not, then

G′ has an even cycle C containing x1x2 as an edge, say, C = x1x2x3 . . . x2kx1.

But then x2 ∈ Y , x3 ∈ X, . . . , x2k−1 ∈ X,x2k ∈ Y . Since x1 ∈ Y , this

implies that G′[Y ] contains x2kx1 as an edge, contradicting the fact that

G′[Y ] contains exactly one edge x1x2. We conclude that every even cycle in

G′ is also a cycle in G. Therefore, G contains cycles of every even length

between 4 and c(G).

Lemma 2 ([6]). For a 2-connected graph G, c(G) ≥ min{2δ(G), |V (G)|}.

The closure of a graph G is the graph obtained from G by recursively

joining pairs of nonadjacent vertices whose degree sum is at least |V (G)| until
no such pair remains. This closure operation was introduced by Bondy and

Chvátal [3]. They showed that the closure is unique and that it preserves the

existence of Hamilton cycles: a graph is hamiltonian if and only if its closure

is hamiltonian. One of the consequences of this nice result is expressed in

the following lemma.

Lemma 3 ([3]). Let G be a simple graph on at least three vertices whose

closure is complete. Then G is hamiltonian.

3. Proof of Theorem 4

We prove the two statements of Theorem 4 separately.

For the purpose of proving the first statement of the theorem, let F be

the graph obtained from 2Kn by identifying precisely one vertex of each Kn.

It is easy to check that |V (F )| = 2n−1, δ(F ) = n−1, F contains no Cm for

m > n, and F contains no K1,n. Thus, R(Cm,K1,n) ≥ 2n for n < m ≤ 2n.

It is sufficient for proving the first statement to prove thatR(Cm,K1,n) ≤
2n for even m with n < m ≤ 2n. Let G be a graph of order 2n. If G contains

no K1,n, then Δ(G) ≤ n − 1, implying that δ(G) ≥ n. By Theorem 1, G
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contains Cm for even m and n < m ≤ 2n. This completes the proof of the
first statement of Theorem 4.

We continue with the proof of the second statement. First observe that
for even m and 3n/4 + 1 ≤ m ≤ n, the inequalities imply that n ≥ 4, and
hence that m ≥ 4. It is obvious that for these values of m and n, 2Km−1

contains no Cm and its complement contains no K1,n. Thus, R(Cm,K1,n) ≥
2m− 1.

To prove that R(Cm,K1,n) ≤ 2m− 1, let G be a graph of order 2m− 1.
Suppose to the contrary that neither G contains a Cm nor G contains a
K1,n. Then Δ(G) ≤ n− 1, hence δ(G) ≥ 2m− n− 1. Using m ≥ 3n/4 + 1,
we get that δ(G) ≥ (|V (G)| + 2)/3. By Corollary 2, G contains cycles of
every even length between 4 and c(G). It remains to prove that c(G) ≥ m.
We complete the proof by proving three claims.

Claim 1. Suppose G1 is a graph obtained from G by deleting at most two
vertices. Then ω(G1) ≤ 2.

Proof. If ω(G1) ≥ 3, let G2 be the smallest component of G1. Then δ(G1) ≤
δ(G2) ≤ |V (G2)|−1 ≤ |V (G1)|/3−1. Thus, Δ(G1) ≥ 2|V (G1)|/3 ≥ 2(2m−
3)/3 ≥ n − 2/3, that is, Δ(G1) ≥ n. Since G1 is a subgraph of G, then
Δ(G) ≥ n, which contradicts the fact that G contains no K1,n. This proves
our claim that ω(G1) ≤ 2.

Claim 2. Suppose H is a graph obtained from G by deleting at most one
vertex. If ω(H) = 2, then each component of H is a 2-connected (sub)graph.

Proof. Let H1, H2 be the two components of H. Then δ(Hi) ≥ δ(H) ≥
δ(G) − 1 ≥ 2m − n − 2 for i = 1, 2. Since m ≥ 3n/4 + 1 and n ≥ 4, this
implies that |V (Hi)| ≥ δ(Hi) + 1 ≥ 3 for i = 1, 2. If H1 is not 2-connected,
then there exists a vertex u such that H1−u is disconnected. Hence, H−u is
a graph obtained from G by deleting at most two vertices, and ω(H−u) ≥ 3,
contradicting Claim 1. We conclude that H1 is 2-connected. For the same
reason, H2 is 2-connected, proving our claim.

Claim 3. c(G) ≥ m.

Proof. Recall that G is a graph of order 2m− 1 and that δ(G) ≥ (|V (G)|+
2)/3. If G is 2-connected, by Lemma 2, c(G) ≥ min{2δ(G), |V (G)|} ≥ m.

Next assume that G is not 2-connected. Then there exists a vertex v ∈
V (G) such that G−v is disconnected. By Claim 1, ω(G−v) = 2. Let H1, H2

be the two components of G− v. Then δ(Hi) ≥ δ(G)− 1 ≥ 2m− n− 2. By
Claim 2, Hi is 2-connected for i = 1, 2. Assuming that |V (H1)| ≥ |V (H2)|,
we get that |V (H1)| ≥ m−1. If |V (H1)| ≥ m, then, since 3n/4+1 ≤ m ≤ n,
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using Lemma 2, we obtain that c(G) ≥ c(H1) ≥ min{2δ(H1), |V (H1)|} ≥
min{2(2m− n− 2),m} ≥ m.

Finally, assume that |V (H1)| = m − 1. Then |V (H2)| = m − 1. Since
dG(v) ≥ δ(G) ≥ 2m − n − 1 ≥ 3, then either dH1

(v) ≥ 2 or dH2
(v) ≥ 2.

Without loss of generality, assume that dH1
(v) ≥ 2. Let H3 = G[V (H1) ∪

{v}]. Since δ(H1) ≥ 2m − n − 2 > |V (H1)|/2, H1 is Hamilton-connected,
implying H3 contains a Cm.

This completes the proof of Claim 3 and of Theorem 4.

4. Proof of Theorem 5

By the construction preceding the statement of Conjecture 1, we know that
R(C6,K1,n) ≥ n+4 for n = 7, 8. Let G be a graph of order n+4. Suppose to
the contrary that G contains no C6 and G contains no K1,n. Then δ(G) ≥ 4.
By Theorem 3, G contains C4. Let C be a longest cycle with |V (C)| ≤ 6 in
G. Then 4 ≤ |V (C)| ≤ 5. We distinguish two cases and reach contradictions
in all subcases.

Case 1. |V (C)| = 4.

First suppose that G contains K2,3, and assume that both v1 and v2 are
adjacent to each vertex of v3, v4, v5. We see that v3v4 �∈ E(G); otherwise
v1v3v4v2v5v1 is a C5, a contradiction. For the same reason, v4v5, v3v5 �∈
E(G). Since δ(G) ≥ 4, for i = 3, 4, 5, each vi has another neighbor in V (G)\
{v1, v2, v3, v4, v5}, denoted by ui. Since G contains no C6, u3, u4, u5 are three
distinct vertices. Let V1 = {vi, uj | 1 ≤ i ≤ 5, 3 ≤ j ≤ 5}. Then for i = 3, 4, 5,
ui is nonadjacent to V1\{vi}; otherwise G contains C5 or C6, a contradiction.
Since δ(G) ≥ 4, each of u3, u4, u5 has at least three neighbors in V (G) \ V1.
Since 11 ≤ |V (G)| ≤ 12, we have 3 ≤ |V (G) \ V1| ≤ 4, and it follows that u3
and u4 have a common neighbor in V (G) \V1, say w. Now wu3v3v1v4u4w is
a C6, a contradiction. Thus,

(1) G contains no K2,3.

Let C = v1v2v3v4v1. Since δ(G) ≥ 4, each vi has another neighbor
in V (G) \ {v1, v2, v3, v4}, denoted by ui, where 1 ≤ i ≤ 4. Observe that
u1, u2, u3, u4 are four distinct vertices; otherwise G contains C5 or K2,3. Let
V1 = {vi, ui | 1 ≤ i ≤ 4}. Then for 1 ≤ i ≤ 4, ui is nonadjacent to V1 \ {vi};
otherwise G contains C5 or C6 or K2,3, a contradiction. Since δ(G) ≥ 4,
each ui has at least three neighbors in V (G) \ V1. Since 11 ≤ |V (G)| ≤ 12,
we have 3 ≤ |V (G) \ V1| ≤ 4, and it follows that u1 and u2 have a common
neighbor in V (G) \ V1, say w. Now wu1v1v2u2w is a C5, a contradiction.



488 Yanbo Zhang et al.

Case 2. |V (C)| = 5.

First suppose that G contains a subgraph H isomorphic to K5. Let
G′ = G− V (H). Since 11 ≤ |V (G)| ≤ 12, we have 6 ≤ |V (G′)| ≤ 7. For any
v ∈ V (G′), v has at most one neighbor in H; otherwise G contains C6. Since
δ(G) ≥ 4, we have δ(G′) ≥ 3. Assume that G′ is not 2-connected. Then there
exists a vertex u in G′ such that G′−u is disconnected, 5 ≤ |V (G′−u)| ≤ 6
and δ(G′ − u) ≥ 2. Thus, the subgraph G′ − u is a disjoint union of two
triangles, denoted by v1v2v3v1 and v4v5v6v4. Since δ(G) ≥ 4, both v1 and
v6 are adjacent to a vertex of H. By distinguishing and analyzing the cases
that v1, v6 are adjacent to the same vertex of H or not, we can always find
a C6, a contradiction. We conclude that G′ is 2-connected. By Lemma 2,
c(G′) ≥ 2δ(G′) ≥ 6. By Corollary 2, G′ contains a C6, a contradiction.
Therefore,

(2) G contains no K5.

Next suppose that G contains a C5 + e, and let v1v2v3v4v5v1 be a C5 in
G with at least one chord. Since G contains C5 + e but no K5, we can
always find some i such that vivi+2 ∈ E(G) and vi+1vi+3 �∈ E(G), where the
indices are taken modulo 5. Without loss of generality, we may assume that
v1v3 ∈ E(G) and v2v4 �∈ E(G). Since δ(G) ≥ 4, both v2 and v4 have another
neighbor in V (G) \ {v1, v2, v3, v4, v5}, denoted by u2 and u4, respectively.
Observe that u2, u4 are distinct; otherwise u2v2v3v1v5v4u2 is a C6. For the
same reason, u2 is nonadjacent to {v1, v3, v4, v5, u4} and u4 is nonadjacent
to {v2, v3, v5, u2}. Let V1 = {v1, v2, . . . , v5, u2, u4}. Since δ(G) ≥ 4, u2 has at
least three neighbors in V (G)\V1, three of which are denoted by {w1, w2, w3};
u4 has at least two neighbors in V (G) \ V1, two of which are denoted by
{w4, w5}. We deduce that w1, w2, w3, w4, w5 are pairwise distinct; otherwise,
for some w ∈ N(u2)∩N(u4), wu2v2v3v4u4w is a C6. Since |V (G)| ≤ 12, then
V (G) = {vi, wi, uj | 1 ≤ i ≤ 5, j = 2, 4}. Since δ(G) ≥ 4 and G contains no
C6, u4 has to be adjacent to v1. Moreover, w4 is nonadjacent to {w1, w2, w3};
otherwise, say that w1w4 ∈ E(G), then w1u2v2v1u4w4w1 is a C6. For the
same reason, w4 is nonadjacent to {v1, v2, v3, v5, u2}. Thus, d(w4) ≤ 3, a
contradiction. Hence,

(3) G contains no C5 + e.

Now let C = v1v2v3v4v5v1. Since G contains no C5 + e and δ(G) ≥ 4, each
vi has at least two neighbors in V (G) \ V (C). Because |V (G) \ V (C)| ≤ 7,
there exist vi, vj such that vi and vj have at least one common neighbor
in V (G) \ V (C). Without loss of generality, assume that u1 is adjacent to
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v1 and v3, where u1 ∈ V (G) \ V (C). We distinguish the following two sub-
cases.

Subcase 2.1. N(v2) ∩ (N(v4) ∪N(v5)) �⊆ V (C).

There exists u2 ∈ V (G) \ V (C) such that u2 ∈ N(v2) and u2 ∈ N(v4) ∪
N(v5). By symmetry, we may assume that u2 is adjacent to v2 and v4. It is
obvious that u1 and u2 are distinct and u1u2 �∈ E(G); otherwise G contains
C6. Since δ(G) ≥ 4, u1 has at least two neighbors in V (G) \V (C) \ {u1, u2},
two of which are denoted by w1, w2; u2 has at least two neighbors in V (G) \
V (C) \ {u1, u2}, two of which are denoted by w3, w4; v5 has at least two
neighbors in V (G) \ V (C) \ {u1, u2}, two of which are denoted by w5, w6.
We prove that w1, w2, . . . , w6 are six distinct vertices. If u1 and v5 have a
common neighbor in V (G) \ V (C) \ {u1, u2}, say w, then wu1v3v2v1v5w is
a C6, a contradiction. By symmetry, u2 and v5 have no common neighbor
in V (G) \ V (C) \ {u1, u2}. If u1 and u2 have a common neighbor in V (G) \
V (C) \ {u1, u2}, say w′, then w′u1v1v5v4u2w′ is a C6, a contradiction. Thus,
V (G) contains {vi, uj , wk | 1 ≤ i ≤ 5, 1 ≤ j ≤ 2, 1 ≤ k ≤ 6} and hence
|V (G)| ≥ 13, which contradicts |V (G)| ≤ 12.

Subcase 2.2. N(v2) ∩ (N(v4) ∪N(v5)) ⊆ V (C).

SinceG contains no C5+e and δ(G) ≥ 4, each of v2, v4, v5 has at least two
neighbors in V (G)\V (C)\{u1}. Let w1, w2 ∈ N(v2)∩ (V (G)\V (C)\{u1}),
w3, w4 ∈ N(v4) ∩ (V (G) \ V (C) \ {u1}) and w5, w6 ∈ N(v5) ∩ (V (G) \
V (C) \ {u1}). Since N(v2) ∩ (N(v4) ∪ N(v5)) ⊆ V (C), then w1, w2, . . . , w6

are six distinct vertices. Because |V (G)| ≤ 12, V (G) = {vi, wj , u1 | 1 ≤ i ≤
5, 1 ≤ j ≤ 6}. We see that w1 is nonadjacent to v4 or v5; otherwise N(v2) ∩
(N(v4)∪N(v5)) �⊆ V (C), which is Subcase 2.1. And w1 is nonadjacent to w3;
otherwise w1w3v4v5v1v2w1 is a C6. For the same reason, w1 is nonadjacent
to w4, w5, w6. Hence, d(w1) ≤ 3, which contradicts δ(G) ≥ 4.

Therefore, we conclude that R(C6,K1,n) = n+ 4 for n = 7, 8.

5. Proof of Theorem 6

The proof runs along the same lines as the proof of Theorem 5, with small
differences in the details.

For i = 1, 2, 3, let Gi be formed from three disjoint K5s by identifying
exactly one vertex of i of the copies. So, G1 = 3K5, G2 is the disjoint union
of K5 and the join of K1 and 2K4, and G3 is the join of K1 with 3K4. Then
|V (Gi)| = 16 − i, Gi contains no C6 and δ(Gi) ≥ 4. Thus, Gi contains no
K1,12−i for i = 1, 2, 3. It follows that R(C6,K1,n) ≥ n+ 5 for n = 9, 10, 11.
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Now let G be a graph of order n + 5. Suppose to the contrary that G
contains no C6 and G contains no K1,n. Then δ(G) ≥ 5. By Theorem 3,
G contains C4. Let C be a longest cycle with |V (C)| ≤ 6 in G. Then 4 ≤
|V (C)| ≤ 5. We distinguish two cases and complete the proof of Theorem 6
by reaching contradictions in all subcases.

Case 1. |V (C)| = 4.

First suppose that G contains K2,3, and assume that both v1 and v2 are
adjacent to each vertex of v3, v4, v5. Observe that v3v4 �∈ E(G); otherwise
v1v3v4v2v5v1 is a C5, a contradiction. For the same reason, v4v5, v3v5 �∈
E(G). Since δ(G) ≥ 5, for i = 3, 4, 5, each vi has another neighbor in V (G)\
{v1, v2, v3, v4, v5}, denoted by ui. Since G contains no C6, u3, u4, u5 are three
distinct vertices. Let V1 = {vi, uj | 1 ≤ i ≤ 5, 3 ≤ j ≤ 5}. Then, for
i = 3, 4, 5, ui is nonadjacent to V1 \ {vi}; otherwise G contains C5 or C6, a
contradiction. Since δ(G) ≥ 5, each of u3, u4, u5 has at least four neighbors
in V (G) \ V1. Since 14 ≤ |V (G)| ≤ 16, we have 6 ≤ |V (G) − V1| ≤ 8, and
it follows that at least two vertices of u3, u4, u5 have a common neighbor
in V (G) \ V1, say both u3 and u4 are adjacent to w ∈ V (G) \ V1. Then,
wu3v3v1v4u4w is a C6, a contradiction. Thus,

(4) G contains no K2,3.

Let C = v1v2v3v4v1. Since δ(G) ≥ 5, each vi has another neighbor in V (G)\
{v1, v2, v3, v4}, denoted by ui, where 1 ≤ i ≤ 4. Observe that u1, u2, u3, u4 are
four distinct vertices; otherwise G contains C5 or K2,3. Let V1 = {vi, ui | 1 ≤
i ≤ 4}. Then, for 1 ≤ i ≤ 4, ui is nonadjacent to V1 \ {vi}; otherwise G
contains C5 or C6 or K2,3, a contradiction. Since δ(G) ≥ 5, each ui has
at least four neighbors in V (G) \ V1. Since 14 ≤ |V (G)| ≤ 16, we have
6 ≤ |V (G) − V1| ≤ 8, and it follows that at least two vertices of u1, u2, u3
have a common neighbor in V (G) \ V1. If both u1 and u2 are adjacent to
w ∈ V (G) \ V1, then wu1v1v2u2w is a C5, a contradiction. By symmetry,
u2 and u3 have no common neighbor in V (G) \ V1. If both u1 and u3 are
adjacent to w ∈ V (G)\V1, then wu1v1v2v3u3w is a C6, also a contradiction.

Case 2. |V (C)| = 5.

First suppose G contains K5, and let V (K5) = {v1, v2, v3, v4, v5}. Since
δ(G) ≥ 5, each vi has a neighbor not in V (K5), denoted by ui. It is easy
to check that u1, u2, u3, u4, u5 are pairwise distinct. Let V1 = {vi, ui | 1 ≤
i ≤ 5}. Then ui has at most one neighbor in V1. So, ui has at least four
neighbors in V (G) \ V1, denoted by wij , where 1 ≤ i ≤ 5, 1 ≤ j ≤ 4. Any
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two vertices of {ui | 1 ≤ i ≤ 5} have no common neighbor in V (G) \ V1;

otherwise G contains C6. We conclude that |V (G)| ≥ 30, contradicting that

|V (G)| ≤ 16. Therefore,

(5) G contains no K5.

Now suppose G contains C5 + e, and let v1v2v3v4v5v1 be a C5 with at least

one chord. Since G contains C5 + e but no K5, we can always find some

i such that vivi+2 ∈ E(G) and vi+1vi+3 �∈ E(G), where the indices are

taken modulo 5. Without loss of generality, we may assume that v1v3 ∈
E(G) and v2v4 �∈ E(G). Each of v2, v4, v5 has another neighbor in V (G) \
{v1, v2, v3, v4, v5}, denoted by u2, u4, u5, respectively. Observe that u2, u4 are

distinct; otherwise u2v2v3v1v5v4u2 is a C6. For the same reason, u2, u4, u5
are pairwise distinct. We assert that either v1u4 �∈ E(G) or v3u5 �∈ E(G);

otherwise v1u4v4v5u5v3v1 is a C6. We only deal with the case that v1u4 �∈
E(G); the other case is similar. Let V1 = {v1, v2, . . . , v5, u2, u4, u5}. It is

easy to check that both u2 and u4 have at most one neighbor in V1. Since

δ(G) ≥ 5, both u2 and u4 have at least four neighbors in V (G) \ V1. Let

{w1, w2, w3, w4} be a subset of N(u2) ∩ (V (G) \ V1) and {w5, w6, w7, w8}
be a subset of N(u4) ∩ (V (G) \ V1). We deduce that w1, w2, . . . , w8 are

pairwise distinct; otherwise for some w ∈ N(u2) ∩ N(u4), wu2v2v3v4u4w

is a C6. Since |V (G)| ≤ 16, V (G) = {vi, uj , wk | 1 ≤ i ≤ 5, 1 ≤ k ≤
8, j = 2, 4, 5}. Since δ(G) ≥ 5, G contains no C6 and v2v4 �∈ E(G), it

follows that v2 has to be adjacent to at least one vertex in {w1, w2, w3, w4}.
Since δ(G) ≥ 5, G contains no C6 and v1u4 �∈ E(G), it follows that v1
has to be adjacent to at least one vertex in {w1, w2, w3, w4}. If v1 and v2
have a common neighbor in {w1, w2, w3, w4}, say w1, then w1v2v3v4v5v1w1

is a C6. If v1 and v2 have no common neighbor in {w1, w2, w3, w4}, say

v1w1, v2w2 ∈ E(G), then v1w1u2w2v2v3v1 is a C6. Hence,

(6) G contains no C5 + e.

Now let C = v1v2v3v4v5v1. Since G contains no C5 + e and δ(G) ≥ 5, each

vi has at least three neighbors in V (G)\V (C). Because |V (G)\V (C)| ≤ 11,

there exist vi, vj such that vi and vj have at least one common neighbor in

V (G) \ V (C). Without loss of generality, assume that u1 is adjacent to v1
and v3, where u1 ∈ V (G) \ V (C). We distinguish two subcases and reach

contradictions.

Subcase 2.1. N(v2) ∩ (N(v4) ∪N(v5)) �⊆ V (C).
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There exists u2 ∈ V (G) \ V (C) such that u2 ∈ N(v2) and u2 ∈ N(v4) ∪
N(v5). By symmetry, we may assume that u2 is adjacent to v2 and v4. It is
obvious that u1 and u2 are distinct and u1u2 �∈ E(G); otherwise G contains
C6. Since G contains no C5 + e and δ(G) ≥ 5, each of u1, u2, v5 has at least
three neighbors in V (G) \ V (C) \ {u1, u2}, v1 has at least two neighbors in
V (G) \ V (C) \ {u1, u2}. It is not difficult to check that any two vertices of
{u1, u2, v1, v5} have no common neighbor in V (G)\V1; otherwise G contains
C6. We conclude that |V (G)| ≥ 18, contradicting that |V (G)| ≤ 16.

Subcase 2.2. N(v2) ∩ (N(v4) ∪N(v5)) ⊆ V (C).

We claim that either v1, v4 have no common neighbor in V (G) \ V (C) \
{u1}, or v3, v5 have no common neighbor in V (G) \ V (C) \ {u1}. If not, let
wv1, wv4, w

′v3w′v5 ∈ E(G), where w,w′ ∈ V (G) \ V (C) \ {u1}. Obviously,
w,w′ are distinct. Then wv1v5w

′v3v4w is a C6, a contradiction. Without
loss of generality, we assume that v1, v4 have no common neighbor in V (G)\
V (C) \ {u1}. Since G contains no C5 + e and δ(G) ≥ 5, each of v2, v4, v5
has at least three neighbors in V (G) \ V (C) \ {u1}, and v1 has at least two
neighbors in V (G) \ V (C) \ {u1}. It is not difficult to check that any two
vertices of {v1, v2, v4, v5} have no common neighbor in V (G) \ V (C) \ {u1}.
We conclude that |V (G)| ≥ 17, contradicting that |V (G)| ≤ 16.

Therefore, we conclude that R(C6,K1,n) = n+ 5 for n = 9, 10, 11.
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