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Decomposable and indecomposable critical
hypergraphs

Michael Stiebitz, Patrick Storch, and Bjarne Toft

A hypergraph is k-critical if it has chromatic number k, but each of
its proper subhypergraphs has a coloring with k−1 colors. In 1963
T. Gallai [10] proved that every k-critical graph of order at most
2k − 2 is decomposable, that is, its complement is disconnected.
We shall prove a counterpart of this result for critical hypergraphs.
Based on this result we shall determine the minimum number of
edges of a k-critical hypergraph of order n, provided that k ≤ n ≤
2k − 1.

1. Introduction

The coloring theory for graphs and hypergraphs plays a central role in dis-
crete mathematics. The coloring problem is to determine the chromatic num-
ber χ(H) of a given hypergraph H, that is, the minimum number of colors
needed to color the vertices of H such that each vertex receive a color and no
edge has the same color on all its vertices. Since graphs are just 2-uniform
hypergraphs, this hypergraph coloring concept, introduced by Erdős and
Hajnal [8] in the 1960s, generalizes the usual graph coloring concept. The
study of hypergraph coloring problems leads very natural to the concept of
critical hypergraphs. A hypergraph is k-critical if it has chromatic number
k, but each of its proper subhypergraphs has chromatic number at most
k− 1. Critical graphs were introduced and investigated first by Dirac in his
Ph.D. thesis and the resulting papers [4] and [5]. Critical hypergraphs were
introduced by Lovász [17].

In 1963 Gallai [9, 10] published two fundamental papers about the struc-
ture of critical graphs. In the first paper he proved an extension of Brooks
theorem and established a lower bound for the number of edges in a k-critical
graph of order n. Several results of the first paper [9] were later extended
to critical hypergraphs, see e.g. [13], [16], [26] and [27]. In the second paper
Gallai proved that if a k-critical graph has order at most 2k − 2, then its
complement is disconnected. This result is used by Gallai to determine the
minimum number of edges in a k-critical graph of order n and to give a
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complete description of the extremal graphs, provided that k ≤ n ≤ 2k − 1.
In this paper we shall prove the following two results for critical hyper-
graphs.

Main Theorem 1. Every k-critical hypergraph whose order is at most 2k−2
is obtained from the disjoint union of two subhypergraphs by adding all graph
edges between these two subhypergraphs.

Main Theorem 2. Let n and k be integers with n = k+p and 2 ≤ p ≤ k−1.
If ext(k, n) is the minimum number of edges in a k-critical hypergraph of
order n, then ext(k, n) =

(
n
2

)
− (p2 + 1).

Gallai’s proofs of Main Theorem 1 for graphs is not directly applicable
to hypergraphs. Proof ideas from an alternative proof by Stehlik [24] may
however be extended to the hypergraph case. Our proof of Main Theorem
2 resembles Gallai’s original proof for graphs, but we are not able to give a
complete characterization of the extremal hypergraphs in case n = 2k − 1.

The rest of the paper is organized as follows. The second section gives a
brief introduction to hypergraphs. The following three sections give a brief
introduction to critical graphs and hypergraphs collecting the concepts and
results to be used later in this paper. In the third section, we discuss some
well known basic properties of critical hypergraphs. In the fourth section
we introduce two fundamental construction for critical hypergraphs, the
Hajós sum and the Dirac sum. In the fifth section we give some background
information to Gallai’s decomposition theorem. The proof of our first main
result is given in the sixth section. This result is used in the seventh section
to describe the structure of critical hypergraphs whose order is near to its
chromatic number. The proof of the second main result is given in the last
section.

2. Preliminaries

For terminology and notation for hypergraphs we took inspiration from the
book of Claude Berge [1].

A hypergraph H = (V,E) is a pair of two finite sets, V and E, satisfying
E ⊆ 2V and |e| ≥ 2 for all e ∈ E. The set V = V (H) is the vertex set of
H and its elements are the vertices of H. The set E = E(H) is the edge
set of H and its elements are the edges of H. A hypergraph H is empty if
V (H) = E(H) = ∅; in this case we write H = ∅. A hypergraph H is simple
if no edge of H is contained in another edge of H. It is notable that multiple
edges are not allowed and that the union of all edges may be a proper subset
of the vertex set.
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Let H = (V,E) be a hypergraph. The number of vertices of H is its
order , written |H|. An edge e with |e| ≥ 3 is called a hyperedge, and an edge
e with |e| = 2 is called an ordinary edge. As usual, for an ordinary edge
e = {u, v} we also write e = uv and e = vu. If E ⊆

(
V
p

)
, then H is said to be

p-uniform. So a graph is a 2-uniform hypergraph, that is, a hypergraph in
which each edge is ordinary. A vertex v is incident with an edge e if v ∈ e.
For a vertex v of H, let EH(v) = {e ∈ E(H) | v ∈ e}. The degree of v in H
is dH(v) = |EH(v)|. The hypergraph H is said to be regular and r-regular
if each vertex of H has degree r. As usual, δ(H) = minv∈V (H) dH(v) is the
minimum degree of H and Δ(H) = maxv∈V (H) dH(v) is the maximum degree
of H. If H = ∅, then we define δ(H) = Δ(H) = 0.

A hypergraph H ′ is a subhypergraph of H, written H ′ ⊆ H, if V (H ′) ⊆
V (H) and E(H ′) ⊆ E(H). If H ′ ⊆ H and H ′ �= H, then H ′ is said to be a
proper subhypergraph of H. For a vertex set X ⊆ V (H), the subhypergraph
of H induced by X is H[X] = (X,E(H)∩ 2X). A subhypergraph H ′ ⊆ H is
called an induced subhypergraph if H ′ = H[V (H ′)]. Furthermore, we define
H −X = H[V (H) \X]. If X = {v} is a singleton, then we also write H − v
instead of H−X. For a set F ⊆ 2V (H), we define H−F = (V (H), E(H)\F )
and H + F = (V (H), E(H) ∪ F ). When F = {e} is a singleton, we denote
H − F by H \ e and H + F by H + e. A vertex set X ⊆ V (H) is called an
independent set of H if the hypergraph H[X] has no edge; and it is called
a clique of H if the hypergraph H[X] contains all ordinary edges of

(
X
2

)
.

We call H a complete p-uniform hypergraph, where p ≥ 2 is an integer, if
E(H) =

(
V (H)

p

)
. If H is a complete p-uniform hypergraph of order n, we

write H = Kp
n. Note that the hypergraph Kn

n with n ≥ 2 has exactly one
edge. We write H = Cn for an ordinary cycle as a 2-uniform hypergraph of
order n. A cycle is called odd or even depending on whether its order is odd
or even.

A nonempty hypergraph H is called connected if for every vertex set X
with ∅ �= X ⊂ V (H) at least one edge of H contains a vertex of X as well
as a vertex of V (G) \ X. Equivalently, H is connected if and only if there
is a path in H between any two of its vertices. A path of length p in H is
a sequence (v1, e1, v2, e2, . . . , vp, ep, vp+1) of distinct vertices v1, v2, . . . , vp+1

of H and distinct edges e1, e2, . . . , ep of H such that {vi, vi+1} ⊆ ei for
i = 1, 2, . . . , p. A (connected) component of a nonempty hypergraph H is a
maximal connected subhypergraph.

Let H be a hypergraph and let Γ be a set. A coloring of H with color
set Γ is a mapping ϕ : V (H) → Γ that assigns to each vertex v ∈ V (H)
a color ϕ(v) ∈ Γ such that |ϕ(e)| ≥ 2 for every edge e ∈ E(H). If |Γ| = k
with k ∈ N0, then we also say that ϕ is a k-coloring of H. We say that H is
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k-colorable if H has a k-coloring. Obviously, H is k-colorable if and only if
H has a coloring with color set Γ = [1, k]. Here [1, k] is the set {1, 2, . . . , k}.
The least integer k ∈ N0 for which H has a k-coloring is called the chromatic
number of H, denoted by χ(H). A hypergraph with chromatic number k is
also said to be k-chromatic. So χ(H) ≤ k if and only if H is k-colorable,
and χ(H) = k if and only if H is k-colorable, but not (k − 1)-colorable.
Obviously, any coloring of H induces a coloring with the same color set
of each of its subhypergraphs. Consequently, the chromatic number is a
monotone hypergraph parameter, that is, H ′ ⊆ H implies χ(H ′) ≤ χ(H)
Furthermore, the components of a hypergraph can be colored independently,
so if H �= ∅, then

(1) χ(H) = max{χ(H ′) | H ′ is a component of H}.

Obviously, a mapping ϕ : V (H) → Γ is a coloring of H if and only if
for every color c ∈ Γ the preimage ϕ−1(c) = {v ∈ V (H) | ϕ(v) = c} is
an independent set of H (possibly empty). These preimages of a coloring
are also referred to as color classes . So there is a one-to-one correspondence
between colorings of H with a set of k colors and sequences (I1, I2, . . . , Ik) of
disjoint independent sets of H whose union is V (H). The maximum cardi-
nality of an independent set of H is the independence number of H, denoted
by α(H). Thus any color class has at most α(H) vertices, which implies
that any coloring of H with a set of k colors satisfies |H| ≤ kα(H), and so
|H| ≤ χ(H)α(H). Evidently, χ(H) ≤ |H| and

(2) χ(H) = |H| if and only if V (H) is a clique of H.

The largest cardinality of a clique of H is the clique number of H, denoted
by ω(H). So ω(H) = max{n | K2

n ⊆ H} and we obtain ω(H) ≤ χ(H).
Evidently, χ(K2

n) = n for all n ∈ N0 and for the cycle Cn we have χ(Cn) = 2
if n is even and χ(Cn) = 3 if n is odd. Furthermore, it is easy to show that
χ(Kp

n) = �n/(p− 1)�, where p ≥ 2. In particular, we have χ(Kn
n ) = 2 for all

n ≥ 2.
As discussed above, the chromatic number χ(H) is the least integer k

for which V (H) can be partitioned into k independent sets. So χ(H) ≤ 1
if and only if H is edgeless, and χ(H) ≤ 2 if and only if H is bipartite. To
decide whether a graph is bipartite, we can use König’s theorem. So a graph
is bipartite if and only if it contains no odd cycle as a subgraph. However,
a good characterization for the class of bipartite hypergraphs is unknown.
To recognize whether a hypergraph is bipartite is a NP-complete decision
problem as first noted by Lovász [19]. Consequently, the determination of
the chromatic number of hypergraphs is a NP-hard optimization problem.
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3. Critical hypergraphs

In studying the hypergraph coloring problem, critical hypergraphs play an
important role. A hypergraph H is critical or k-critical if χ(H ′) < χ(H) =
k for every proper subhypergraph H ′ of H. So k-critical hypergraphs are
minimal k-chromatic hypergraphs with respect to the hypergraph relation
⊆ (to be a subhypergraph).

To see why critical hypergraphs form a useful concept, let us consider
a hypergraph property H, that is, a class of hypergraphs closed under tak-
ing isomorphic hypergraphs. Suppose that H is monotone in the sense that
H ′ ⊆ H ∈ H implies H ′ ∈ H. Furthermore, consider a hypergraph parameter
ρ defined for H, that is, a mapping that assigns to each hypergraph of H
a real number such that ρ(H ′) = ρ(H) whenever H ′ and H are isomorphic
hypergraphs of H. If we want to bound the chromatic number for the hyper-
graphs of H from above by the parameter ρ, then we can apply the critical
hypergraph method, provided that ρ is monotone, that is, H ′ ⊆ H ∈ H
implies ρ(H ′) ≤ ρ(H). The proof of the following proposition is easy and is
left to the reader.

Proposition 3.1. Let H be a monotone hypergraph property and let ρ be
a monotone hypergraph parameter defined for H. Then the following state-
ments hold:

(a) For every hypergraph H ∈ H there exists a critical hypergraph H ′ ∈ H
such that H ′ ⊆ H and χ(H ′) = χ(H).

(b) If χ(H ′) ≤ ρ(H ′) for every critical hypergraph H ′ ∈ H, then χ(H) ≤
ρ(H) for every hypergraph H ∈ H.

The chromatic number is a monotone hypergraph parameter and it is
easy to check that if we delete a vertex or an edge from a hypergraph, then
the chromatic number decreases by at most one. So if H is a hypergraph
and t ∈ V (H) ∪ E(H), then

(3) χ(H)− 1 ≤ χ(H − {t}) ≤ χ(H).

As a consequence we obtain the following well known result saying that
the class of (k − 1)-colorable hypergraphs can be characterized in terms of
forbidden k-critical subhypergraphs.

Proposition 3.2. Let H be a hypergraph and let k ∈ N. Then χ(H) ≤ k−1
if and only if there is no k-critical hypergraph H ′ with H ′ ⊆ H.
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Proof. If H contains a k-critical hypergraph H ′ as a subgraph, then χ(H) ≥
χ(H ′) = k. Conversely, if χ(H) ≥ k, then it follows from (3) that there is a
subhypergraph G of H with χ(G) = k. By Lemma 3.1(a), G and hence H
contains a k-critical subhypergraph H ′.

The following proposition is a list of some basic properties of critical
hypergraphs (see also [1]).

Proposition 3.3. Let H be a k-critical hypergraph, where k ≥ 2. Then the
following statements hold:

(a) |H| ≥ k and equality holds if and only if H = K2
k .

(b) Every vertex v of H is contained in k − 1 edges having pairwise only
the vertex v in common.

(c) H is connected and δ(H) ≥ k − 1.
(d) H is a simple hypergraph.

Proof. Statement (a) follows from (2) and the fact that K2
k is k-critical.

Statement (b) is a consequence of the fact that if we delete a vertex v,
then the resulting hypergraph H − v has a coloring with a set of k − 1
colors and for every color c there exists an edge ec ∈ EH(v) such that
all vertices of ec except v have color c. Statement (c) is a consequence of
(1) and (b). Statement (d) follows from the fact that if we delete an edge
e of H, then there is a coloring of H \ e with a set of k − 1 colors and
all vertices of e have the same color. So no other edge can be contained
in e.

Let H be a k-critical hypergraph. By Proposition 3.3(c), δ(H) ≥ k − 1,
which leads to a natural way of classifying the vertices of H into two classes.
The vertices of H having degree k − 1 are called low vertices of H, and the
remaining vertices are called high vertices of H. So any high vertex of H
has degree at least k in H. Furthermore, the subhypergraph of H induced
by its low vertices is called the low vertex subhypergraph of H. For critical
graphs, this classification is due to Gallai [9]. The following result due to
Kostochka, Stiebitz and Wirth [16] generalizes Gallai’s theorem about the
structure of the low vertex subgraph of critical graphs. A hypergraph B is
called a hyper-brick if B = C2p+1 for p ≥ 1, or B = Kn

n for n ≥ 3, or B = K2
n

for n ≥ 1. Note that any hyper-brick B is a critical hypergraph consisting
only of low vertices and χ(B) = Δ(B) + 1.

Theorem 3.4. If H is a critical hypergraph, then any block of its low vertex
subhypergraph is a hyper-brick.
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Since any critical hypergraph H satisfies χ(H) ≤ δ(H) + 1 ≤ Δ(H) + 1
(by Proposition 3.3(c)), it follows from Proposition 3.1(b) that χ(H) ≤
Δ(H) + 1 for every hypergraph H. As proved by Rhys [22] the hyper-bricks
are the only connected hypergraphs for which equality holds. This generali-
zation of Brooks’ theorem is an immediate consequence of Theorem 3.4

Corollary 3.5. If H is a connected hypergraph and H is not a hyper-brick,
then χ(H) ≤ Δ(H).

Proof. Suppose χ(H) ≥ k, where k = Δ(H) + 1. By Proposition 3.2, H
contains a k-critical subhypergraph H ′. Then Δ(H ′) ≤ Δ(H) = k − 1 and,
by Proposition 3.3, it follows that H ′ is (k − 1)-regular and connected. By
Theorem 3.4 any block of H ′ is a hyper-brick, from which we conclude that
H ′ is a hyper-brick, since every hyper-brick is regular. Since H is connected
and has maximum degree k − 1, we obtain that H = H ′, and so H is a
hyper-brick, a contradiction.

If we want to check whether a given hypergraph is critical, it suffices to
investigate all edge deleted subhypergraphs. This follows from the following
well known result.

Proposition 3.6. Let H be a connected hypergraph and let k ≥ 2 be an
integer. Then H is k-critical if and only if χ(H \ e) < k ≤ χ(H) for every
edge e ∈ E(H).

For integers k, n ∈ N0, let Cri(k) denote the class of k-critical hyper-
graphs and let

Cri(k, n) = {H ∈ Cri(k) | |H| = n}.
Since a hypergraph H satisfies χ(H) = 0 if and only if H = ∅, and χ(H) ≤ 1
if and only if E(H) = ∅, it follows from Proposition 3.2 that

Cri(0) = {∅},Cri(1) = {K2
1} and Cri(2) = {Kn

n | n ≥ 2}.

While König’s characterization of bipartite graphs implies that the odd cy-
cles are the only 3-critical graphs, investigations of the class of 3-critical
hypergraphs have received significant attention in the literature. For any
fixed k ≥ 3, a good characterization of the class Cri(k) is unlikely.

A hypergraph is vertex-critical or k-vertex-critical if χ(H ′) < χ(H) = k
for every proper induced subhypergraph H ′ of H. While k-critical hyper-
graphs are k-chromatic hypergraphs that are minimal with respect to the re-
lation ‘to be a subhypergraph’, k-vertex-critical hypergraphs are k-chromatic
hypergraphs that are minimal with respect to the relation to be an induced
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subhypergraph. Clearly, every critical hypergraph is vertex-critical, but not
conversely. Examples of vertex-critical graphs that are not critical were given
by Dirac. For k ≤ 3, however, a graph is k-critical if and only if it is k-vertex-
critical. It follows from (3) that a hypergraph H is k-vertex-critical if and
only if χ(H − v) < k ≤ χ(H) for every vertex v ∈ V (H). Results about
critical hypergraphs can be often transformed into results about the larger
class of vertex-critical hypergraphs.

Proposition 3.7. Let H be a k-vertex-critical hypergraph. Then H contains
a k-critical subhypergraph and any such subhypergraph has the same vertex
set as H.

Proof. That H contains a k-critical subhypergraph follows from Proposi-
tion 3.1(a). Now let H ′ be such a subhypergraph. If a vertex v of H does
not belong to H ′, then H ′ ⊆ H − v and, since H is k-vertex-critical, we
obtain that χ(H ′) ≤ χ(H − v) < k, which is impossible.

4. Constructions for critical hypergraphs

In this section we focus on the problem of how to decompose a critical hyper-
graph into smaller critical hypergraphs. Clearly, to assemble and disassemble
critical hypergraphs are two sides of the same coin.

There are two well known constructions for critical graphs that can be
easily extended to hypergraphs, known as the Hajós sum and the Dirac sum.
The first construction was invented by Hajós [11], and the second construc-
tion was invented by Dirac (see Gallai [9, (2.1)]). A third construction for
critical hypergraphs is the enlarging operation. Theorem 4.1 was proved in
[26]. The proofs of Theorems 4.1, 4.2 and 4.3 are all straightforward.

Theorem 4.1. Let H1 and H2 be two vertex disjoint hypergraphs. For i =
1, 2, let vi be a vertex of Hi, and let ei ∈ EHi

(vi) be an edge. Let H be the
hypergraph obtained from H1\e1 and H2\e2 by identifying the vertices v1 and
v2 to a new vertex v1∗v2 and by adding the new edge e∗ = (e1∪e2)\{v1, v2}.
We call H a Hajós sum of H1 and H2 and write H = H1 ∧H2. If H1 and
H2 are k-critical, where k ≥ 3, then H is k-critical.

Theorem 4.2. Let H1 and H2 be two vertex disjoint hypergraphs, and let
H be the hypergraph obtained from the union H1∪H2 by adding all ordinary
edges between H1 and H2, that is, V (H) = V (H1) ∪ V (H2) and E(H) =
E(H1)∪E(H2)∪{uv | u ∈ V (H1), v ∈ V (H2)}. We call H the Dirac sum or
the join of H1 and H2 and write H = H1+H2. Then χ(H) = χ(H1)+χ(H2),
and H is critical if and only if H1 and H2 are critical.
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Theorem 4.3. Let H be a k-critical hypergraph and let e ∈ E(H) be an
edge of H. Let e′ ⊆ V (H) be a set such that e ⊆ e′ and e′ is monochromatic
with respect to any coloring of H \ e with a set of k − 1 colors. Then the
hypergraph H ′ = (H \ e) + e′ is k-critical. We then say that H ′ is obtained
from H by enlarging the edge e to e′.

The advantage of the Hajós sum is that it not only preserves the chro-
matic number, but also criticality. If k ≥ 3, then

H1 ∈ Cri(k, n1), H2 ∈ Cri(k, n2) ⇒ H1 ∧H2 ∈ Cri(k, n1 + n2 − 1).

Since K2
k ∈ Cri(k, k), we have

H ∈ Cri(k, n) ⇒ H ∧K2
k ∈ Cri(k, n+ k − 1).

For the Dirac sum we have

H1 ∈ Cri(k1, n1), H2 ∈ Cri(k2, n2) ⇒ H1 +H2 ∈ Cri(k1 + k2, n1 + n2),

which gives, in particular, that

H ∈ Cri(k, n) ⇒ K2
p +H ∈ Cri(k+p, n+p) and Kp

p +H ∈ Cri(k+2, n+p).

The enlarging operation, increasing edges of the hypergraph, preserve the
chromatic number as well as the order. Using the Hajós sum and the Dirac
sum, we conclude from Proposition 3.3 that if k ≥ 3, then

Cri(k, k) = {K2
k} and Cri(k, n) �= ∅ if and only if n ≥ k.

5. Indecomposable hypergraphs

Following Gallai, a hypergraph is called decomposable if it is the Dirac sum
of two nonempty vertex disjoint subhypergraphs; otherwise the hypergraph
is called indecomposable. By Theorem 4.2 it follows that a decomposable
critical hypergraph is the Dirac sum of its indecomposable critical subhy-
pergraphs. So the indecomposable critical hypergraphs are building elements
of critical hypergraphs. In 1963 Gallai [10] proved the following beautiful re-
sult about indecomposable critical graphs.

Theorem 5.1. (Gallai) If G is an indecomposable k-vertex-critical graph,
then |G| ≥ 2k − 1.
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Let G be a graph. To decide whether G is decomposable we can use its
complement. The complement of G, denoted by G, is the graph with

V (G) = V (G) and E(G) =

(
V (G)

2

)
\ E(G).

Then G is decomposable if and only if its complement G is disconnected.
Furthermore, for a vertex setX ⊆ V (G), we obtain thatX is an independent
set (respectively, a clique) of G if and only if X is a clique (respectively, an

independent set) of G. Obviously, G = G.
Let H be a hypergraph. A k-cover of H is a mapping ϕ : V (H) → [1, k]

such that ϕ−1(c) is a clique of H for every c ∈ [1, k]. The cover number of
H, denoted by χ(H), is the least integer k for which H admits a k-covering.
A hypergraph H is k-cover-critical if χ(H − v) < k ≤ χ(H) for every vertex
v ∈ V (H).

Let G be a graph. Then a mapping ϕ : V (G) → [1, k] is a k-cover of
G if and only if ϕ is a k-coloring of G. Consequently, χ(G) = χ(G), and
G is k-cover-critical if and only if G is k-vertex-critical. So Theorem 5.1 is
equivalent to the following result.

Theorem 5.2. (Gallai) If G is a connected k-cover-critical graph, then
|G| ≥ 2k − 1.

In the graph theory literature, there are three different proofs of Gallai’s
result. Gallai’s original proof is an application of matching theory to cover-
critical graphs, so he first proved Theorem 5.2 and obtained Theorem 5.1
as a corollary. A second proof of Gallai’s result was given by Molloy [20].
Molloy also applies matching theory to the complement of vertex-critical
graphs; he uses Berge’s version of Tutte’s perfect matching theorem to the
complement of a vertex-critical graph. A third proof was given by Stehĺık
[24]. He also prefers to work with cover-critical graphs, but his proof is self-
contained and uses no matching theory. We shall adopt Stehĺık’s proof to
establish a counterpart of Gallai’s result for hypergraphs.

The concept of a complement does not apply to hypergraphs. However,
we can define the relative complement of a hypergraph. So let H be a hy-
pergraph. The relative complement of H, denoted by R(H), is the graph
with

V (R(H)) = V (H) and E(R(H)) =

(
V (H)

2

)
\ E(H).

So if H is a graph, then R(H) = H. Furthermore, R(R(R(H))) = R(H). If
H is a simple hypergraph, then H is decomposable if and only if R(H) is
disconnected. We shall prove the following result.
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Theorem 5.3. Let H be a k-critical hypergraph whose relative complement
R(H) is connected, then |H| ≥ 2k − 1. Equivalently, if H is a k-critical
hypergraph with |H| ≤ 2k − 2, then H is decomposable.

6. Proof of Theorem 5.3

Before proving the theorem, we need to introduce some definitions. In this
section, we shall identify a coloring of a hypergraph with the set of its
nonempty color classes. In particular, we suppress unused colors and do not
distinguish between equivalent colorings.

Let H be a hypergraph and let ϕ : V (H) → Γ be a coloring of H with
color set Γ. We shall use the following notation: Γϕ = im(ϕ) is the set of used
colors , c(ϕ) = |Γϕ| is the number of used colors and Xϕ = {ϕ−1(c) | c ∈ Γϕ}
is the set of nonempty color classes. Clearly, c(ϕ) ≥ χ(H) and ϕ is said to
be an optimal coloring of H if c(ϕ) = χ(H). Note that Xϕ is a partition of
the vertex set V (H) into independent sets of H. Furthermore, we denote by
F (ϕ) the hypergraph whose vertex set is V (F (ϕ)) = V (H) and whose edge
set is

E(F (ϕ)) = {U ∈ Xϕ | |U | ≥ 2}.

The set of isolated vertices of F (ϕ) is denoted by I(ϕ). Note that a vertex
v of H belongs to I(ϕ) if and only if {v} is a color class with respect to ϕ.
The hypergraph F (ϕ) has maximum degree Δ(F (ϕ)) ≤ 1 and

c(ϕ) = |I(ϕ)|+ |E(F (ϕ))|.

Let X ⊆ V (H). Then we put X = V (H)\X. We denote by ϕ|X the coloring
ϕ′ of H[X] with Xϕ′ = {U ∩ X | U ∈ Xϕ and U ∩ X �= ∅}. The set X is
said to be ϕ-closed if X is the union of a set of color classes with respect
to ϕ, that is, each color class U ∈ Xϕ satisfies U ⊆ X or U ⊆ X. From
the definition it follows, that X is ϕ-closed if and only if X is ϕ-closed.
Furthermore, X is ϕ-closed if and only if ϕ′ = ϕ|X satisfies Xϕ′ ⊆ Xϕ.

Proposition 6.1. Let H be hypergraph, let ϕ be an optimal coloring of H,
and let X ⊆ V (H) be ϕ-closed. Then X is ϕ-closed and, for Y ∈ {X,X},
the restriction ϕ|Y is an optimal coloring of H[Y ] satisfying ϕ = ϕ|X ∪ ϕ|X
and c(ϕ) = c(ϕ|X) + c(ϕ|X). Furthermore, I(ϕ) is a clique of H.

Proof. Since X is ϕ-closed, X is ϕ-closed, too, and Xϕ is the disjoint union
of the sets Xϕ|X and Xϕ|X . This implies that ϕ = ϕ|X ∪ ϕ|X and c(ϕ) =

c(ϕ|X)+c(ϕ|X). Hence, if Y ∈ {X,X}, then the restriction ϕ|Y is an optimal
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coloring of H[Y ]. For otherwise, there would be a coloring ϕ1 of H[Y ] with
c(ϕ1) < c(ϕ|Y ). But then ϕ2 = ϕ1 ∪ϕ|Y would be a coloring of H satisfying

c(ϕ2) = c(ϕ1) + c(ϕ|Y ) < c(ϕ|Y ) + c(ϕ|Y ) = c(ϕ),

which is impossible. If I(ϕ) is not a clique of H, then I(ϕ) contains two
vertices u and v such that uv /∈ E(H) and so X = {u, v} is an independent
set of H. But then there is a coloring ϕ′ of H[X] with c(ϕ′) = 1 implying
that ϕ|X is no optimal coloring of H[X]. Since X is ϕ-closed, this is a
contradiction.

Proposition 6.2. For a vertex v of a hypergraph H there exists an optimal
coloring ϕ of H with v ∈ I(ϕ) if and only if χ(H − v) < χ(H).

Proof. If ϕ is an optimal coloring of H with v ∈ I(ϕ), then the set {v} is ϕ-
closed and it follows from Proposition 6.1 that ϕ′ = ϕ|V (H)\{v} is an optimal
coloring of H − v with c(ϕ′) = c(ϕ)− 1 implying that χ(H − v) = χ(H)− 1.
If conversely χ(H − v) < χ(H), then (3) implies that χ(H − v) = χ(H)− 1.
Thus, there is an optimal coloring ϕ′ of H − v with c(ϕ′) = χ(H)− 1. This
coloring can be extended to a coloring ϕ of H by assigning to v an additional
color, so that c(ϕ) = χ(H). Then ϕ is an optimal coloring of H satisfying
v ∈ I(ϕ).

For two colorings ϕ1 and ϕ2 of H, let F (ϕ1, ϕ2) denote the hypergraph
with V (F (ϕ1, ϕ2)) = V (H) and E(F (ϕ1, ϕ2)) = E(F (ϕ1)) ∪ E(F (ϕ2)).
Obviously, this hypergraph has maximum degree at most 2.

Proposition 6.3. Let ϕ1 and ϕ2 be two distinct optimal colorings of a
hypergraph H, and let F = F (ϕ1, ϕ2). Then the following statements hold:

(a) If X is the vertex set of a component of the hypergraph F , then X
is both ϕ1-closed and ϕ2-closed, and ϕ3 = ϕ1|X ∪ ϕ2|X is an optimal
coloring of H with I(ϕ3) = (I(ϕ1) ∩X) ∪ (I(ϕ2) ∩X).

(b) If v1v2 is an edge of R(H) satisfying v1 ∈ I(ϕ1) and v2 ∈ I(ϕ2), then
v1 and v2 belong to the same component of the hypergraph F .

Proof. First we prove (a). Let U be any nonempty color class of ϕ1 or
ϕ2. Then either |U | = 1 or U is an edge of F and, since X is the vertex
set of a component of F , it follows that either U ⊆ X or U ⊆ X. So
X is both ϕ1-closed and ϕ2-closed. From Proposition 6.1 it then follows
that also X is both ϕ1-closed and ϕ2-closed. Furthermore, it follows that
ϕ′
1 = ϕ1|X is an optimal coloring of H[X] and ϕ′

2 = ϕ2|X is an optimal
coloring of H[X], where χ(H) = χ(H[X])+χ(H[X]). From this we conclude
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that ϕ3 = ϕ′
1 ∪ ϕ′

2 is an optimal coloring of G. It is easy to check that
I(ϕ3) = I(ϕ′

1) ∪ I(ϕ′
2) = (I(ϕ1) ∩X) ∪ (I(ϕ2) ∩X). This proves (a).

For the proof of (b), let X be the vertex set of the component of F
containing v1. Then it follows from (a) that ϕ3 = ϕ1|X ∪ϕ2|X is an optimal
coloring of H. If v2 �∈ X, then we conclude from (a) and the assumption of
(b) that {v1, v2} ⊆ I(ϕ3). But then Proposition 6.1 implies that v1v2 is an
edge of H and not of R(H) as assumed. This contradiction proves (b).

If a hypergraph H has an optimal coloring ϕ such that |I(ϕ)| = 1,
then |H| ≥ 2c(ϕ) − 1. So Theorem 5.3 is an immediate consequence of the
following result.

Theorem 6.4. Let H be a critical hypergraph whose relative complement
R(H) is connected. Then for every vertex v of H there is an optimal coloring
ϕ of H such that I(ϕ) = {v}.
Proof. Let v be an arbitrary vertex of H. Since H is critical, χ(H − v) <
χ(H) and Proposition 6.2 implies that there exists an optimal coloring ϕ of
H with v ∈ I(ϕ). An optimal coloring ϕ ofH is called a v-extreme coloring of
H if v ∈ I(ϕ) and |I(ϕ)| is minimum subject to this condition. To complete
the proof we must show that a v-extreme coloring ϕ of H satisfies |I(ϕ)| = 1.
The proof is arranged in a series of three claims.

Claim 6.4.1. Let v be a vertex of H, let ϕ1 be a v-extreme coloring of H
and let ϕ2 be any coloring of H. Then any component of the hypergraph
F = F (ϕ1, ϕ2) contains at most one vertex of I(ϕ1).

Proof. Suppose, to the contrary, that some component F ′ of F contains at
least two vertices of I(ϕ1). Then let

P = (v0, e0, v1, e1, . . . , vp−1, ep−1, vp)

be a shortest path in the subhypergraph F ′ such that v0 and vp are two
distinct vertices of I(ϕ1). Clearly, such a path P exists and we may choose
P so that vp is distinct from v. By the minimality of P , the only vertices of
P belonging to I(ϕ1) are v0 and vp. Clearly, the vertices vi are distinct and
the edges ei are distinct, where {vi, vi+1} ⊆ ei. Also, by the minimality of
P , the edges of P alternately lie in F (ϕ1) and F (ϕ2). Since v0 and vp belong
to I(ϕ1), the edges e0 and ep−1 both belong to F (ϕ2), and so the length p
of P is odd, say p = 2q + 1 with q ≥ 1.

Let X = {v0, v1, . . . , vp} be the vertex set of P . Then ϕ1|X is a col-
oring of H[X] with c(ϕ1|X) = q + 2 and ϕ2|X is a coloring of H[X] with
c(ϕ2|X) = q + 1. So ϕ1|X is no optimal coloring of H[X]. Since ϕ1 is an
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optimal coloring of H, it then follows from Proposition 6.1 that X is not
ϕ1-closed. Consequently, P contains a hyperedge of F (ϕ1). Then there is
a largest integer j such that vj belongs to a hyperedge of F (ϕ1), where
0 < j < p. Let

P ′ = (vj , ej , vj+1, . . . , vp−1, ep−1, vp)

be the subpath of P between vj and vp, and let Y = {vj , vj+1, . . . , vp} be
the vertex set of P ′. By definition of vj , the edge ej belongs to F (ϕ2), so
the length p− j of P ′ is odd. For the restricted colorings we obtain that

(i) c(ϕ1|Y ) + c(ϕ1|Y ) = c(ϕ1) + 1 and (ii) I(ϕ1|Y ) = I(ϕ1)− {vp}.

Equation (i) follows from the fact that U = ej−1 is a color class of ϕ1 whose
size is at least 3 and this is the only color class of ϕ1 which is divided into
two color classes, namely U ∩Y = {vj} and U ∩Y = U \ {vj}. Equation (ii)
follows from the fact that vp is the only isolated vertex of F (ϕ1) belonging to
Y . Furthermore, we conclude that c(ϕ1|Y ) = c(ϕ2|Y ) + 1 and I(ϕ2|Y ) = ∅.
Then ϕ3 = ϕ2|Y ∪ ϕ1|Y is a coloring of H satisfying

c(ϕ3) = c(ϕ2|Y ) + c(ϕ1|Y ) = c(ϕ1|Y ) + c(ϕ1|Y )− 1 = c(ϕ1)

and

I(ϕ3) = I(ϕ2|Y ) ∪ I(ϕ1|Y ) = I(ϕ1) \ {vp}.
This implies that ϕ3 is an optimal coloring of H such that v belongs to I(ϕ3)
and |I(ϕ3)| < |I(ϕ1)|. However, this contradicts the assumption that ϕ1 is
a v-extreme coloring of H. �

Claim 6.4.2. Let v1v2 be an edge of R(H) and let ϕ1 be a v1-extreme
coloring of H. Then there exists a v2-extreme coloring ϕ2 of H such that
I(ϕ1) \ {v1} = I(ϕ2) \ {v2}.
Proof. There is a v2-extreme coloring ϕ3 of H. By Proposition 6.3(b), the
vertices v1 and v2 belong to the same component of the hypergraph F (ϕ1, ϕ3).
Let X be the vertex set of this component, and let

ϕ2 = ϕ3|X ∪ ϕ1|X .

By Proposition 6.3(a), ϕ2 is an optimal coloring of H. By Claim 6.4.1,
we conclude that I(ϕ1) ∩ X = {v1} and I(ϕ3) ∩ X = {v2}, which gives
I(ϕ1)∩X = I(ϕ1)\{v1} and I(ϕ3)∩X = I(ϕ3)\{v2}. By Proposition 6.3(a),
we conclude that v2 ∈ I(ϕ2) and I(ϕ1) \ {v1} = I(ϕ2) \ {v2}. So ϕ2 is an
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optimal coloring of H such that v2 ∈ I(ϕ2) and |I(ϕ2)| = |I(ϕ1)|. To show
that ϕ2 is a v2-extreme coloring of H, it suffices to show that |I(ϕ2)| ≤
|I(ϕ3)|. By symmetry, the coloring ϕ4 = ϕ1|X ∪ϕ3|X is an optimal coloring
of H such that v1 ∈ I(ϕ4) and |I(ϕ4)| = |I(ϕ3)|. Since ϕ1 is a v1-extreme
coloring of H, we then conclude that |I(ϕ3)| = |I(ϕ4)| ≥ |I(ϕ1)| = |I(ϕ2)|
as required. This completes the proof. �

Claim 6.4.3. Let v be a vertex of H, and let ϕ be a v-extreme coloring of
H. Then for every vertex v′ of H there is a v′-extreme coloring ϕ′ such that
I(ϕ) \ {v} = I(ϕ′) \ {v′}.
Proof. The statement is evident if v = v′, otherwise, since R(H) is a con-
nected graph, there is a path P = (v0, v1, . . . , vp) in R(H) with p ≥ 1, v0 = v
and vp = v′. Then vivi+1 is an ordinary edge of R(H) for i = 0, 1, . . . , p− 1.
Starting with ϕ0 = ϕ, it follows from Claim 6.4.2 that, for i ∈ [1, p], there
exists a vi-extreme coloring ϕi of H such that I(ϕi−1)\{vi−1} = I(ϕi)\{vi}.
Consequently, we obtain that I(ϕ)\{v} = I(ϕ0)\{v0} = I(ϕp)\{vp}, which
proves the claim. �

To conclude the proof of Theorem 6.4, let v be an arbitrary vertex of
H. Suppose, to the contrary, that there exists a v-extreme coloring ϕ of
H such that I(ϕ) �= {v}. Then there exists a vertex v′ ∈ I(ϕ) \ {v} and,
by Claim 6.4.3, there is a v′-extreme coloring ϕ′ such that I(ϕ) \ {v} =
I(ϕ′) \ {v′}, which is a contradiction since v′ ∈ I(ϕ) \ {v}. Thus the proof
of the theorem is complete.

7. Hypergraphs whose order is near to χ

Let H be a simple hypergraph. A vertex v of H is called universal if vw ∈
E(H) for all vertices w ∈ V (H) \ {v}; an edge e of H is called universal if
vw ∈ E(H) whenever v ∈ e and w ∈ V (H) \ e. Let X be the set of universal
vertices of H with |X| = p, let e1, e2, . . . , eq be the universal hyperedges of
H, where |ei| = ni ≥ 3, and let Y = V (H) \ (X ∪ e1 ∪ e2 ∪ · · · ∪ eq). Then
H[X] is a complete graph, H[ei] = Kni

ni
and ni ≥ 3 for i = 1, 2, . . . , q, and

H = Kp +Kn1
n1

+ · · ·+Knt
nt

+H[Y ],

where the remaining hypergraph H[Y ] has neither universal vertices nor
universal edges. We shall apply Theorem 5.3 to deduce the following result.

Theorem 7.1. Let H be a k-critical hypergraph, let p be the number of
universal vertices of H, and let q be the number of universal hyperedges of
H. Then the following statements hold:
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(a) 0 ≤ p ≤ k and there exists a (k − p)-critical hypergraph H ′ such that
H = Kp + H ′, H ′ has no universal vertices, and |H ′| ≥ 3

2(k − p).
Furthermore, p ≥ 3k− 2|H| and equality holds if and only if H ′ is the
Dirac sum of 1

2(k − p) disjoint K3
3 ’s.

(b) 0 ≤ p + 2q ≤ k and there exists a 2q-critical hypergraph H1 and a
(k − p − 2q)-critical hypergraph H2 such that H = Kp + H1 + H2,
H1 is the Dirac sum of q 2-critical hypergraphs each of order at least
3, H2 has no universal vertices and no universal edges, and |H2| ≥
5
3(k − p − 2q). Furthermore, 2p + q ≥ 5k − 3|H| and equality holds if
and only if H1 is the Dirac sum of q disjoint K3

3 ’s and 1
3(k − p− 2q)

disjoint hypergraphs belonging to Cri(3, 5).

Proof. In what follows, let H be an arbitrary k-critical hypergraph. Then
H is a simple hypergraph and

H = H1 +H2 + · · ·+Ht,

where R(H1), R(H2), . . . , R(Ht) are the components of R(H). For i ∈ [1, t],
let ki = χ(Hi) and ni = |Hi|. By Theorem 4.2, we obtain that

(i) k = k1 + k2 + · · ·+ kt and Hi is a ki-critical hypergraph for i ∈ [1, t].

Since R(Hi) is connected, Theorem 5.3 implies that

(ii) |Hi| ≥ 2ki − 1 for i ∈ [1, t].

Since Cri(1) = {K1} and Cri(2) = {Kn
n | n ≥ 2}, we then conclude that

either ki = 1 and Hi = K1, or ki = 2 and Hi = Kni
ni

with ni ≥ 3, or ki ≥ 3
and |Hi| ≥ 5. For a subset X of [1, t], let

HX =
∑
i∈X

Hi and kX =
∑
i∈X

ki,

whereH∅ = ∅ and k∅ = 0. By Theorem 4.2,HX is a kX -critical hypergraph.
Let P = {i ∈ [1, t] | ki = 1}, Q = {i ∈ [1, t] | ki = 2}, R = [1, t] \ (P ∪ Q),
p = |P |, q = |Q|, and r = |R|. Then P,Q and R are pairwise disjoint sets
whose union is [1, t]. Thus we obtain that

(iii) H = HP +HQ +HR, where HP = Kp and HQ =
∑

i∈QKni
ni
.

Note that p is the number of universal vertices of H and q is the number of
universal hyperedges of H. First we want to establish a lower bound for p.
So let P = [1, t] \ P . Then P = R ∪ Q and H = HP + HP . For i ∈ P , we
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have that ki ≥ 3 and so, by (ii), |Hi| ≥ 2ki − 1 ≥ 3
2ki, where equality holds

if and only if Hi = K3
3 . For the order of H, it follows from (i) that

|H| = p+
∑
i∈P

|Hi| ≥ p+ 3
2

∑
i∈S

ki = p+ 3
2(k − p),

which is equivalent to p ≥ 3k − 2|H|. Clearly, p = 3k − 2|H| if and only if
HP is the Dirac sum of 1

2(k − p) disjoint K3
3 ’s. This proves (a).

For i ∈ R we have that ki ≥ 3 and so, by (ii), |Hi| ≥ 2ki − 1 ≥ 5
3ki,

where equality holds if and only if Hi ∈ Cri(3, 5). For the order of H we
then obtain that

|H| = p+
∑
i∈Q

|Hi|+
∑
i∈R

|Hi| ≥ p+ 3q + 5
3

∑
i∈R

ki = p+ 3q + 5
3kR.

Since k = kP + kQ + kR = p + 2q + kR (by (i)), it follows that |H| ≥
p + 3q + 5

3(k − p − 2q), which is equivalent to 2p + q ≥ 5k − 3|H|. Clearly,
2p + q = 5k − 3|H| if and only if Hi = K3

3 for all i ∈ Q and Hi ∈ Cri(3, 5)
for all i ∈ R. Thus, (b) is proved.

For a hypergraph K and a class of hypergraphs H, define K + H =
{K+H | H ∈ H} if H �= ∅, and K+H = ∅ otherwise. If H is a hypergraph
property, then we do not distinguish between isomorphic hypergraphs, so
we are only interested in the number of isomorphism types of H, that is, the
number of equivalence classes of H with respect to the isomorphism relation
for hypergraphs.

The number of isomorphism types of the class Cri(k, n) is finite, where
Cri(k, n) = ∅ if k > n and Cri(k, k) = {K2

k}. Furthermore, Cri(1, n) = ∅

if n > 1 and Cri(2, n) = {Kn
n} if n ≥ 2. From Theorem 7.1(a) we conclude

that Cri(k, k + 1) = K2
1 +Cri(k − 1, k) if k ≥ 3, which implies by induction

on k that

(4) Cri(k, k + 1) = {K2
k−2 +K3

3}

if k ≥ 2. For the class Cri(4, 6) we conclude from Theorem 7.1(b) that

Cri(4, 6) = (K2
1 +Cri(3, 5)) ∪ (K3

3 +Cri(2, 3)).

By Theorem 7.1(a), it follows that Cri(k, k + 2) = K2
1 +Cri(k − 1, k + 1) if

k ≥ 5, which implies by induction on k that

Cri(k, k + 2) = {K2
k−4 +K3

3 +K3
3} ∪ (K2

k−3 +Cri(3, 5))
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if k ≥ 4. If n = k + 3, then we conclude from Theorem 7.1(b) that

Cri(5, 8) = (K2
1 +Cri(4, 7)) ∪

5⋃
q=3

(Kq
q +Cri(3, 8− q))

= (K2
1 +Cri(4, 7)) ∪ (K3

3 +Cri(3, 5)) ∪ Cri′,

where Cri′ = {K2
1 + K3

3 + K4
4 ,K

2
3 + K5

5}, and from Theorem 7.1(a) we
conclude that

Cri(6, 9) = (K2
1 +Cri(5, 8)) ∪ {K3

3 +K3
3 +K3

3}.

If k ≥ 7, then Theorem 7.1(a) implies that

Cri(k, k + 3) = K2
1 +Cri(k − 1, k + 2).

By induction on k, we then conclude that if k ≥ 6, then

Cri(k, k + 3) = (K2
k−4 +Cri(4, 7)) ∪ (K2

k−5 +K3
3 +Cri(3, 5)) ∪ Cri′′,

where

Cri′′ = K2
k−6 + {K2

2 +K3
3 +K4

4 ,K
2
4 +K5

5 ,K
3
3 +K3

3 +K3
3}.

The first interesting classes of critical hypergraphs that are indecompos-
able are the classes Cri(3, 5), Cri(3, 6) and Cri(4, 7). Based on a computer
search, the second authors established 9 isomorphism types for the class
Cri(3, 5) and 64 isomorphism types for the class Cri(3, 6). That Cri(3, 5) has
indeed exactly 9 isomorphism types can be proved by a simple case analysis.
Let H1, H2, . . . , H8 be the graphs shown in Figure 1, and let H9 = K3

5 . The
hypergraph H3 is obtained from H1 = C5 by the enlarging operation. The
hypergraphs H4 and H5 are obtained from H3 by the enlarging operation,
and H6 is obtained from H4 respectively H5 by the enlarging operation.

Proposition 7.2. The isomorphism types of the class Cri(3, 5) are the hy-
pergraphs H1, H2, . . . , H9.

Sketch of Proof. Using Proposition 3.6 it is straightforward to show that
Hi ∈ Cri(3, 5) for i = 1, 2, . . . , 9. Now let H ∈ Cri(3, 5). Our aim is to show
that H is isomorphic to Hi for some i. Since both H and Hi belong to
Cri(3, 5), it suffices to show that H ⊆ Hi or Hi ⊆ H.

To this end, let m be the number of ordinary edges of H, and let G
be the subhypergraph of H whose vertex set is V (H) and whose edge set
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Figure 1: Hypergraphs of Cri(3, 5).

consists of the ordinary edges of H. So G is a graph. First assume that G
contains a cycle C. If |C| is odd, then C is a 3-critical subhypergraph of H
and so H = C, implying that H = H1. If |C| is even, then let uv be an edge
of C. Then there is a 2-coloring ϕ of H \ uv. Then ϕ is also a 2-coloring
of C \ uv, and so ϕ(u) �= ϕ(v). But then ϕ is a 2-coloring of H, which is
impossible. Now assume that G contains no cycle. Then G is a forest and
so m ≤ |G| − 1 = 4.

By Proposition 3.3(b)(d), H is a simple hypergraph with δ(H) ≥ 2
and every vertex v of H is contained in two edges having only vertex v
in common. So if e is a hyperedge of H, then 3 ≤ |e| ≤ 4. If |e| = 4
for an hyperedge e of H, then for every vertex v ∈ e the ordinary edge
vw, where w is the remaining vertex of V (H) \ e, must belong to H, and
so H2 = K1 + K4

4 ⊆ H, and we are done. So it remains to consider the
case where |e| = 3 for every hyperedge e of H. To complete the proof, we
distinguish three cases.

Case 1: m = 4. Then G is a tree of order 5 and either K1,3 ⊆ G
or P5 ⊆ G. Clearly, H contains a hyperedge e with |e| = 3 and e is
an independent set of G. So if K1,3 ⊆ G, we conclude that H ′ = K2

1 +
K3

3 ⊆ H. Since H ′ is a 3-critical hypergraph, H ′ = H and so |H| = 4,
which is impossible. If P5 ⊆ G, we conclude that H3 ⊆ H and we are
done.
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Case 2: m = 3. Then the three edges of G form a path, a path plus an
independent edge, or a star. If G consists of the edges v1v2, v2v3 and v3v4,
then let v5 the remaining vertex. Then v5 must be in two hyperedges having
only this vertex in common, which leads to H4 ⊆ H. If G consists of the
edges v1v2, v2v3 and v4v5, then it follows from Proposition 3.3(b) that the
two hyperedges {v4, v1, v3} and {v5, v1, v3} belong to H, and so H5 ⊆ H.
It remains to consider the case when the three edges of G form a star, say
v1v2, v1v3 and v1v4. Let v5 the remaining vertex of H. If {v2, v3, v4} is a
hyperedge of H, then H ′ = K2

1 +K3
3 is a 3-critical hypergraph contained in

H, and so H = H ′ and |H| = |H ′| = 4, a contradiction. Otherwise, the two
sets {v1, v5} and {v2, v3, v4} are independent sets of H, and so χ(H) = 2, a
contradiction.

Case 3: m ≤ 2. Since H is simple, it is easy to check that H6 ⊆ H (if
m = 2 and the two edges of G form a path), H ⊆ H7 (if m = 2 and the two
edges of G are independent), H8 ⊆ H (if m = 1), and H ⊆ K3

5 = H9 (if
m = 0). �

Figure 2: The only two 4-critical graphs on 7 vertices.

Let Cri∗(k, n) denote the subclass of Cri(k, n) containing all hypergraphs
having no universal vertices and no universal edges. By Proposition 7.2,
Cri∗(3, 5) has 8 isomorphism types. Furthermore, we obtain that

Cri(3, 6) = Cri∗(3, 6) ∪ {K2
1 +K5

5}

and

Cri(4, 7) = Cri∗(4, 7) ∪ (K2
1 +Cri∗(3, 6)) ∪ {K2

2 +K5
5 ,K

3
3 +K4

4}.

Lists of small critical graphs were determined by Toft [27], by Jensen and
Royle [12], and by Royle (see his web page on small graphs). In particular,
there are exactly two (non-isomorphic) 4-critical graphs G1 and G2 on 7
vertices, neither of which contains a universal vertex (see Figure 2). The
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graph G2 = K2
4 ∧K2

4 is a Hajós sum of two K2
4 ’s, so in this sense it is also

decomposable.

8. Critical hypergraphs with few edges

One interesting feature of critical hypergraphs is the fact that their edge
number increases with their order. So, it is an interesting task to investigate
the extremal function ext(·, ·) defined by

ext(k, n) = min{|E(H)| | H ∈ Cri(k, n)}

and the corresponding class of extremal hypergraphs defined by

Ext(k, n) = {H ∈ Cri(k, n) | |E(H)| = ext(k, n)},

where k and n are positive integers. For an integer r ≥ 2, let Crir(k, n)
be the subclass consisting of all r uniform hypergraphs of Cri(k, n). Fur-
thermore, let extr(k, n) = min{|E(H)| | H ∈ Crir(k, n)} and let Extr(k, n)
be the corresponding set of extremal r-uniform hypergraphs. Note that the
function ext(k, n) is well defined for n ≥ k ≥ 3, while for the function
extr(k, n) the situation is more complicated. For instance, there is no k-
critical graph of order k + 1. Provided that Crir(k, n) �= ∅, we obtain that
ext(k, n) ≤ extr(k, n). Since k-critical hypergraphs have minimum degree at
least k − 1 (Proposition 3.3), extr(k, n) ≥ 1

r (k − 1)n. Over the years many
improvements of this trivial lower bound have been presented in the graph
theory literature, and we refer the reader to the survey by Kostochka [13].
That it is worthwhile to study the function ext2(k, n) was first emphasized
by Dirac [6] and subsequently by Gallai [9], [10] and by Ore [21]. Very re-
cently Kostochka and Yancey [14] succeeded in determining the best linear
approximation to the function ext2(k, n).

Theorem 8.1. If n ≥ k ≥ 4 and n �= k + 1, then

ext2(k, n) ≥
(k + 1)(k − 2)n− k(k − 3)

2(k − 1)
,

where equality holds if n ≡ 1 (mod k − 1).

The proof of this pioneering result, which is long and sophisticated, is
based on the potential method. To see that equality can hold, let g(k, n)
denote the Kostochka–Yancey bound, that is,

g(k, n) = 1
2(k − 2

k − 1
)n+ ck with ck = −k(k − 3)

2(k − 1)
.
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Then it is easy to check that the function g satisfies the following recursion

(5) g(k, k) =

(
k

2

)
and g(k, n+ k − 1) = g(k, n) +

(
k

2

)
− 1.

This recursion can be used to show that if n ≥ k and n ≡ 1 (mod k − 1),
then there is a k-critical graph of order n and with g(k, n) edges. To this
end, let G1 be a k-critical graph and, for � ≥ 1, let G�+1 = G� ∧ Kk be a
Hajós sum of G� and Kk. By Theorem 4.1, G� is a k-critical graph for every
� ≥ 1. Let n� = |V (G�)| and m� = |E(G�)|. For � ≥ 1, we then obtain that

n�+1 = n� + k − 1 and m�+1 = m� +

(
k

2

)
− 1.

So, if we take G1 = Kk, we get n1 = k and m1 =
(
k
2

)
= g(k, n1). Using

the recursion (5), it follows by induction on � that m� = g(k, n�) and so
G� ∈ Cri2(k, n�) for all � ≥ 1. Clearly, Cri2(k, k) = {Kk}. If we start the

sequence G� with a graph G
(p)
1 having k + p vertices and m(k, k + p) edges,

where 0 ≤ p ≤ k − 2, then we obtain an upper bound h(k, n) of ext2(k, n),
where

h(k, n) = 1
2(k − 2

k − 1
)n+ ck,p

with

ck,p = m(k, k + p)− 1
2(k − 2

k − 1
)(k + p).

It is notable that the additive term ck,p of the function h depends both on k
and on the residue class p+1 of n (mod (k−1)). So, we get an upper bound
for ext2(k, n), that is, ext2(k, n) ≤ h(k, n). The best upper bound that we

can achieve in this way is when we choose G
(p)
1 from the class Ext2(k, k+ p)

so that m(k, k + p) = ext2(k, k + p). Let us denote the resulting function
in this case by ore(k, n), since this function was implicitly introduced by
Ore. Then ore(k, n) = g(k, n), provided that n ≡ 1 (mod k − 1). There is a
small gap, since there is no k-critical graph of order k + 1. In this case we
can start the recursion with a graph of Ext2(k, 2k). As proved by Kostochka
and Stiebitz [15] ext2(k, 2k) = k2 − 3, which leads to

m(k, k + 1) = ext2(k, 2k)−
(
k

2

)
+ 1 =

(
k + 1

2

)
− 2 = ext(k, k + 1),

since Cri(k, k+1) = Ext(k, k+1) = {K2
k−2+K3

3}. This implies that ore(k, n)
is also an upper bound for ext(k, n). Gallai [10] used Theorem 5.1 in order to
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establish the exact values for the function ext2(k, n) including a description
of the extremal classes Ext2(k, n), provided that k + 2 ≤ n ≤ 2k − 1.

For an integer k ≥ 3, let DG(k) denote the family of all graphs G whose
vertex set consists of three nonempty pairwise disjoint sets X,Y1 and Y2
with

|Y1|+ |Y2| = |X|+ 1 = k − 1

and two additional vertices v1 and v2 such that X and Y1 ∪ Y2 are cliques
in G not joined by any edge, and NG(vi) = X ∪ Yi for i = 1, 2. This class of
k-critical graphs with order 2k−1 was introduced and investigated by Dirac
[7] and by Gallai [9]. Note that all graphs in this class are indecomposable.

Theorem 8.2. (Gallai) Let n = k + p be an integer, where k, p ∈ N and
2 ≤ p ≤ k − 1. Then

ext2(k, n) =

(
n

2

)
− (p2 + 1) =

1

2
((k − 1)n+ p(k − p)− 2)

and Ext2(k, n) = Kk−p−1 +DG(p+ 1).

It seems much more difficult to establish a lower bound for the function
ext(k, n). In 1970 Lovász [18] proved that ext(3, n) = n for all n ≥ 3.
Other proofs were given by Woodall [28] in 1972, by Seymour [23] in 1974
and by Burstein [3] in 1976. Seymour’s proof is particularly simple, based
on elementary linear algebra. As pointed out in [25] the Kostochka–Yancey
bound also holds for hypergraphs. This can be easily proved by induction on
the number of hyperedges using the recursion (5) as well as a construction
of Toft [26].

Theorem 8.3. If n ≥ k ≥ 4, then ext(k, n) ≥ (k+1)(k−2)n−k(k−3)
2(k−1) , where

equality holds if n ≡ 1 (mod k − 1).

As an immediate consequence of Theorem 8.3 and Seymour’s bound
we obtain the following lower bound. It is notable that we cannot prove
this trivial lower bound without using the Kostochka–Yancey bound and its
extension to hypergraphs.

Corollary 8.4. If n ≥ k ≥ 3, then ext(k, n) ≥ 1
2(k − 1)n.

Based on Theorem 5.3 and Corollary 8.4 we shall prove a counterpart of
Theorem 8.2.

Theorem 8.5. Let n = k+p be an integer, where k, p ∈ N and 1 ≤ p ≤ k−1.
Then
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ext(k, n) =

(
n

2

)
− (p2 + 1) =

1

2
((k − 1)n+ p(k − p)− 2)

and Ext(k, k + p) = Kk−p−1 + Ext(p+ 1, 2p+ 1).

Proof. Let H be a k-critical hypergraph of order n, where n = k + p and
1 ≤ p ≤ k − 1. The number of edges of a hypergraph H ′ is denoted by
m(H ′). Furthermore, let

e(k, p) =
1

2
((k − 1)(k + p) + p(k − p)− 2).

Our aim is to show that m(H) ≥ e(k, p) and that equality holds if and
only if H ∈ Kk−p−1 + Ext(p + 1, 2p + 1). The proof is by induction on
k. The statement is evident if k = 2, since then p = 1, H = K3

3 and
m(H) = e(2, 3) = 1. So assume that k ≥ 3. If p = 1, then H = K2

k−2 +K3
3

(by (4)) and 2m(H) = 2e(k, 1) = k2−4+k, so we are done. If p = k−1, then
n = 2k − 1 and, by using Theorems 8.3 if k ≥ 4 and Corollary 8.4 if k = 3,
we obtain that m(H) ≥ ext(k, n) ≥ k2 − k − 1 = e(k, k − 1), which yields
the desired result. So it remains to consider the case when 2 ≤ p ≤ k − 2.
By Theorem 5.3 it follows that H is decomposable.

Case 1: H has a universal vertex v. Then H ′ = H − v is a (k − 1)-
critical hypergraph of order n′ = k + p− 1 with m(H) = m(H ′) + n′. From
the induction hypothesis it follows that

m(H) = m(H ′) + k + p− 1 ≥ e(k − 1, p) + (k + p− 1) = e(k, p).

Furthermore, m(H) = e(k, p) is equivalent to m(H ′) = e(k − 1, p), which is
equivalent to H ′ ∈ Kk−p−2+Ext(p+1, 2p+1) and hence to H ∈ Kk−p−1 +
Ext(p+ 1, 2p+ 1). So we are done.

Case 2: H has a universal hyperedge e, but no universal vertex. Then
H = Kq

q +H ′, where q ≥ 3 and H ′ is a (k − 2)-critical hypergraph of order
n′ = k+p−q. Since k ≥ 4 and H ′ is a (k−2)-critical hypergraph of order n′

with no universal vertex, n′ ≥ k and so q ≤ p. Then n′ = k+ p− q ≤ 2k− 5
and the induction hypothesis implies that m(H ′) ≥ e(k− 2, p+2− q). Since
m(H) = m(H ′) + qn′ + 1 and 3 ≤ q ≤ p, this leads to

2m(H) ≥ 2e(k − 2, p+ 2− q) + 2q(k + p− q) + 2

= 2e(k, p) + (q − 2)(4p− 3q + 3) > 2e(k, p).

So we are done.
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Case 3: H has no universal hyperedge and no universal vertex. Then H
is a simple hypergraph and

H = H1 +H2 + · · ·+Ht,

where R(H1), R(H2), . . . , R(Ht) are the components of R(H). It follows from
Theorem 5.3 that t ≥ 2. For i ∈ [1, t], let ki = χ(Hi), ni = |Hi|,mi = |E(Hi)|
and mi =

(
ni

2

)
−mi. By Theorem 4.2, we obtain that

k = k1 + k2 + · · ·+ kt and Hi is a ki-critical hypergraph for i ∈ [1, t].

By the assumption of the case, ki ≥ 3 for i ∈ [1, t]. Theorem 5.3 implies that
ni ≥ 2ki − 1 ≥ 5 for i ∈ [1, t]. For a subset X of [1, t], let

HX =
∑
i∈X

Hi, kX =
∑
i∈X

ki, nX =
∑
i∈X

ni and mX =
∑
i∈X

mi,

where the sum over the empty set is zero. By Theorem 4.2, HX is a kX -
critical hypergraph whose order is nX .

Our aim is to show that m(H) ≥ e(k, p) + 1. To this end, we split
the set [1, t] into two subsets, namely A = {i ∈ [1, t] | ni = 2ki − 1} and
B = {i ∈ [1, t] | ni ≥ 2ki}. Let a = |A| and b = |B|. Since A ∩ B = ∅ and
A ∪B = [1, t], we obtain that

(6) H = HA +HB and a+ b = t ≥ 1.

Using Theorem 5.3, we conclude from (6) that

(7) k = kA + kB and n = nA + nB.

The definition of A implies that

(8) ni = 2ki − 1, ki ≥ 3 and ni ≥ 5 whenever i ∈ A,

from which we conclude that

(9) kA =
∑
i∈A

ki ≥ 3a and nA =
∑
i∈A

ni = 2kA − a.

Since Hi is a ki-critical hypergraph with ki ≥ 3, we deduce from Corollary
8.4 that 2mi ≥ (ki − 1)ni. Since ni = 2ki − 1 for i ∈ A (by (8)), this yields

(10) 2mi = 2

(
ni

2

)
− 2mi ≤ ni(ni − ki) =

(
ni

2

)
whenever i ∈ A.
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Using (8) and (9), we obtain that

2mA =
∑
i∈A

2mi ≤
∑
i∈A

(
ni

2

)
≤ (a− 1)

(
5

2

)
+

(
nA − 5(a− 1)

2

)
,

which is equivalent to

(11) 2mA ≤ 2(kA − 3a)2 + 9(kA − 3a) + 10a.

Note that this inequality also holds if a = 0. If b ≥ 1, then HB is a kB-critical
hypergraph of order nB, where

(12) kB ≥ 3

and

(13) nB ≥ 2kB.

By Corollary 8.4, we obtain that 2m(HB) ≥ (kB − 1)nB. Let

m(HB) =

(
nB

2

)
−m(HB) and m = mA +m(HB).

Then

(14) 2m(HB) ≤ nB(nB − kB) = (nB − kB)
2 + kB(nB − kB).

Note that (13) and (14) also holds if b = 0. Using (11) and (14), we obtain
that

(15) 2m ≤ 2(kA − 3a)2 + 9(kA − 3a) + 10a+ (nB − kB)
2 + kB(nB − kB).

Since n ≤ 2k − 2, we deduce that (a, b) �= (1, 0). Next we show that

(16) m ≤ p2.

By (6) and the definition of m, this is equivalent to m(H) ≥
(
n
2

)
− p2 and

hence to m(H) ≥ e(k, p) + 1. Using (7) and (9), we obtain that

p = n− k = nA − kA + nB − kB = kA − a+ nB − kB,

which yields
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2p2 = 2((kA − 3a) + 2a)2 + 2(nB − kB)
2 + 4(kA − a)(nB − kB)

= 2(kA − 3a)2 + 8a(kA − 3a) + 8a2 + 2(nB − kB)
2 +

4(kA − a)(nB − kB).

Together with (15), this leads to

2(p2 −m) ≥ (8a− 9)(kA − 3a) + a(8a− 10) +(17)

(nB − kB)((nB − 2kB) + 4(kA − a)).

If a ≥ 2, then (16) follows from (17), (9) and (13). If a = 1 and b ≥ 1, then
nB − kB ≥ kB ≥ 3 (by (12) and (13)). From (17), (9) and (13) we then
conclude that

2(p2 −m) ≥ 11(kB − 1) > 0.

If a = 0 and b ≥ 1, then (16) follows from (17) and (13). Since (a, b) �= (1, 0),
this shows that (16) holds and hence m(H) ≥ e(k, p) + 1. This completes
the proof of the theorem.

Gallai [10] and Dirac [7] proved that Ext2(k, 2k − 1) = DG(k) if k ≥ 3.
By Theorem 8.2 and Theorem 8.5, it follows that ext(k, n) = ext2(k, n) for
k + 2 ≤ n ≤ 2k − 1 and hence DG(k) ⊆ Ext(k, 2k − 1) if k ≥ 3. How-
ever, a complete description of the class Ext(k, 2k− 1) is unknown. Clearly,
Ext(2, 3) = {K3

3} and Ext(3, 5) = {H1, H2, H3, H4, H5, H6}. It is also un-
known whether every hypergraph of Ext(k, 2k − 1) belongs to DG(k) or is
obtained from such a graph by the enlarging operation. Ore [21] conjectured
that ext2(k, n) = ore(k, n) for all possible values (k, n), and our results sup-
port the conjecture that ext(k, n) = ext2(k, n).
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