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The matrix cover polynomial

FAN CHUNG AND RON GRAHAM

The cover polynomial C(D) = C(D;x,y) of a digraph D is a two-
variable polynomial whose coeflicients are determined by the num-
ber of vertex coverings of D by directed paths and cycles. Just as
for the Tutte polynomial for undirected graphs (cf. [11, 16]), vari-
ous properties of D can be read off from the values of C(D;z,y).
For example, for an n-vertex digraph D, C(D; 1, 0) is the number of
Hamiltonian paths in D, C(D;0,1) is the permanent of adjacency
matrix of D, and C(D;0,—1) is (—1)" times the determinant of
the adjacency matrix of D. In this paper, we extend these ideas
to a much more general setting, namely, to matrices with elements
taken from an arbitrary commutative ring with identity. In partic-
ular, we establish a reciprocity theorem for this generalization, as
well as establishing a symmetric function version of the new poly-
nomial, similar in spirit to Stanley’s symmetric function generaliza-
tion [13] of the chromatic polynomial of a graph, and Tim Chow’s
symmetric function generalization [5] of the usual cover polyno-
mial. We also show that all of the generalized polynomials and
symmetric functions can also be obtained by a deletion/contraction
process.

KEYWORDS AND PHRASES: Digraph polynomials, Tutte polynomials,
deletion/contraction rules.

1. Overview

In [7], the authors introduced the path-cycle cover polynomial C(D;z,y), a
polynomial generated from the ways that the vertices of a digraph D can be
covered by (directed) paths and cycles. This has generated a fair amount of
follow-up work during the past two decades by various researchers studying
its properties. This includes the geometric cover polynomial of D’Antona
and Munarini [4], the computational complexity of evaluating C(D;x,y) at
specific points in the (z,y)-plane [1, 2, 3], symmetric function generaliza-
tions of C(D;x,y) [5], etc. All of this work applied to ordinary (unweighted)
digraphs. In this paper, we extend our earlier work by defining a new cover
polynomial Cy(D;z,y) which generalizes our earlier polynomial in several
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significant ways. First, D can be taken to any weighted digraph D in which
each edge e is assigned an arbitrary weight w(e) € R, where R is some
arbitrary commutative ring with identity. Furthermore, each vertex v of D
can be equipped with an arbitrary positive integer weight wg(v). Finally,
the subscript ¢ can be any real number. The case of ¢ = 1 is our original
cover polynomial, while the case of ¢t = 0 is the geometric cover polyno-
mial. We also introduce a symmetric function generalization =;(D;x,y) for
our “doubly-weighted” digraphs D, analogous to Chow’s symmetric func-
tion generalization =Z(D; x,y) of C(D;z,y) (see [5]) and Stanley’s symmetric
function generalization X (G) of the chromatic polynomial of a graph G (see
[13]). In particular, we show that (D) satisfies a surprising reciprocity for-
mula, something that Chow (and also Gessel [10]) observed for Z(D). We also
show that both C;(D) and Z(D) can be defined by a deletion/contraction
process.

2. Introduction

To begin, we first make a few remarks concerning notation. A digraph D =
(V,E) is given by a set V of vertices and a set E of ordered pairs (u,v) of
vertices, called the edges of D. An edge of the form (u,v) with u # v is
called a regular edge. An edge of the form (u,u) is called a loop. We assume
that D can have multiple edges and loops, i.e., many copies of the pair (u, v)
(so, strictly speaking, D is a multi-digraph). By a (directed) path P in D,
we mean a sequence P = (v, v9,...,v,) of distinct vertices vy where each
(vi,vi1+1) is an edge of D (with a similar definition for a directed cycle in
D). In general, all undefined graph theory notation can be found in standard
texts, such as [8].

We next define two operations on D, each of which produces a somewhat
simpler digraph. Given an edge e = (u,v) of D (which can be regular or a
loop), the deleted digraph D \ e is defined as (V, E'\ {e}). In other words,
the edge e is simply deleted from the edge set of D.

The other operation is the contraction of an edge e in D. This produces
the digraph D/e = (V',E’) where V' and E' are defined as follows. If e =
(u,v) is a regular edge, then the vertices u and v are merged to form the
vertex uv. The only edges incident to uv will be those regular edges that
are of the form (x,u) or (v,y) in D. They become (z,uv) or (uv,y) in E'.
In particular, all loops (u,u) and (v,v) are removed, and an edge (v, u) now
becomes a loop (uv,uv) in D/e. All other edges in D remain edges in D/e.
On the other hand, if e = (u,u) is a loop, then V' = V' \ w and E’ is formed
by removing every edge of D which is incident to u.
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We next define the cover polynomial C(D) = C(D;x,y) of D recursively

(where x and y are indeterminates):

(i) If D = I,,, the digraph consisting of n independent vertices and no
edges, then C'(D) = 2% = z(x — 1)(x — 2)--- (x — n + 1), the falling
factorial. In particular, for the case n = 0, the corresponding digraph
Dy has C(Dy) = 1;

(ii) If e is a regular edge then C(D) = C(D \ e) + C(D/e);

(iii) if e is a loop then C'(D) = C(D \ e) + yC(D/e).

It is rather remarkable that C' (D) is actually well-defined, in other words,
it does not depend on the order that various edges and loops are deleted
and contracted. This was one of the results of [7] and followed from the
following interpretation of the coefficients of C(D). If we write C(D) =
Zi,j cp(i, j)zty!, where xt denotes the falling factorial xt = H;;%)(:c - 7),
then cp(i,7) is just the number of ways of disjointly covering all the vertices
of D with ¢ paths and j cycles, where a single vertex is considered to be
a path of length zero, and a loop is considered a cycle of length 1. Thus,
for example, ¢p(0,1) is just the number of Hamiltonian cycles of D, so it
should come as no surprise that computing C(D) for general digraphs D is
computationally challenging, to say the least (we say more about this later
in the paper). We point out that C'(D) also satisfies a surprising reciprocity
relation (first independently observed by Gessel [10] and Chow [5]): suppose
D’ denotes the complement of D, i.e., the roles of edges and non-edges are
interchanged. Then we have:

Theorem [5, 10]. For all unweighted digraphs on n vertices:
(1) C(D'sz,y) = (-1)"C(D;—z —y,y)
3. Weighted digraphs

Our first generalization will be to assign weights to the edges of D. Thus, to
each edge e of D we assign a weight w(e) where w(e) can be taken in general
to lie in some fixed commutative ring R with identity (we will ordinarily
take R to be R or C). (Similar generalizations are known for other graph
polynomials, e.g., see Section 6.1 of [2]). We can naturally represent the
weighted edges of D = (V,E) by a matrix M = M(D) where the rows
and columns of M are indexed by V and for each edge e = (u,v), the
(u,v) entry of M is given by M (u,v) = w(e). For the case of ordinary
(unweighted) digraphs, each edge has weight 1. In Figure 1, we give an
example of a weighted digraph and its associated matrix. (The weights may
look like integers but they are really from our commutative ring R!)
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Figure 1: A weighted digraph D and its associated matrix M.

We will now define the cover polynomial C(M) = C(M;x,y) for the
matrix M analogously as was done for an unweighted digraph D. We will
switch between using a weighted digraph D or its associated matrix M as
is convenient. Again, we will give a recursive definition based on a weighted
version of deletion and contraction for matrices. Let M be a matrix and
consider an entry e = M (u,v). The deleted matrix M \ e is formed by just
replacing the (u,v) entry of M by 0. The contraction M /e of M is formed
by first replacing row u of M by row v of M, and then deleting row v and
column v of M. Thus, M/e has one fewer row and column than M does.
Note that the same rule applies whether e is a diagonal (loop) entry or a
non-diagonal (regular edge) of M. We illustrate this process in Figure 2.

The cover polynomial C(M) = C(M;z,y) is now defined recursively as
follows:

Definition 1:

(1a) If M = M,(0), the n by n matrix of all 0’s, then C(M) = z™, where
for the empty matrix My(0), we set C(Mp(0)) = 1;

(1b) If e = (u,v) with u # v, then we define C(M) = C(M \ e) +
M (u, v)C(M/e);

(1c) if e = (u,u) then we define C(M) = C(M \ e) + M (u,u) y C(M/e).

For example, for the matrix shown in Figure 2, we have
(2) C(M) = (52% + 1622 + 11z)y + z* + 102° + 2322 — 10z.
We can state the above formula in terms of the weighted digraph D as

follows:

Definition 2:
(2a) If D = I,, consisting of n vertices and no edges, then C(D;z,y) = 2»
where for n = 0 we set C(D;x,y) = 1;
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Figure 2: Deletion and contraction for the matrix M.

(2b) If e is a regular edge, then C(D) = C(D \ e) + w(e)C(D/e);
(2¢) If e is a loop, then C'(D) = C(D \ e) + w(e) y C(D/e).

In Figure 3, we show the corresponding weighted digraph deletions and
contractions.

We are next going to explicitly define the polynomial C(D;z,y) for a
weighted digraph D (see also [2] for other weighted generalizations of di-
graphs). We will eventually show that this is identical to the cover polyno-
mial C'(M) of the associated matrix M = M (D). A path-cycle cover S of D
is a collection of paths and cycles which disjointly cover all the vertices of
D. The weight of a path or cycle is defined to be the product of the weights
of all the edges in the path or cycle. The weight w(S) of S is defined to be
the product of all the weights of the paths and cycles in it. Finally, the co-
efficient ¢p(i,7) is the sum of all the weights of the path-cycle covers which
consist of exactly ¢ paths and j cycles. We claim the following also defines
the cover polynomial.

Definition 3:
(3) C(D;x,y) ZCD i,J)x

We can also write C(D; z,y) in the following form (which will be useful later
when we deal with symmetric functions):

(4) C(D;z,y) = Zw#”(s #w(S)
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Figure 3: Deletion and contraction for the corresponding digraph D.

where S ranges over all path-cycle covers of D, #m(S) denotes the number
of blocks in the partition 7(S) of the vertices induced by the paths of S, and
#0(S) denotes the number of blocks in the partition o(S) of the vertices
induced by the cycles of S.

For positive integers 7 and s, we consider two sets of colors, say F), and
F. where |F)| = r and |F,| = s. Given some path-cycle cover S of D, an
S-feasible (r, s)-coloring of D is a assignment of colors so that all the vertices
in each cycle of S have the same F, color, all the vertices in each path of S
have the same F}, color, and further, vertices in different paths have different
colors. (Vertices in different cycles can have the same color). We can rewrite
(4) as follows:

(®) C(Dsros) =Yy w(S)
S K

where S ranges over all path-cycle covers and k ranges over all feasible
colorings of S.

In the next section we will show that all three definitions are equivalent,
that is, they define the same polynomial. As a consequence, this implies that
the deletion/contraction definitions are well-defined, i.e., the final result is
independent of the order of the edges chosen.

In Table 1, we tabulate the various weighted path-cycle covers for the
weighted digraph D shown in Figure 3. Notice that if we express (2) using
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Table 1: Table of weighted path-cycle covers for D

cp(i,j) | path-cycle cover | weight | sum

¢(1,0) UwWUT 24 24
u | woz 6
u | vew 12
¢(2,0) u | zwv 2 60
uw | ve 24
uwo | T 4
uwx | v 12
uw | x| v 4
wo | u | x 1
¢(3,0) v | u | w 6 16
xw | u|v 2
wr | u | v 3
c(4,0) ulv|wl|ex 1 1
c(1,1) uwv | xx 20 32
u | zwvx 12
u | wo | xx 5
c(2,1) u | uw | zx 20 31
u|v | wrw 6
c(3,1) ulv|wl|zz 5 5

the polynomial basis x"y*, then we have
6)  C(M) = (522 + 3122 + 322)y + 2% + 1622 + 6022 + 24

These coefficients are exactly the weighted path-cycle sums appearing in the
table.

4. Proof of equivalence

We first claim that we can replace (2b) in Definition 2 of C'(D) by the fol-
lowing:
(2b’)  For any 8 € R, if e is a regular edge then

C(D) = C(D\ Be) + BC(D/e),

where D\ Se is the digraph with the new edge weight w(e) — 8 on the edge
e, and D/e is the usual contraction.
To see that (2b) is equivalent to (2b’), we observe the following:

Lemma 1. C(D \ e) +w(e)C(D/e) = C(D\ pe) + fC(D/e).
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Proof: Note that if 8 # w(e) then we have by (2b)

C(D\ Be) = C((D\ Be) \ (w(e) = Be) + (w(e) = F)C(D/e)
=C(D\e) + (w(e) = B)C(D/e).

On the other hand, if 5 = w(e) then the claim follows by definition. [

Lemma 2. Suppose that D has vertex set V. = V4 U Vy where Vi N Vo = 0.
Let D; denote the induced digraph on Vi, i = 1,2. Further, suppose that D
has all the edges of the form (uy,us) for all u; € Vi,us € Va, each of weight
1. Then

C(D) = C(D1)C(D2).

Proof: It suffices to show that C'(D;r,s) = C(Dy;r,s)C(Da;r,s) for pos-
itive integers r and s. We use the formulation in equation (5). For each
feasible (r, s)-coloring of D; and Ds, the union (together with the edges
from D; to Dy joining appropriate endpoints of paths in the same color) is
a feasible (r, s)-coloring of a path-cycle cover of D. Furthermore, the weight
of the cover of D is the product of the weights of the covers of D and Do
(since all the crossing edges have weight 1). Thus, we have

C(D7 r, 5) = C(D17 T, S)C(DQa T, 3)
for any choice of positive integers r, s. This implies
C(D;x,y) = C(Dy;2,y)C(Da; . y)

for indeterminates x and y. O
Theorem 1. The three definitions of C(D) are equivalent.

Proof: It easily checked that Definitions 1 and 2 are equivalent, since one
is expressed in the language of matrices and the other in terms of digraphs.
We will first show that Definition 3 implies Definition 2. The proof will
proceed by induction. Suppose that D contains a regular edge e. We consider
the family F of path-cycle covers which consist of ¢ paths and j cycles for
some fixed ¢ and j. Thus,
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We can write F = F{ U F5 where

Fi={FecF:e¢F},
Fo={FecF:ecF}.

Clearly,

w(Fl) = cD\e(iuj)'

Note that for any F' € Fa, the induced cover F'/e is a path-cycle cover of
D/e with i paths and j cycles. Also, w(F) = w(e)w(F'/e). Therefore,

ep(i,j) = wF)=> w(F)
= > wE)+ Y wF)

FeF, FeF,

= Y wF\e)+uwle) Y wF/e)
FeF, FeF,

= cD\e<i,j)+w(e)cD/e<i7j>

by Definition 3. Thus,
CDizy) = 3 enli, j)aly
1,

= Y (epvelis ) + wle)epyeli, ) a'y’
i

which is (2b).

Next, suppose that €/ = (u,u) denotes a loop at vertex u with weight w(e’).
Again, we consider the set F of path-cycle covers of D, each of which has 4
paths and j cycles. Set F = F} UFY, where

'={FeF: ¢F},
b={FeF: eF}.
As before, it is clear that w(F}) = cp\o(4,). Also, for F' € F) we have

w(F) = w(e')w(F') where F' is the path-cycle cover induced from F' on the
vertex set V' \ {u}. Therefore,
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ep(if) = w(®) = 3 w(F)

— Z w(F\ €)+w(e) Z w(F/e')

FeF] FeFy,
= CD\e (Za]) + w(e/)CD/e’ (Zaj - 1)

by Definition 3. Therefore,
O(Da xz, y) = Z CD(Z.a j)xfy]

= Y (epve (i, )ty +w(e)yepeli,j — Daly’ ™
i?j
= CO(D\esz,y)+w()yC(D/e;z,y),

C(D) = C(D\ &) +w(e) yC(D/e)

which is (2c).
For the final case, suppose D = I, the digraph consisting of n isolated
vertices. In this case, there is only one path-cycle cover, namely n paths of
length 0, so by Definition 3, C(I,) = ™. This is just (2a) and so the proof
that Definition 3 implies Definition 2 is finished.

It remains to show that Definition 2 implies Definition 3. For the case
that D = I,,, the proof that (3) holds is straightforward. Assume that D has
a regular edge e. Thus,

C(D) = C(D\e)+C(DJe)
CD(i7j) = CD\e(Zvj) ()CD/e(iaj)
= Z w(F) + Z w(F') by induction
FeF, FeF,
= > w(F)
F

where the sums are over all path-cycle covers F' with ¢ paths and j cycles.
This shows that (3)) holds. This completes the proof of Theorem 1. O



The matrix cover polynomial 385

5. A generalized cover polynomial

In the recursive definition of C'(D) (Definition 2), a choice was made in (2a)
on how to define the value of C(D) when D = I, the digraph with n ver-
tices and no edges. The choice was to define C(I,,) = 2. Of course, other
choices are possible, resulting in other polynomials. In particular, inspired
by [7], D’Antona and Munarini [4] introduced what they termed the geo-
metric cover polynomial C (D;x,y). This polynomial satisfies the same dele-
tion/contraction rules as the usual cover polynomial (i.e., (2b) and (2c)),
but (2a) is replaced by defining C'(I,) = «™. In this section we consider a
more general polynomial Cy(D) which generalizes both of these polynomials.
The polynomial Cy(D;x,y) is defined for any real ¢ (which could be nega-
tive). It is generated by using the deletion/contraction rules of Definition 2,
except that (2a) is replaced by (2at):

n—1
(2a¢):  Cullyzy) =2t € a(@ 1) (@~ (n-1)t) = [[ (@~ it).
i=0
Thus, the cover polynomial is just C1 (D) and the geometric cover polynomial
is just Co(D). We can also explicitly express Cy(D;z,y) in several alternate
forms which will be useful later. For example, we can also write

(7) Co(D;x,y) = Zw#“s)t #ow(s)

where S ranges over all path-cycle covers of D (compare with (4)).

We point out that for ¢ # 0, we can express Cy in term of the usual cover
polynomial C'(D;) of a modified digraph D;. Specifically, D; will have the
same vertices and edges as D. However, if the edge weight of e is w(e) in D,
then e will have edge weight @ in Dy.

Then the cover polynomials Cy(D) and C(D;) are related as follows

(where n denotes the number of vertices of D):

Lemma 3. Fort # 0,
(8) Ci(D;z,y) = t"C(Dy; z/t,y)
Proof: By (4) we can write

Cy(D;x,y) = Zaj#” Vit #0(5) 4 (S)
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#(S)
= Za:(:c —t)(z—2t) ...y & w(9)
S
#m(9)
—~—
xr T
9) = (?(Z ~1).. ) £#7(9)y#0(S)y(3)
S
#(9)
/—’%
=3 <_ T ) F#R(S) #0() 4, ()¢S
S
#(9)
— rr_ #(S), #o(S) n—#m(S)
t ) Ly
(10)  CuDimy) = (TG = 1)) Oy, (s):
S
#m(9)
——l
= (%(% — 1)) g O (s)er
S
= tnC(Dt7 7y)

where w;(S) = [[.cqwi(e) and |[E(S)| = n — #m(S) denotes the number of
edges in S. O

Making the substitutions = = rt, y = s for positive integers r, s, we can
rewrite (8) as follows:

Lemma 4. For positive integers r, s and any real t # 0, we have
(11) +(D;rt,s) Z Zt#”(s

where S ranges over all path-cycle covers of D, and k runs over all S-feasible
(r, s)-colorings of the vertices of D, that is, all vertices in any cycle get one
of s colors, all of the vertices in any path get one of r colors, and vertices
in different paths get different colors.

The extension of Lemma 1 for general values of ¢ clearly holds (by definition).
To extend Lemma 2 for general values of t # 0, we do the following. Let D; =
(Vi, Eq) and Dy = (Va, E3) be weighted digraphs with edge weight functions

(®)
wy and we, respectively. Define the product D1 X Dy to be the digraph with
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vertex set V1 UV, edge set 1 U Ey (with all edge weights preserved), and in
addition, all the “crossing” edges (u1, u2) with u; € Vi, ug € Vo, each having
weight t.

Lemma 5.

(t)
(12) Ci(D1 x Dy;x,y) = Cy(D1;2,y)Cy(Da; x,y).

Proof: From (11), we have for any r, s € P,

C (Dl (X DQ, Tt 8 Z Z t#ﬂ(s

= Z Z g (S1) 4 ( Sz)—#ws(X)w(Sl)w(S2)t#7rs(X)

51,32 Ri1,R2

where #mg(X) denotes the number of paths of S which contain a crossing
edge, the factor of ¢t~ #7s(X) coming from double-counting the paths that
are in both S; and Sy, and the (second) factor of t#7s(X) coming from
the #mg(X) additional crossing edges. Of course, k; denotes an S;-feasible
(r, s)-coloring of D;. Continuing, we have

Cy(Dy (><) Dy rt, s) ZZt#’f
Z S (t#w(sl )> (t#“(52>w(52))

Sl,SQ K1,K2

= Z t#W(Sl)w(Sl) Z t#ﬂ(sz)w(SQ)

Sl,lil S2,/"\32
(13) = Cy(Dy;7rt, s)Ci(Da;rt, s).
Since (13) holds for all r, s € P, Lemma 5 follows. O

The extension of Lemma 2 to the case of ¢ = 0 is worth noting. The proof
is not difficult and can be found in [4]. In this case, Co(D) = C(D) is just
the geometric cover polynomial and Lemma 2 becomes the natural product
theorem (which the Tutte polynomial satisfies, for example):

Lemma 6. If D if the disjoint union of D1 and Dy then

C(D) = C(D1)C(D2)
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6. Evaluating C;(D;x,y) at specific points

The question of the computational difficulty of evaluating C(D;z,y) and
C(D;a:,y) at various points in the (x,y)-plane has been addressed by a
number of researchers ([1, 2, 3]). This is similar to the well known analogs
for the Tutte polynomial for which it is known that there are just eight
points in the (z,y) plane at which it can be evaluated efficiently (with the
exception of the points on the curve (z — 1)(y — 1) = 1; cf. [11, 12, 17]).
It turns out that for the cover polynomial C'(D;x,y) there are only three
points in the (z,y) plane for which C(D;x,y) can be evaluated in poly-
nomial time for arbitrary (unweighted) digraphs D. These are the points
(x,y) = (0,0),(0,—1) and (1,—1). For all other points it is #P-hard to
evaluate C(D;x,y) for general D. For general weighted digraphs D on
n vertices, C(D;0,—1) = (—1)"det(D) (which is easy to compute) while
C(D;0,1) = per(D) (which is #P-hard to compute). In this sense, we can
think of C'(D;0,y) as interpolating between the determinant of D and the
permanent of D as y goes from —1 to 1.

It is not hard to see why C(D;0,—1) = (—1)"det(D). Setting x = 0 in
C(D;x,y) results in a polynomial in y alone, so that the only coefficients
¢p(i,j) left have i = 0, i.e., correspond to path-cycle covers with only cycles.
Thus, ¢p(0, j) is a weighted sum over all permutation choices of entries of D.
Since the sign of the permutation 7 is exactly (—1)"*#7, and when y = —1,
consecutive powers of y in the polynomial alternate in sign, then we end up
with the determinant of D (i.e., for M, the adjacency matrix corresponding
to D). In Figure 4, we show one such interpolation for a small matrix M.

The third point for which C(D; x,y) can be evaluated in polynomial time
is the point (1,—1). For this case, C(D;1,—-1) = C(D;0,—-1) — C(D’;0,-1)
where D’ is the digraph formed from D by adding a new vertex xy to V
with all weight 1 edges (z9,v) and (v, ) for all v € V. To see this, let us
rewrite C(D;x,y) in the following form (cf. (4)):

(14) C(D;z,y) Z::L‘#’r y# 7 Hay(S)

where S ranges over all path-cycle covers of D. Thus, substituting x = 1
shows that the only S which can contribute to the sum have #n(5) < 1 since
1% vanishes for £ > 2. So the allowable path-cycle covers S have at most
one path. However, those with one path exactly correspond to cycle covers
of D', by connecting the ends of the path to the added vertex zy to form
a cycle in D’. The sign change comes from the factor of (—1)" in the value
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det(M) = 230 500
~1000 per(M) = -612
1 -3 4 2
Mm=7 273 C(M;0,y) = —60y* + 709y — 131y? — 1130y
-2 6 4 3

Figure 4: Transition from determinant to permanent for a small matrix M.

of C(D;0,—1) = (—1)"det(D). It also follows that for an n by n matrix M,
the characteristic polynomial for M is given by C(AI, — M;0,—1) where I,
denotes the n by n identity matrix.

As pointed out in [2, 3], the geometric cover polynomial C(D;x,y) be-
haves differently from this perspective. For this polynomial, there are only
two points at which it can evaluated in polynomial time for general digraphs,
namely, (0,0) and (0, —1) (which give the same values as for C(D; x, y) since
the base values on I, are the same when x = 0).

The same analysis shows that for Cy(D;z,y), its values at (0,0), (0,—1)
and (t,—1) can all be computed in polynomial time. At all other points, it
is # P-hard to evaluate in general.

7. Reciprocity

A rather amazing reciprocity theorem for C'(D; z,y) for unweighted digraphs
D was discovered independently by Gessel [10] and Chow [5]. To state it,
we define the complement D’ of D to be the digraph in which the roles of
edge and non-edge are interchanged. That is, the edges of D’ are exactly the
non-edges of D. In terms of the corresponding adjacency matrices for the
digraphs, M’ = J,, — M where J,, denotes the n by n matrix of all 1’s, and
we assume that D has n vertices.
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Theorem [5, 10]. For all unweighted digraphs on n vertices;
(15) C(Dyx,y) = (-1)"C(D"y—z — y,y).

Chow’s proof [5] was a consequence of a more general result derived from
his symmetric function generalization of the cover polynomial, and used an
impressive array of tools from symmetric function theory. We will return to
this in the next section.

Our goal in this section is to show that this reciprocity relationship holds
much more generally for the polynomial Cy(D; x,y) for all weighted digraphs
and all values of . In this case, D’ is defined to be the dual digraph formed
from D by replacing each edge weight w(e) in D by w'(e) =t — w(e). (In
terms of matrices, M' = tJ,, — M where M has dimension n).

Theorem 2. For all weighted digraphs D and all ¢,
(16) Cy(D's —z —ty,y) = (-1)"Ci(D; 2,y)

Note that the dual of D’ is just D.

Proof: Let n denote the number of vertices of D. We first deal with the
case t = 0. In this case we observe that

ep(i, ) = cpr (i, §)(=1)"

since any path-cycle cover of D with ¢ paths and j cycles has n — i edges.
Therefore

Co(D;z,y) = ZCD(i,j)ﬂfiyj
= ZC—D(i,j)(—l)”(—fﬂ)iyj
— (C1)Co(-Ds )

as required.

Now, suppose t # 0. The proof will proceed by induction on the number
of edges of D. We first will deal with the base case for D = I,,, where we
assume the theorem holds for I,,_1. (The result for n = 0 is immediate). Let
D = I, i.e. M = [0], the 1 by 1 zero matrix. Then the dual matrix M’ = [t].
Thus,

Ci(M;x,y) =z and Co(M';2,y) =z + ty
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since M’ = [t] consists of a single loop of weight ¢. Therefore
CyM's—z —ty,y) = (—z — ty) + ty = —v = —Cy(M; 2,y)

as required.
Next, assume that D = [, for some n > 1. Thus, M is an all 0 matrix
of dimension n with the dual matrix M’ = tJ,,. We want to show

(17) Ct(tjm —T — ty7y) = (_l)nxn_,t = (—1)”015([”;33, y)'

Let us label the vertices of the dual digraph D’ as {v1,vs,...,v,}. We con-
sider the edges e; = (v1,v;) in D’ for i = 2,3,...,n, where e is the loop at
v1. We have w(e;) =t for 1 <i <n.Let D} = D._; \ e; for 1 <i <n with
Dy = D'. We will now start reducing D" by one loop at a time, using the
induction hypothesis as we proceed. Thus,

(=1)"Cy(D's —x — ty, y)
= Cy(D'\ er; —x — ty,y) + tyCy(tJn—1 — In_1; —x — ty,y)
= Cy(Dy; —x — ty,y) + ty(=1)"C(I—1;2,y)  (by induction)
= Cy(D} \ e; —x — ty,y) + tCy(D} \ eg; —x — ty,y)
+ty(—1)"Cy(In—1;7,y) (by deletion and contraction)
= Cy(Dhy; —z — ty,y) + Ci(tJp—1 — In—1;—x — ty,y)

(18) + tyCy(tJp—1 — In—1;—x — ty,y) (by induction)
= Cy(Dy \ e3; —x — ty,y) + 2tCy(tJn1 — In—1; — — ty, )
+ty(=1)"Cy(In-1;2,y)
= Cy(Dy; —x —ty,y) + (n = 1)Ci(tJn1 — In—1;—x — ty,y)
+ty(=1)"Cy(In-1;2,y)

Note that the vertex set in D!, can be regarded as consisting of the
disjoint union of two parts: {v1} and {va,vs,...,v,} with all edges (v;,v1)
going from {vg,vs,...,v,} to {v1} and all having weight ¢. We can now
apply the product theorem of Lemma 5 to obtain

(19) Cy(Dl;—x —ty,y) = Ce(l1; —x — ty, y)Co(tJp—1 — In_1; —x — ty, y)
= (—z —ty)Cy(tJp—1 — In_1; —x — ty,y)

Substituting into (18), we obtain
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(—=1)"Ce(Ds —z — ty,y)
= ((—z—ty) + (n — )t)Ce(tJp1 — In—1; —x — ty, y)
+ty(=1)"Ce(In-1; 2, y)
=(—z—ty— (n—1)t)(-1)"Ci(In—1;2,y) + ty(—=1)"Cy(In—1; 2, y)
(by induction)

= (z — (n — D)t)a=bt = gnt,

This proves Theorem 2 for the base case that D has no edges.

Next, suppose our digraph D has n vertices and at least one regular
edge e = (u,v),u # v. We assume by induction that Theorem 2 holds for all
digraphs with fewer than n vertices and also for all digraphs on n vertices
with fewer edges than D. We know

Co(D;z,y) = Cu(D \ ¢z, y) +w(e)Cy(D/e; 2, y)
(20) = (=1)"Ci(tJn = (D \ €); =z — ty,y)
—w(e)(—=1)"Ci(tdp—1 — (D/e); —x — ty,y) (by induction)

Let F denote tJ, — (D \ e). Certainly e € F' and has weight ¢.
Claim:
(21) Fle=tJ,_1— (D/e)

Proof: Check the weights of the edges in t.J,,_1 — (D/e) and F/e. All weights
of edges not involving the new (contracted) vertex uv remain the same. Also
all weights of edges involving uv remain the same as well. Also, the loop at
uv has weight ¢t — w(v,u). This proves the Claim.

Simplifying (20), we have

(22)
Ci(Dsx,y) = (=1)"Co(F; —x — ty,y) — w(e)(—1)"Cy(F/e; —x — ty, y).

Now we will use Lemma 1 (for C;), namely
(23) Ci(F) = C(F \ Be) + BCy(F/e)
with 8 = w(e). Thus,

Ct(D;.’L‘,y) = (_1)n(ct(F7 —x — ty, y) - w<e)Ct(F/e; —x —ty, y))
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(24) = (=1)"C(F \w(e)e; —x — ty,y).

by deletion and contraction using the edge w(e)e. However, it is not hard to
check that

F'=F\w(e)e= (tJ,\ (D\e)) \w(e)e=tJ, — D.
Therefore, we have
(25) Ci(D;z,y) = (—1)"Cy(tJn — D; —x — ty,y)

which is what was needed.
Finally, suppose D has only loops. Let e denote a loop at vertex v with
weight w(e). Then by induction

Ci(D;z,y) = C(D \ e;2,y) + w(e)yC(D/e;z,y)
(26) = (=1)"Ci(tJn — (D \ €); —z — ty,y)
+ (=) rw(e)yCy(tJu_1 — (D \ e); —x — ty, y).

Set FF=1tJ, — (D \ e). It is easy to check that
F\v=tJ,_i — (D\v).
Thus, (26) can be rewritten as:

Ci(D;z,y) = (—1)"(Co(F; —z — ty,y) — w(e)yC(F \ v; —z — ty,y))
(27) = (=1)"(Ce(F \ w(e)e; —z — ty,y))

However, checking all the relevant edge weights confirms that
(28) F\w(e)e= (tJ, — (D\e)) \w(e)e=tJ, — D.
Hence, plugging into (27) gives us:

(29) Ci(D;x,y) = (=1)"Cy(tJn — D; —x — ty,y)

which is exactly what was needed to complete the proof of Theorem 2. [

It should be noted that the theorem also applies for ¢ = 0. Since
Co(D;x,y) = C(D;z,y) is the geometric cover polynomial and the dual
D’ = —D, the reciprocity result we get in this case is:
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C(=D;—z,y) = (=1)"C(D; z,y)
which isn’t particularly impressive!
8. Symmetric functions

In [13], Stanley introduced what he called the chromatic symmetric function
X¢g of a graph G, generalizing the usual chromatic polynomial yq for G.
The basic setup is this. For an undirected graph G = (V, E), we say that
k : V. — P (the set of positive integers) is a proper coloring of G if k
maps adjacent vertices to different values (= colors). We let x1, x9, x3, ... be
(commuting) indeterminates and suppose V = {v1,va,...,v,}. Then define

X = Xa(x) = Xa(1, 22,23, ..) = > Tuu)Ta(us) - - Tr(on)

where the sum ranges over all proper colorings xk of G. X¢ is clearly a
symmetric function in the x; and as such, can be expanded using different
bases in the algebra of symmetric functions (cf. [13, 14, 15]). Also, if we let
X¢(1™) denote the function we get by substituting x; = 1 for 1 < i < n and
xj = 0 for j > n, then we have X5(1") = xg(n). It is natural to ask whether
this approach could be applied to other graph polynomials such the Tutte
polynomial, the cover polynomial, etc. Indeed, this was successfully carried
out for the cover polynomial C'(D) for digraphs by Tim Chow (in his 1995
dissertation; see [5]).

In this section, we will show how this extension to a symmetric function
can be done for the general cover polynomial C;(D), where D is any weighted
digraph with edge weights in a commutative ring R with identity, and ¢ is
any real number. In fact, we will enlarge the category of digraphs D we
consider by assuming that in addition to the edge weights w(e) of D, each
vertex v of D has some positive integer weight wg(v) € P attached to it as
well. We can call D a doubly-weighted digraph.

Let us denote this general symmetric function by Z¢(D) = =(D) where
we will usually suppress the dependence on t when ¢t = 1. We will show
that Z(D) satisfies a reciprocity theorem (which Chow [5] did for his sym-
metric function). In addition, we will show that Z(D) can be obtained by a
deletion/contraction procedure.

We now introduce the quantities we will need to define Z(D). We will
work with two sets of commuting indeterminates: x = (21, z2,...) and y =
(y1,92,...). For a vector g = (1, B2, .. .), we define
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Definition: For a partition A\ = (A1, Ae,...) of n, denoted by A F n, we
define the usual symmetric function

ma =3 %
B

where 3 ranges over all distinct permutations of A.
For example, for the partition A = (3,3,2,1,0,0,...) - 9, we have

ma(x) =mgzon(x) = Y alrlaim
,5,k,l distinct
1<J

Definition: The sign of a partition A F n is defined by sgn()\) = (—1)"~#*
where #\ is the number of blocks of .

Definition: For a partition A = (A1, Ag,...), we use the notation
ry! = r1lra!. .., where r; denotes the number of blocks of A of size 1.

Definition: The augmented function m)(x) is defined by

ma(x) = ralmy(x).
We also define the usual power symmetric function:

Definition:

Pj(x) :Zﬂvz and for AFn, pax(x) =papr, - ---

Both m) and p) are defined to be 1 if #X = 0.

Suppose S is a path-cycle cover of D. By 7(S) we mean the partition of the
vertices induced by the paths of S. If B is a block of 7(.S) then the weight
wo(B) of B denotes the sum of all the vertex weights wg(v) for v € B.
Also, by wo(m(S)) we mean the partition (wo(B1),wo(Bz), . ..) formed by the
weights of the blocks of 7(S5). We will usually abbreviate this by deleting
wo when the meaning is clear. For example, p, will stand for py, (o), etc.
Further, we denote the number of blocks of 7(S) by #m(S), the number of
vertices of 7w(S) by |7(.5)|, the number of edges of S by |E(S)|, and finally, the
sum of the weights of the vertices ) wo(v) of D by wo(D). The analogous
definitions apply to o(.5), the vertex partition induced by the cycles of S.

Finally, we denote by w(S) the product of all the edge weights w(e) for
e € S, with w(n(95)) and w(o(S)) defined accordingly.
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d cC a
u p_ Vv b d

Figure 5: Computing Z(D) for a simple example.

We now give the first definition of our symmetric function generalization
E(D;x). (We will only consider the case ¢ = 1 at this point. More general
values of ¢ will be treated later).

First definition of Z(D;x,y).

(30) E(D;x,y) = Y in(s)(X)po(s) (¥)w(S)
S

where S ranges over all path-cycle covers of the (doubly-weighted) digraph
D.

If all the vertex weights in D are 1 (the usual case), then the next result
follows immediately from the definitions.

Proposition.
E(D;1°,19) = C(D; 1, j).
k
——
where 1¥ = (1,1,...,1,0,0,0,...), i.e., z; = 1 for 1 < i < k, and x; = 0 for
i> k.

Note that in this case, 7 (1%) is equal to the number of ways of coloring the
blocks of a partition A with ¢ distinct colors, and is equal to i#2. Similarly,
pa(17) is equal to the number of ways of coloring the blocks of A with j (not
necessarily distinct) colors, and is equal to j#*.

We first show a simple example. Let D be the digraph shown in Figure 5,
where we will assume all the vertex weights are 1. In this case wgy(B) for a
block of a partition is just the cardinality of B.

A quick computation shows that

(31) C(D;z,y) = cdy? + (ab+ cx + dz)y + ax + bx + 2* —

D has seven path-cycle covers S. We list them below with their contributions
to 2(D).
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Table 2: Table of weighted path-cycle covers for D

path-cycle cover S | n(S) | o(5) | term in sum | contribution
S u—v 0 Mr(sy) - 1 = ma(x) ay;r;
So v—u 0 My(s,) - 1 = ma(x by, x?
Ss u|w 0 My(sy) - 1 = 2my1(x) 2> iz,
Sy v M (s50)Po(sa) = M1(X)P1(y) | dd2; 2>,y
Ss v U M (85)Po(s5) = M1(X)p1(y) | €32 i Eé Yj
Se 0 uSwv 1 pose) = p2(y) aby’;y;
u v 2
Sy o O O L= po(sy) = pra(y) cd( 32 vi)
Thus, we find
E(Dsx,y) = (a+b)Y a2 +2) mzj+(ctd)d =Yy
2
+ab2yi2 —i—cd(Zyi) .
A %
Therefore,

i
2
= cdj®> 4 (c+ d)ij +abj +i> + (a + b — 1)i
= C(D;i,j)

2(D;1%,17) = (a + b)i + 2( > + (¢ +d)ij + abj + cdj?

as it should!
We now give the second definition of Z(D). Let D be a (doubly weighted)
digraph.

Second definition of Z(D;x,y). (Deletion and contraction).

(i) If e is a regular edge then
E(D;x,y) =E(D\ e, x,y) + w(e)Z(D/e, x,y);

The contracted digraph Z(D/e,x,y) is formed as shown in Figure 6. The
contracted vertex uv has weight wg(uv) = wo(u) + wo(v). In the deleted
digraph (D \ e,x,y), the edge e is simply removed.

(ii) If e is a loop at v and wy(v) = d then

E(D;x,y) =E(D\ e,x,y) +w(e)pa(y)E(D/e, x,y);
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a C a

b D d D/e ¢

Figure 6: The contracted digraph Z(D/e,x,y).

In the contracted digraph Z(D/e,x,y), the vertex v and all incident edges
are removed, whereas in the deleted digraph Z(D \ e, x,y), only the loop e
is removed. As usual, we define Z((); x,y) = 1 for the empty digraph.

(iii) (The base case): If D has no edges and has vertex set {vi,ve,..., v}
with wo(vi) = a;, 1 < i <r, then

E’(D; X, y) = ma(x) - mal,az,...,th (X)
If r = 0 then D is the empty digraph and we set E(D;x,y) = 1.
Our next task will be to show that these two definitions are equivalent.
Assuming that Z(D;x,y) is defined by (30), we have
Lemma 7.

EDixy)=> w(s) ][] xf@”&f?) I1 y;va()v)'

(S,k) u is in a path v s 1n a cycle

where the sum is over all path-cycle colorings (S, k) where is S is a path-
cycle cover and k is a coloring k : V' — P so that vertices in the same path
or cycle have the same color, and vertices in different paths have different
colors.

Proof: For each S, the paths and cycles are colored independently so the
sum over k factors into a product of a symmetric function in x and a sym-
metric function in y. Each cycle is monochromatic, giving the term py(g)(y)-
Coloring the paths with distinct colors gives the term m.(g).

Lemma 8. Suppose D; are digraphs on disjoint vertex sets V; fori=1,2.
Form the combined digraph D by connecting D1 and Dy with all the edges
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(u1,uz) from Dy to Dy, each having weight 1. Then
=(D) = E(D1) Z(D2).

Proof: This follows from (8) since a path-cycle coloring can be viewed as
combining a path-cycle coloring of D; and a path-cycle coloring of Ds. [

Theorem 3. The two definitions for Z(D;x,y) are equivalent.

Proof (sketch). To prove equivalence, we use induction on the number
of edges of D. First, we check the base case D = I, with vertex weights
a = (a1,aq,...). Here, Z(I,,) = mq(x), corresponding to the partition « - n.
This is because each feasible coloring x maps each block to a distinct color
(i.e., number), and this gives a term in the sum

Z xn(lvl)xnfw) e
For a regular edge e, we have
E(D)=Z(D\e)+w(e)Z(D/e).

In general, the proof mimics the proof of equivalence given for C'(D). The
proof is essentially the same except that now in D /e, the vertex weight of the
new combined vertex has a vertex weight equal to the sum of the old vertex
weights of the endpoints of the contracted edge. By induction, Z(D \ e) and
Z(D/e) are the same by either definition. The same argument applies when
e is a loop. This completes the proof (sketch). ]

Remark. Although up to now we have only considered the case t = 1,
the previous arguments can easily be extended to apply to more general ¢.
Namely, we can define for any ¢ € R,t # 0,

(32) Z(Dsx,y) = t*P)E(Dy;

where the only change we make to D in forming D; is to change the edge

weights from w(e) to @

Note that since for a partition A,

(33) tim 7 () = pa(x)
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then

(34) o(D;%,¥) =D w(9)pr(s)(X)po(s)(¥)
S

is the symmetric function version of the geometric cover polynomial
C(D;z,y). In particular, for disjoint digraphs Dy and Dy we have the prod-
uct formula

(35) Eo(D1 U Da;x,y) = Zo(D1;x,y)Z0(D2; %, y).
9. Reciprocity for E.(D)

We first need a few definitions.

Definition: For a symmetric function g(x,y), the notation [g(xX, ¥)]x— (x,y)
means that, treating ¢ as a symmetric function in the z’s with coefficients
in the g’s, the set of z variables is to be replaced by the union of the x and
y variables.

Definition: The involution w is the (standard) algebra endomorphism act-
ing on the algebra of symmetric functions sending ey to hy (cf.[15] for defi-
nitions of ey and hy). In particular, its effect on p) is given by

w(pxr) = sgn(A)pa.

where we recall that sgn()\) = (—1)""#* where for A - n, #\ denotes the
number of blocks of the partition A.

The reciprocity theorem for =Z;(D) can be stated as follows;

Theorem 4. Let D be an n-vertex digraph with edge weights w(e) and
vertex weights wo(v), and let D" denote the dual digraph t.J,, — D with edge
weights w'(e) =t — w(e) and the same vertex weights wo(v). Then

(36) Z(D;x,y) = (1) O, Z(D', %, —¥) s (ty)-

Remark. We point out that this is just the statement of the reciprocity
theorem in Chow [5] except we allow arbitrary edge weights instead of 0
and 1, we include vertex weights and we have an arbitrary real value for ¢
instead of ¢ = 1. The proof in [5] used various symmetric function change
of basis formulas and depended on edge weights being 0 or 1. Our proofs,
on the other hand, follow our proof of reciprocity for C;(D) and are based
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on the deletion/contraction characterization of Z(D). Of course, all these
results can be interpreted as applying to an arbitrary matrix M with entries
in some commutative ring R with identity.

Proof: First, we treat the case t = 0. In this case, we have by (34)
D X y pr S) po S) ) (S)

= Zpﬂ(s> (X)w(m(s)) - Pos) (Y)w(o(5))
S

We now consider Zg(—D;x,—y) with D' = —D,w'(e) = —w(e) and y} =
—y;. Thus,

Eo(—D prs) 7(s)) - Pos)(—y)w'(0(S))

For each path-cycle cover S, we consider
(37) Pr(s) (X)W (7(S)) = Prs) (x)w(m(S))(—1)# of edges inm(S)
= Dr(S) (x)w(w(S))(_1)#”(5)*%(5)\

and

(38) P (=¥ (0(5)) = o) (¥)(—1)7Pw(o(8)) (1)l

Combining (37) and (38), we obtain

(39) Eo(—D;x,~y) = Z(—l)I”(S)|_#”(S)JFU(S)PW(S)Z?U(S)w(s)
5

Note that sgn(m(S)) = (—=1)™S)=#7(9) Thus, by the definition of w,, we
have

wa(Z(=Dsx, —y)) = Y (~)IMEIHTE T Dsgn(n(5))
S

Xpﬂ(S)( )pa(S')( ) (S)
_ Z \71'(5'| #m(S)+o(S )( )w(S)—#Tr(S)

X pn(S)( )Po(s)(y)w(S)



402 Fan Chung and Ron Graham

= (=1 =SSNy o (%)pe(s) (¥)w(S)
S
= (=1)Zew®" =(D:x y).
Thus, since t = 0,

[szO(_D; X, _Y)]x—>(x,ty) = WZE'O(_D; X, _Y)
= (=1)= )" Zo(Dsx, y).

as required.

For the case t # 0, we use the fact that Z;(D;x,y) = t2 @ ()Z(Dy; 3Y)
(see (32)). Consequently, it suffices to restrict our attention to the case t = 1.
We will proceed by induction on the number of edges of D.

First, we consider the base case D = I,,. Thus, D has vertices {v1, v, ..., v}
with weights wg(v;) = «; and no edges. For n = 1, D = I; consists of a single
vertex v with weight wg(v) = «. Also the dual graph D’ consists of the vertex
v with (the same) weight w((v) = a together with a loop e at v with edge
weight w’(e) = 1. In this case,

E(D;x,y) = ma(x) = pa(x),
E(D';x,y) = ma(x) + pa(y) = pa(x) + paly),

and this case is done.

Next, we consider the case that D = I,, for some n > 1. Thus, D consists of
n independent vertices v; with the vertex weight vector a = (a1, aa, ..., ap).
Therefore,

E(D; X, Y) = ma(x)
The dual graph D’ = J,, — D has edges consisting of all pairs (v;, v;), includ-
ing loops. All edges in D’ have weight 1. Denote the edge (v;,v1) = ¢;, 2 <

1 < n. We consider

E(Dsx,y) =E(D"\ e2) + (D' /e2)
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(40) = E(Dy) + E(Dy),

where D) = D'\ es and DY = D'/ey. The (contracted) digraph DY is
isomorphic to J,—1 on the vertex set {v(;),vs,...,vn} with all edge and
vertex weights of D’ unchanged except that the contracted vertex v(1,2)
replacing v has weight a + a3. Continuing from (40),

=(D'sx,y) = E(D}) +Z(D})
¢s) + E(Dh/ex)) + (DY)
=(Dj) + (DY)

+ — +

where Df = D} \ e3 and Dj = D)/es. The (contracted) digraph DY is
isomorphic to J,—1 on the vertex set {v(3),v2,...,v,} with all edge and
vertex weights of D’ unchanged except that the contracted vertex v(1,3)
replacing v; has weight oy + as.

We can continue this process until we reach

E(D;x,y) =E(D3) +

n—1
= E(D)_1 \ en) + E(D;_1/en) + > E(DF)
k=2
n—1
= 2(D;,) +E(Dy) + Y E(DY)
k=2
n
=Z=(D)) + =(Dy)

where the (contracted) digraph D! is isomorphic to J,—1 on the vertex
set {v(1,n), V2, - -+, Un—1} with all edge and vertex weights of D’ unchanged
except that the contracted vertex vy ) replacing vy has weight a1 + .
Observe now that the vertex v € D/, has all edges (v1,v;),2 < i < n, and
none of the form (v;, v1). In other words, D), consists of Dy, a single vertex
vy of weight ay with a loop of weight 1 connected to all vertices in Dj,(a
copy of J,—1) on the vertex set {ve,vs,...,v,} with the original vertex and
edge weights. Hence we can apply Lemma 8 to obtain:

(41) E(Dy,) = E(Do)E(Dy)
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‘We know

(42) E(l)O) = Maq, (X) + Doy (Y) = Pa (X) + Doy (y)

Now consider
(43)  [wE0 % Y)] )

= |wz(E(Do; x, —-y) +Z%ED"X -y))
=2 x—(x,y)

By induction we have
[ (E(D” X, _y))}x—>(x,y) = My (X)(_1)|a<i)|_n+1
where o) = (a2y..., B4, ...ap) and f; = a; + a;. In particular, the sum

|| of all the entries of a(¥ is just |, the sum of all the original vertex
weights. Now by (41), (42) and induction, we have

[wI(E(D’ X, y))] s (x,3)

= [wa (E(D0)Z(D1:%, =¥)) ]y ey
= (=) g (%) [we (2(D13 %, —¥) lxs (xy)
= (=) g () [ws (pay (%) + Pay (=3)) ks ()
= (= 1) iz () [(— 1) Pay (%) + Pay (—¥)]xs (xy)
= (- 1)‘ () (=1 (pa () + Pa (9)) + pes (<)
= (- 1)/ "5 (x)pa, (%)
where @ = (a2, a3, ..., ap).

Now substituting into (43), we get

e (E(D %, ~9)]

(44)
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To prove (44), consider

m&(x)pal(x) = ﬁ’La(X) Z ‘Tz'al‘

i
By Lemma 8, we have
pa1 (%) (Z H 5(1}1 ) Zmal
K 1=2

where k ranges over all feasible colorings of I,—; on {vg,...,v,} so that
distinct vertices have different colors. We consider

n

(lexg(v)> Z$;11 = Z Hfﬂi(v)( Z z§t + me_:(lvj))
K 1= i

K =2 J#k(v;)Vi Jj=2

- Z sz’i(w) + Z szzvz)<zzmg(lvj))
j=

K 1=1 K 1=2

+2F; H% (00) ( 3@-))

Jj=2

since each k can be extended to a feasible coloring £’ of I, on {v1,va, ..., v,}
by choosing a value for x(v1) which is different from the values x(v;). Thus,

We note that for each j,

Z xg(lvj) H 933(7,1) = Mo (X).
=2

K

where a7) denotes the vertex weight vector with o) (v;) = a(v;) for i =
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2,...,n except that o) (v;) = a(v) + a(v;). Therefore we have
ma (X)pal(x) = Ma(x) + Z M) (X).
=2

This proves (44) and the proof for the base case D = I,, is complete.
For the general case, suppose that D has an edge e.

Case 1. e is a regular edge.
Suppose that all digraphs with fewer edges satisfy the reciprocity theorem
(36). Then, by induction,
E(D;x,y) =E(D\ e;x,y) + w(e)E(D/e;x,y)
= ()P "w, (T, — (D €)), %, —¥)lxs(xy)
(45) x (=)@ () [wE (T — (D /€)%, —¥) ks (xy)

Set FF = J, \ (G \ e). Clearly, e € F with weight 1. Following the proof of
(21), we have

Fjle = J,_1— (G/e)

and the vertex weights in F'/e are the same as in G/e. The loop at the new
vertex vu in F'/e (coming from contracting the edge ¢/ = (v,u)) has weight
1 —w(e’). Thus, (45) can be rewritten as

E(Dix,y) = (1) P W, Z(F;x, —y) ks (ey)
(46) x (=)o@ ) W, E(F/es X, —3))xs ()

We now use the following fact (the proof follows the same method as that
of Lemma 1):

(47) E(F) =Z(F —w(e)e) + w(e)Z(F/e).
Then we obtain

E(D7X7Y) = (_1)wU(D)7n[w£EE(F/7X7 _Y)]XH(X,y)
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This takes care of this case.

Case 2. Suppose the only edges of D are loops.
Let e be a loop in D at the vertex v with edge weight w(e) and vertex weight
wp(v). Then, by induction,

(50)  E(D;x,y) =E(D\ &x,y) + w(e)pay,., (¥)E(D/e;x,y)
= (=) P w, 5(Jp — (D €); X, —¥)xos(x,y)
(—1)Zwwe 0= 4y (€) ey, o) (¥)

[woE(Jn — (D/); X, —=¥)]x—(xy)

Set F'=J, — (D \ e). As before, it is easy to see that

X+

F\v=J,_1—(G\v).
Hence, (50) can be rewritten as
E(D;x,y) = (1) W, Z(F; %, =y) ks (xy)
(51) X (=) 0T y(e)pa o (VW EEF \ 03X, =)k (xy)
We now use the fact that
F\w(e)e=(J, — (D\e)) —w(e)e=J, —D
Therefore we have (finally!)

2(Dix,y) = (—1)Z O, (5(F\ wie)esx, —y)
W(€)Paryy oy (—Y)EF \ %, ¥)) Ixos (x,y)
(= 1) 0 () pa, ) () [0 E(F \ 035, =Yl ()
= (=10 W, E(F\ w(e)e; X, y)xos (xy)
(=1 w0y B — Di %, ¥)]xs )
as required. This completes the proof of Theorem 4 when ¢t = 1.

To finish the proof of Theorem 4, we now need to consider the case of

general t # 0,1. We will repeatedly use the definition of =; and use the
preceding results for ¢ = 1. We consider

2(D;x,y) =t P)=(Dy; §, y) (by the definition of =)
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Wo —N 4L Wo = . X
— (—1) (D) t (D) [Wx-:'(Jn — Dt7 ?, _Y)]f—>(§,y)
(using the case of t = 1)
Wo —n Wo [} . X
= (-1 D) [wat (D):(Jn — Dy; 7 _Y)kﬁ(?Y)
(by the definition of =)
= (_1)w0(D)7n[wJ»‘Et(tJn - D; X, _Y)]x%(x,ty)’

Thus, Theorem 4 is proved. U

To show that Theorem 4 implies Theorem 2, we first consider the case
that t = 1. Thus, it suffices to show that for positive integers ¢ and j,

follows from (36), where D" = t.J,, — D. To do this, we first consider the case
of t = 1. We define

def =
Z(H;x,y) = [wxE(H; % ¥)lx s (xy) -

From Theorem 4, we have
Ei(Dsx,y) = (1)) Z(Hix,y).
It suffices to show that for any doubly-weighted digraph H,
Z(H;14,19) = (=1)*PIC(H; i — 4, j).

To do this, we follow the strategy in [5] and consider w,m(x). From [9]
(Theorem 2, p. 381), we know

Mr(x) = Y p(w, 0)ps(x)

o>

where p(m, o), the Mobius function for the partition lattice partially-ordered
by refinement, is given by

p(m, o) = sgn(m)sgn(o) H il

where 7 is a refinement of o, and r; denotes the number of blocks of o that
are composed of ¢ blocks of m. We also know from [9] that

Fr(x) & sgn(m)wxiing(x)
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= 3 |l 0)lpo (x)

o>

and consequently (e.g., see [5])

= |ulm,0)|k#
o>

= KT = (- )FT (k)2

Also,

Thus,

= |wy Z M () (X)Po(s) (—¥)w' ()
s

x—(x,y)

= sgn(w(9)) fr(s) (% ¥) (= 1) 7 p, ) (y) ' (5).

where S ranges over all path-cycle covers of H, and w’(S) denotes a product
of the edge weights in H. Therefore, replacing x by 1¢ and y by 17, we get

2(H; 11, 19) ngn ) Fa(s) (1) (=) p, g (19 (5)
_Z S)N=#m(8) (_1)#(S) (—j — jTE)(_1)lo(S)] j#o(S)yy (8)
_Z IW(S)IHU(S \( i— j)#”_(s)j#a(s)w/(g)
= (-1 )wo(D)Z(_Z’ )#W(S) i#0(S),, '(S)
S
= (1) PC(H; ~i ~ j. j)
as claimed. Therefore we have proved that

(52) C(D;i,j) = (=1)"C(D"; =i — j,J)
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To show that Theorem 4 implies Theorem 2 for general ¢ £ 0, we use
Lemma 3.

Ct(D; 27]) = tnC(Dta .Cli‘/t, y)
=t"(-1)"C(Jp, — Dy, —z/t — y,y) (by using (52))
= (=1)"Cy(tJ, — D;—i —tj,5)

as desired. The case t = 0 follows by applying (33).
10. Concluding remarks

As noted earlier, although our original motivation was the study of digraphs,
our results actually apply to arbitrary (square) matrices M with entries in
some commutative ring with identity. It would be interesting to expand =;
using different bases for the symmetric (or quasi-symmetric) functions to see
what combinatorial interpretations the corresponding coefficients might have
(cf. [6]). Previous work connected properties of the original cover polynomial
to the theory of rook polynomials, G-descents in graphs (see [7] and also [6])
and the theory of P-partitions. No doubt the generalized polynomial Cy(D)
has corresponding connections but we have not explored these yet.

In [5], Chow makes the following tantalizing observation. Suppose we
define

E(D;ix,y) = Y (2% iy g)(x, ¥)pos) (¥)
S

where the sum is over all path-cycle covers S of a digraph D. Then
E(D;x,y) = w,E(D;x, —y).

He suggests that E(D; x,y) could be studied in the same way that =Z(D;x,y)
was. It is certainly reasonable to conjecture that new and interesting prop-
erties hold for é(D;x,y) as well as for the analogous generalized function
ét(D; x,y)! Clearly much remains to be done.
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