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1. Introduction

Graphs are undirected, have no loops and no multiple edges throughout this
paper. Cycles in graphs have been studied extensively from the early days
of the subject. A graph X is pancyclic if it contains cycles of every possible
length from 3 through the order of X. This basic concept was introduced
by Bondy in [6] making the topic especially relevant for an issue dedicated
to him. If every vertex is in cycles of every possible length, we say X is
vertex-pancyclic, and if the same is true for every edge, then we say that X
is edge-pancyclic.

The girth of a graph X, denoted γ(X), is the length of a shortest cycle
in X. The odd girth of a graph X, denoted γo(X), is the length of a shortest
cycle of odd length in X. If X is bipartite, we say the odd girth of X is
undefined. Thus, when we write that X has some odd girth, we are assuming
that X actually has odd length cycles.

A graph cannot be pancyclic unless it has girth 3 and yet it makes sense
to consider graphs with larger girth with respect to richness in the possession
of cycles of various lengths. To this end, a bipartite graphX is even pancyclic
if X contains cycles of all even lengths from 4 through 2�n/2�, where n is
the order of X. The terms even vertex-pancyclic and even edge-panyclic
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have the obvious meanings. If a graph X has girth γ, then it is called weakly
pancyclic when it has cycles of all lengths from γ through the circumference
of X. The terms weakly vertex-pancyclic and weakly edge-pancyclic have the
obvious meanings. Finally, an important concept we consider is weakly odd
pancyclic which means the graph has odd length cycles of all lengths of
the form γo(X) + 2k as long as γo(X) + 2k is less than or equal to the
circumference of X.

Vertex-transitive graphs serve as models for many applications of graphs.
Cayley graphs are a rich source of vertex-transitive graphs and have been
studied widely with respect to many properties of graphs. Some references
for pancyclicity and Cayley graphs are [4, 5, 7, 9, 10]. The cited papers
all studied subclasses of either circulant graphs or n-dimensional cubes. The
following theorem [2] then considerably generalized that work by completely
describing what happens for Cayley graphs on abelian groups.

Theorem 1.1. Let X be a connected Cayley graph of valency at least 3 on
an abelian group. The following statements hold for X:

1. X is even edge-pancyclic;
2. if X is not bipartite, then X is weakly odd vertex-pancyclic; and
3. if X is not bipartite, then every edge of X is contained in cycles of

lengths γo(X)+2k for all k satisfying k > 0 and γo(X)+2k ≤ |V (X)|.

The preceding theorem provides strong impetus for examining the pos-
sibility of achieving similar results for other families of Cayley graphs. We
consider the family of Cayley graphs on generalized dihedral groups in this
paper.

2. Describing the Cayley graphs

In order to exploit Theorem 1.1, we want to consider groups that are ‘al-
most abelian’ in some sense. The family of generalized dihedral groups is
such a family and that is what we now study. The definition follows. Given
an abelian group H, the generalized dihedral group DH contains H as a
subgroup of index 2 and an involution τ �∈ H conjugating every element of
H to its inverse, that is, τgτ = g−1 for all g ∈ H. It is easy to see that
|DH | = 2|H|, and every element of DH that is not in H may be written as
hτ for some h ∈ H.

In order to clarify our terminology, here is the definition of a Cayley
graph we are using. Given a group G, let S ⊂ G such that 1 �∈ S and
S = S−1. The Cayley graph Cay(G;S) has its vertices labelled bijectively
with the elements of G and there is an edge joining the vertex labelled g to
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all vertices whose labels have the form gs as s runs through S and g runs
through G. Note that the edge joining g to gs is the same edge joining gs
to gss−1 = g. Also note that we use multiplicative notation for the group
operation including abelian groups. The set S is called the connection set
for Cay(G;S).

We want to take a look at the structure of Cayley graphs on generalized
dihedral groups because there are properties they possess that help subse-
quent work. The remainder of this section consists of five useful lemmas and
their proofs.

LetX = Cay(DH ;S). The first feature we notice is that there is a natural
partition of the connection set S. We define S1 = S ∩H and S2 = S − S1.

The subgroup H has index 2 in DH so that H is a normal subgroup. We
designate the two cosets of H as H and Hτ . It is easy to see that any s ∈ S2

is an involution and generates a perfect matching joining the vertices of H
to the vertices of Hτ . Thus, if S2 = ∅, the graph X is disconnected so that
the assumption that X is connected implies that S2 �= ∅.

If s ∈ S1, then there is an edge joining g and gs for all g ∈ H. If we
take any involution hτ in the right coset Hτ , then because s−1 ∈ S, there is
an edge joining g(hτ) and gs(hτ) = g(hτ)s−1. That is, right multiplication
by hτ is an isomorphism between the subgraph X1 induced on H and the
subgraph X2 induced on Hτ . This fact is encapsulated as the first of the
four lemmas.

Lemma 2.1. Let X = Cay(DH ;S) be a Cayley graph on the generalized
dihedral group DH . If X1 is the subgraph induced by X on H and X2 is the
subgraph induced by X on Hτ , then right multiplication by hτ , h ∈ H, is an
isomorphism from X1 onto X2.

The following lemma also proves to be useful in proving the main result,
but its proof requires the following definition. Given positive integers m,n, �,
where n ≥ 4 is even and m + � is even, define the honeycomb toroidal
graph HTG(m,n, �) as follows. It has vertices ui,j , for 0 ≤ i ≤ m − 1 and
0 ≤ j ≤ n− 1, and the following edges. The vertex ui,j is adjacent to ui,j±1

for all j with subscript arithmetic carried out modulo n. There is an edge
from ui,j to ui+1,j whenever i < m − 1 and i + j is odd. In addition, there
is an edge from um−1,j to u0,j+� for m + j even. The honeycomb toroidal
graph HTG(4, 6, 4) is shown in Figure 1.

Lemma 2.2. Let X = Cay(DH ;S) be a Cayley graph on the generalized
dihedral group DH . If X is connected, S1 = ∅ and s is an arbitrary element
of S2, then X has a Hamilton path such that the terminal vertex in H is
incident with an edge generated by s.
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Figure 1.

Proof. A Hamilton path in X must have one terminal vertex in H and
the other terminal vertex in Hτ because X is bipartite and |H| = |Hτ |.
This means the edge incident with the terminal vertex in H is uniquely
determined. Because each element of S2 generates a perfect matching joining
vertices of H with vertices of Hτ , |S2| ≥ 2 because X is connected. We
proceed by building the required Hamilton path recursively.

Choose the fixed element s ∈ S2 and some other element s1 ∈ S2. If the
2-factor generated by s, s1 is a Hamilton cycle, we are done because deleting
any edge generated by s1 leaves a Hamilton path such that the terminal
vertex in H is incident with an edge generated by s. Otherwise, the 2-factor
is composed of cycles of the same even length r. Because X is connected,
there is an s2 ∈ S such that s2 does not belong to the group 〈s, s1〉 generated
by s and s1.

If an edge generated by s2 joins a vertex of Hτ in some r-cycle C1 to
a vertex of H in another r-cycle C2, then s2 generates a perfect matching
between the vertices of C1 ∩ Hτ and the vertices of C2 ∩ H because of
Lemma 2.1. So we define an auxiliary digraph

−→
Y whose vertices are the r-

cycles generated by s, s1, with an arc from the r-cycle C to the r-cycle C ′ in−→
Y when s2 generates a perfect matching joining the the vertices of C ∩Hτ
to the vertices of C ′ ∩H.

The outvalency and invalency of each vertex in
−→
Y is 1, that is, each com-

ponent is a directed cycle. So the graph generated by s, s1, s2 corresponding
to one of the directed cycles is a honeycomb toroidal graph HTG(m, r, �),
where the r-cycles form the columns (see Figure 1). The edges joining the
r-cycles in a cyclic fashion are generated by s2. It is easy to see that there
is a Hamilton path starting at any vertex and using either column edge as
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the first edge. Thus, if this graph spans X, we are done because the edges
of the columns are generated by s and s1.

If the honeycomb toroidal graph is not all of X, then the three involu-
tions s, s1, s2 generate components that are isomorphic copies of the same
honeycomb toroidal graph. Because X is connected, there must be an invo-
lution s3 ∈ S2 that joins different components together in a cyclic fashion,
and s3 generates a perfect matching joining the vertices of a component’s in-
tersection with Hτ to the vertices of another component’s intersection with
H. The resulting subgraph then has a spanning path starting at any vertex
whose first edge is generated by either s or s1. We continue adding elements
of S2 until we reach a connected spanning subgraph of X and the conclusion
follows.

The subgraph X1 plays a significant role in this work. There are two
attributes of this subgraph that are germane to the discussion. The first is
whether or not X1 is connected and the second is its valency. For example,
if X1 is connected and has valency at least 3, then we may bring the full
power of Theorem 1.1 into play. These two attributes determine the cases
that arise in the proof of Theorem 3.1.

Another subgraph that plays an important role is the following. Let
X = Cay(DH ;S) be connected and let X1, X2, S1, S2 be as before. Choose
any element s ∈ S2. Let Y (s) denote the subgraph of X composed of X1∪X2

together with edges of the perfect matching generated by s.

Lemma 2.3. If X = Cay(DH ;S) is connected and s′ is any element of S2,
then Y (s′) is isomorphic to a Cayley graph on an abelian group.

Proof. Let G be the abelian group H × Z2, where we use Z2 = {1,−1}.
Let the connection set T for G be {(s, 1) : s ∈ S1} ∪ {(1,−1)}. Define the
mapping ϕ from Y to Cay(G;T ) by ϕ(h) = (h, 1) and ϕ(hs) = (h,−1). It is
easy to verify that this is an isomorphism from which the result follows.

An important modification we employ frequently is the replacement of an
edge uv by a path of length 3 joining u and v. We call the 3-path a bypass.
We sometimes specify the 3-path via the vertices along the path and use
the notation (u,w1, w2, v)-bypass. Alternatively, we sometimes specify the
3-path via the elements generating the successive edges. So if the sequence
s1, s2, s3 generates a 3-path from u to v, then we use the notation (s1, s2, s3)-
bypass.

Lemma 2.4. Let X = Cay(DH ;S) be connected of order 2m and let X1 be
connected and have valency at least 3. If C is a cycle of length � in X using
exactly one edge from X1 or exactly one edge of X2, then we can find cycles
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of lengths �+2k intersecting X1 or X2, respectively, in a path of length 2k+1
whenever 2k + 1 < m.

Proof. Let C be a cycle of length � intersecting X1 in the edge uv. Because
X1 is a connected Cayley graph on an abelian group and has valency at
least 3, Theorem 1.1 part 1 implies that uv is contained in cycles of all even
lengths from 4 through 2�m/2�. We may then replace the edge uv in C with
odd length paths in X1 to get the desired result. The identical proof works
when C intersects X2 in a single edge.

Note that 2�m/2� − 1 is the largest odd integer less than or equal to m.

Lemma 2.5. Let X = Cay(DH ;S) be connected of order 2m and let X1

be connected and have valency at least 2. If X is not bipartite, then X has
cycles of all odd lengths from 2�m/2� − 1 through 2m− 1.

Proof. If X1 is not bipartite, then choose s′ ∈ S2. The subgraph Y (s′) is not
bipartite, has valency at least 3 and is a Cayley graph on an abelian group
by Lemma 2.3. So it has cycles of the required odd lengths by Theorem 1.1
part 2 because the odd girth of Y (s′) is at most m.

If m is even and X1 is bipartite, then let C = u1u2 · · ·um be a cycle that
spans X1. Denote the parts of the bipartition of X1 as A and B. Without
loss of generality, let A contain the vertices ui with odd subscript and B
contain those with even subscript.

Let s1 ∈ S2 and using Lemma 2.1, we know that right multiplication by
s1 gives us a copy of C, say C ′, in X2, where the two copies are joined by the
perfect matching generated by s1. For ease of notation, let u′i = uis1 for all
i. The trivalent subgraph formed by C,C ′ and the perfect matching joining
them is isomorphic to the cartesian product C�K2 which is bipartite. Hence,
the bipartition of C ′ is determined.

Because X itself is not bipartite, there must be an s2 ∈ S2 that does
not respect the bipartition. Let u1u

′
j be an edge generated by s2 so that j

is even. The vertices u′1 and u′j partition the cycle C ′ into two odd length
subpaths one of which has length at most m/2. Without loss of generality,
let the subpath u′1u

′
2 · · ·u′j have length at most m/2.

Then u1u
′
1u

′
2 · · ·u′ju1 is an odd length cycle C(0). Because of the carte-

sian product subgraph, we know that u1umu′mu′1 is a bypass on the edge
u1u

′
1 in C(0). Next we can take the bypass umum−1u

′
m−1u

′
m on the newly

added edge umu′m. We may continue this way building longer and longer
odd length cycles until we reach a cycle C(1) that uses all the vertices of
X2.

If only one vertex of C does not appear in C(1), then we are done.
Otherwise, choose a matching along the subpath of C induced by the vertices
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of C not appearing in C(1). We then use these matching edges and edges
generated by s1 to form bypasses on edges of C ′ appearing in C(1). We
obtain all desired odd lengths.

3. Main result

Theorem 1.1 provides a complete answer for connected Cayley graphs on
abelian groups, whereas, for connected Cayley graphs on generalized dihe-
dral groups, the next theorem provides a complete answer only when S1 �= ∅.
This is the main result in the paper. Its proof is followed by a brief discussion
of the case that S1 = ∅.
Theorem 3.1. Let DH be a generalized dihedral group, X = Cay(DH ;S),
|S| ≥ 3, S1 = S ∩ H, S2 = S − S1 and X be connected. The following
statements hold for X:

1. if S1 �= ∅, then X is even edge-pancyclic; and
2. if S1 �= ∅ and X is not bipartite, then X is weakly odd vertex-pancyclic.

Proof. We now embark on a proof of Theorem 3.1. Here is an outline of the
proof. There are two basic cases: X1 is connected and X1 is not connected,
where we recall that X1 denotes the subgraph induced on H by X. We
first take care of the case that X1 is connected. It is a direct argument and
proceeds according to the valency of X1.

When X1 is not connected, we take a contraction and employ the fact
that the contraction contains a Hamilton path. We then use the contraction
to obtain a useful spanning subgraph of the Cayley graph.

3.1. Connected case

Let X = Cay(DH ;S). This subsection deals exclusively with the case that
X1 is connected. When referring to edges of X, we call edges contained in
either X1 or X2 internal edges, and we call edges with one end vertex in H
and the other end vertex in Hτ linking edges.

If the valency of X1 is 1, then X1 = K2 and X has order 4. As |S| ≥ 3,
X = K4 which is pancyclic and every edge lies in cycles of lengths 3 and 4.
This exhausts the possibilities when X1 has valency 1.

We now proceed to the case that X1 has valency at least 2. When X1 is
connected, has valency 2 and is not cyclic, then H is isomorphic to Z2×Z2,
with S1 consisting of two involutions. The groupDH is abelian because every
non-identity element of the group has order 2. The conclusion follows from
Theorem 1.1 in this case. So we assume that H is cyclic when the valency
is 2.
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If we choose any s1 ∈ S2, then Y (s1) is even edge-pancyclic by Lemma
2.3 and Theorem 1.1. Thus,X itself is even edge-pancyclic. So this completes
the argument when X is bipartite.

If X is not bipartite, we are going to prove the following statement by
induction on the number of linking edges: If C is a cycle of odd length �
containing exactly 2t linking edges, then X has cycles of all odd lengths
from � through 2m− 1.

Suppose first that C has no linking edges. When X1 has valency 2, then
� = m must hold. When X1 has valency bigger than 2, then X1 contains
odd length cycles of lengths � through the odd part of m by Theorem 1.1. In
both cases, Lemma 2.5 gives us the rest of the odd lengths through 2m− 1.

We cannot use no linking edges as the base for induction so that we must
argue two linking edges separately. So we now suppose that C has precisely
two linking edges. Because of Lemma 2.5, we may assume � < 2�m/2� − 1,
and it suffices to find cycles of all odd lengths from � through 2�m/2� − 3.

The cycle C is composed of a subpath P = u1u2 · · ·uj of X1, a subpath
Q = v1v2 · · · vk of X2 and the two linking edges u1v1 and ujvk. Without
loss of generality, assume j < k (the lengths must be different because � is
odd). If j = 1, that is, P has length 0, then let s ∈ S1 and s1 ∈ S2 generate
the edge joining u1 and v1. Consider the (s, s1, s)-bypass on the edge u1v1,
where x = u1ss1s. If x is not on C, then we obtain a cycle of length � + 2
with a single edge in X1. If x is on C, then we obtain a cycle of odd length
�′ ≤ � with a single edge in X1.

If j > 2, that is, P has length at least 2, let s generate the edge from
u1 to u2. Let x = u2s1. If x is on C, then the edge u2x is a chord of C and
we obtain either an odd length cycle with one edge in X1 and two linking
edges, or an odd length cycle such that the path in X1 has length j − 2
and there are two linking edges. Both cycles have length less than �. On the
other hand, if x is not on C, then we obtain a cycle of length �+2, with two
linking edges, and the path in X1 of length j − 2.

WhenX1 has valency at least 3, we carry out the preceding modifications
until we reach a cycle C ′of odd length �′ with two linking edges and a single
edge in X1. We then use Theorem 1.1(1) to replace the edge in X1 with
paths in X1 of any odd length. As we proceed from C to C ′, the length at
each iteration either increases by 2, remains the same or decreases. Thus,
every odd length between � and �′ is covered if � < �′. The result now follows.

When the valency of X1 is 2, then the initial path Q is a subpath of
a cycle generated by s ∈ S1. We then perform the same kind of alteration
extending the length of the path intersectingX2 until we reach an odd length
cycle with two linking edges usingm vertices of X2. This completes the proof
for two linking edges.
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The essential fact we use for the induction is the following.
Fact 1. Let C ′ be a cycle of odd length � using 2t ≥ 4 linking edges. The

cycle C ′ intersects X1 in t vertex-disjoint paths P1, P2, . . . , Pt, and intersects
X2 in t vertex-disjoint paths Q1, Q2, . . . , Qt, where a path may be just a
single vertex. If there is an edge between two vertices in distinct paths Pa

and Pb, or in distinct paths Qc and Qd, then there is a cycle of odd length
less than � and using strictly fewer linking edges than 2t.

To see that this fact holds, suppose the vertices of the chord are x and
y. When we look at the two cycles which have only the edge xy in common,
we must use distinct linking edges in each of the paths containing x and y,
respectively, so that both cycles have fewer linking edges. One of the two
cycles must have odd length and it is less than �. This establishes the fact.

Two linking edges is the induction basis and we let C be a cycle of
length � with 2t > 2 linking edges. Let Q1, Q2, . . . , Qt be the paths forming
the intersection of C and X2. Without loss of generality let Q1 and Q2 be
the two paths that are closest together in X2. Let the path of X2 defining
their distance apart be w1w2 · · ·wa, w1 ∈ Q1 and wa ∈ Q2.

If a = 2, that is, the edge w1w2 joins a vertex of Q1 with a vertex of
Q2, then Fact 1 tells us there is a cycle C ′ of odd length �′ < � with fewer
linking edges. We then conclude there are cycles of all odd lengths from �′

through 2m− 1 by induction. So the conclusion holds for C.
When a > 2, there are two subcases. First, if w1 is an end vertex of

Q1, then let s generate the edge from w1 to w2 and s1 ∈ S2 generate a
linking edges incident with w1. Now let x = w2s1. If x is not on C, then
the (w1, w2, x, w1s1)-bypass produces a cycle of length �+ 2 with two paths
in the intersection with X2 closer together. If x is on C, then we get an
odd length cycle of length at most � with fewer linking edges. We then use
induction to get the result.

The second subcase is that w1 is an internal vertex of Q1. Let w1w2

be generated by s ∈ S1 as we move from w1 to w2. Then one of the two
edges on Q1 incident with w1 is generated by an s′ �∈ {s, s−1}. Let v = w1s

′

and x = vs. If x is not on C, then the (w1, w2, x, v)-bypass again gives a
cycle of length �+2 with a shorter path joining two paths of its intersection
with X2. If x is on C, then x must be on Q1 because we have assumed the
distance between distinct paths in X2 is at least 2. Let Q′ be the subpath of
Q1 joining x and w1. If Q

′ has even length, then replacing Q′ by the 2-path
xw2w1 gives a new cycle of odd length whose intersection with X2 has two
paths that are closer together. If Q′ has odd length, then Q′ plus the same
2-path gives an odd cycle of length less than � with no linking edges.

We continue until we either reach an odd length cycle with a chord
between two paths in the intersection of the cycle with X2, or at some
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Figure 2.

iteration we get an odd length cycle with fewer linking edges. Both outcomes
give us an odd length cycle with fewer linking edges. Because of the way the
lengths change at each iteration, when we apply the induction to the cycle
C∗ with fewer linking edges, all lengths between � and the length of C∗ have
been filled in if the length of C∗ happens to be larger than �.

This completes the argument for X1 being connected.

3.2. Disconnected case

In this subsection we consider the case that X1 is disconnected. We contract
each component to a single vertex, remove all loops and reduce the multi-
plicity of any multiple edges to 1. The components of X1 are Cayley graphs
on a subgroup K of H and the contracted graph is a Cayley graph X on
the generalized dihedral group DH , where H is the quotient group H/K.
This graph X has a Hamilton path by Lemma 2.2. When we return to X,
the Hamilton path in X yields a spanning subgraph of X isomorphic to the
cartesian product P�X ′, where X ′ is a component of X1 and has order r
and P is the path with 2m/r vertices.

When X1 has valency 1, X ′ is a single edge, and 2m/r = m. The span-
ning subgraph is shown in Figure 2. When X1 has valency 2, X ′ is a cycle
of length r. When X1 has valency 3 or more, we have a spanning subgraph
isomorphic to P�X ′. We choose a spanning cycle of X ′ in the first copy
of X ′ and obtain copies of this spanning cycle in successive components by
multiplying on the right using the element of S2 that generates the perfect
matching joining the two components (Lemma 2.1). In this way we obtain a
spanning subgraph of X isomorphic to P�C ′, where C ′ is a cycle of length
r when the valency of X1 is 2 or more. We denote this spanning subgraph
by Y for the rest of the paper.

We coordinatize the vertices of Y using ui,j for i = 1, 2, . . . , 2m/r and
j = 1, 2, . . . , r. Edges of the form ui,jui,k are called vertical edges, edges of
the form ui,jui′,j are called horizontal edges, and all other edges are called
diagonal edges. All subscript arithmetic in the second coordinate is done
modulo r.
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Starting with the 4-cycle u1,1u2,1u2,2u2,1u1,1, it is easy to see that we can
find cycles of all even lengths using the edge u1,1u1,2 or the edge u1,1u2,1.
The edge u1,1u2,1 is a linking edge and from Lemma 2.2, we see that we may
choose this edge to be generated by any element of S2. Similarly, because X ′

is a Cayley graph on an abelian group, we may choose u1,1u1,2 to be gener-
ated by any s ∈ S1. Because X is vertex-transitive, we get that every edge
belongs to cycles of all even lengths. Therefore, X is even edge-pancyclic.

The preceding argument takes care of the case that X is bipartite. The
rest of the proof deals with odd length cycles and the length attests to the
fact that they are troublesome. We now give several useful facts.

Fact 2. If ui,jui′j′ is a non-vertical edge in X, then i and i′ have different
parity. This follows because column k and column k′ are components in the
same Xa, a = 1, 2, if and only if k and k′ have the same parity.

Fact 3. If C is an odd length cycle in X, then C has an odd number
of vertical edges. This follows because Fact 2 implies that the number of
non-vertical edges in C must be even.

Fact 4. Let C be a cycle of length γo(X). If e is a vertical edge followed
by a non-vertical edge e′ on C forming a 2-path from vertex x to vertex y,
then there is a 2-path from x to y formed by a non-vertical edge followed by
a vertical edge e′′, where e is generated from x by s and e′′ is generated into
y by s−1. This follows because if y = xss1, then y = xs1s

−1, where s1 ∈ S2.
Note that replacing the initial 2-path by the latter 2-path gives us an-

other cycle of length γo(X). We refer to this as moving the vertical edge
along C.

We now proceed by increasing valency starting with X1 having valency
1. Referring to Figure 2, we see that the spanning subgraph Y determines
an implicit bipartition of X. Thus, the reason that X is not bipartite is that
there is a linking edge e of X violating this implicit bipartition. Because of
Fact 2, this edge has the form ui,1ui′,2, where i < i′ and i′ − i is odd (this is
valid because ui,1ui′,2 belongs to X if and only ui,2ui′,1 belongs to X).

Let C ′ be the odd length cycle containing ui,2ui,1ui′,2 and the path in the
top row from ui,2 to ui′2. We can then use successive horizontal 3-bypasses
to the left starting with the vertical edge ui,1ui,2 until we have used all the
vertices to the left of column i. Call this last cycle C ′′.

The subpath of C ′′ from ui,2 to ui′,2 along the top row has odd length.
If this odd length is � > 1, then choose the matching with (� − 1)/2 edges
from this subpath such that the matching edges use neither vertex ui,2 nor
ui′,2. We can then use a 3-bypass vertically on each edge of the matching
edges until we reach a cycle C∗ using all the vertices of the first i′ columns
except ui′,1. So C∗ has length 2i′ − 1 and we are done when i′ = m.
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When i′ < m, C∗ contains the 4-path ui′−2,2ui′−2,1ui′−1,1ui′−1,2ui′,2. We
replace it by the 6-path ui′−2,2ui′−1,2ui′−1,1ui′,1ui′+1,1ui′+1,2ui′,2. We now
have a vertical edge on the right from which we can construct 3-bypasses
to the right to reach a cycle of length 2m − 1. This produces cycles of all
lengths from |V (C ′)| through 2m− 1.

The preceding does not work if the subpath of C ′′ has length 1, but this
is not a problem as we can use Lemma 2.2 to make sure the corresponding
linking edge is between columns 1 and 2 in forming Y . Then the 3-cycle
C ′ is u1,1u2,1u2,2u1,1. We now carry out successive bypasses to the right to
achieve cycles of all odd lengths from 3 through 2m− 1.

We have shown that we can fill in all odd lengths from the length of any
cycle C coming from a single edge violating the implicit bipartition through
2m− 1. The violating edge yielding the worst case is u1,1um,2 which gives a
cycle of length m+ 1. Thus, it suffices to fill in the odd lengths from γo(X)
through m− 1.

Now let C be a cycle of length γo in X. The cycle C may be drawn on
the vertices of Y and it may or may not use some edges of Y . We want to
examine the structure of C.

If both vertices of a column in Y belong to C, then the edge joining
them must also be in C or else that edge would be a chord of C, and cycles
of odd length γo have no chords. We claim that C has exactly one column
edge of Y belonging to it. We know it has at least one by Fact 3. If C has
at least two column edges, then using Fact 4 we get a cycle of length γo(X)
with two vertical edges joined by a non-vertical edge. But this implies that
we have a cycle of length γo(X) with a chord because there is a non-vertical
edge joining the other ends of the vertical edges. This is impossible.

Note that for all columns, other than the column containing the vertical
edge, at most one vertex of the column belongs to C because it has no chords.
Given an edge xz between distinct columns, we call the 3-bypass xx′z′z,
where x′, z′ are the other vertices in the same respective columns, the vertical
bypass on the edge xz. Our general procedure is to choose a matching from
the edges of C that are not column edges and perform successive vertical
bypasses on each edge of the matching, thereby, adding two to the length at
each iteration.

We may assume that γo(X) > 3 because we know a 3-cycle must contain
a vertical edge and earlier we showed how to go from a 3-cycle to pick up
all odd lengths through 2m − 1. Let i1 < i2 < · · · < it be the column
indices used by vertices of C. We know t is even as C has one column edge.
Moreover, there is a cycle induced on the set of indices by C. There are two
perfect matchings of this induced cycle because t is even and t ≥ 4. Choose a
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perfect matching so that the vertices in columns it and it−1 are on different
matching edges e and e′, respectively.

If it−1 ≤ m/2, move the column edge so that it is in column it and do
a vertical bypass on the edge e′. We then have a cycle of length γo(X) + 2
with vertical edges in columns it−1 and it and no vertex of the cycle in any
other column to the right of column it−1. Then we use horizontal bypasses
to the right from these two columns to reach a cycle of odd length bigger
than m. On the other hand, if it−1 > m/2, then move the column edge to
the column containing the end of e not in column it and perform vertical
bypasses on all edges different from e. We now can do horizontal bypasses
to the left from all columns it−1 and smaller. The resulting cycle has odd
length bigger than m and this completes the proof for X1 having valency 1.

We now move to the case that the valency of X1 is at least 2. Recall
that the spanning subgraph Y is isomorphic to P�C, where C is a cycle of
length r and P is a path of order 2m/r. The rest of the proof deals only
with odd length cycles because we did the bipartite case earlier. We find the
convenient odd length cycles first.

If X1 is not bipartite, then choose a vertical cycle of length r spanning
column 1 when r is odd, or of length r − 1 when r is even. It is now easy
to see how we can use horizontal bypasses to the right and the fact that the
columns contain a spanning cycle to obtain cycles of all odd lengths from
r − 1 or r through 2m− 1

If X1 is bipartite, then Y gives us an implicit bipartiton of X. There
must be an edge ui,jui′,k, i < i′, violating the implicit bipartition because X
is not bipartite. Without loss of generality we may assume j ≤ k. The cycle

C ′ = ui,jui+1,j · · ·ui′,jui′,j+1 · · ·ui′,kui,j

has odd length and the maximum this length may be is r/2 + 2m/r. There
are several subcases to check, but it is routine to verify that there are cycles
of all odd lengths from the length of C ′ through 2m− 1.

To complete the proof we need to show that we can fill in all odd lengths
from γo(X) through the larger of the odd parts of m and r/2 + 2m/r.
Throughout the rest of the proof, C denotes a cycle of length γo(X).

Fact 5.We may assume that all the vertical edges of C form a subpath of
C lying in a single column different from column 1 or column 2m/r. We use
Fact 4 to transform the cycles of length γo(X) until the vertical edges form
a path. To see that we may assume this path lies in a column different from
1 or 2m/r, first observe that if C has only vertices in columns 1 and 2m/r,
then it is easy to find cycles of all appropriate odd lengths via the following
argument. From Fact 3 we know there is a vertical edge. We may use this
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vertical edge to give horizontal bypasses to the left or right to the column
next to the other boundary column. We then use one of the horizontal edges
formed earlier and vertical bypasses to hit every row not used there. This
gives us a cycle of odd length bigger than r+2m/r and we are done. So we
may assume that C uses a vertex in another column and we use Fact 4 to
move the vertical edges to this column.

We now start the general argument. Let C be a cycle of length γo(X)
with the maximum number of vertical edges such that they form a subpath
P lying in a single column different than column 1 and column 2m/r. We
use this to get three further useful facts.

Fact 6.We may assume that γo(X) ≥ 5. This follows because if γo(X) =
3, then a 3-cycle has one or three vertical edges by Fact 3. There are a couple
of cases to check, but it is easy to use horizontal and vertical bypasses to
find cycles of all odd lengths from 3 through the maximum of the odd part
of r/2 + 2m/r.

Fact 7. Let U be the vertices of C not lying on P . If ui,j ∈ U−{w1, w2},
where w1 and w2 are the end vertices not on P of the two non-vertical edges
of C adjacent with P , and ui′,j′ is a vertex of C, then whenever i and i′

have different parity, there is no 2-path ui,jvui′,j′ joining them in X with
v �∈ V (C). Continuing, if i = i′, then they have no common neighbor in
column i. Similarly, if ui,j and ui+2,j belong to C, then we may assume that
the 2-path ui,jui,j+1ui,j+2 belongs to C.

To see that Fact 7 holds, let ui,j ∈ U − {w1, w2} and suppose there is
a 2-path ui,jvui′,j′ in X with v not on C and ui′,j′ on C. There is no edge
joining ui,j and ui′,j′ by Fact 6. Thus, the vertices would be distance 2 apart
in X and so the same distance apart on C. However, such a 2-path must
contain a vertical edge by Fact 2 which contradicts the vertical edges of C
forming a path. We also see why w1 and w2 are possible exceptions.

If i = i′, then a common neighbor in column i would give a 2-path
of vertical edges joining ui,j and ui,j′ again contradicting the choice of C.
Finally, if ui,j and ui+2,j belong to C, then the two vertices must be distance
2 apart on C and the 2-path currently joining them must consist of two non-
vertical edges by Fact 2. Replace it by the 2-path ui,jui,j+1ui,j+2 and we still
have a cycle of length γo(X).

Fact 8. If ui,j is a vertex of C and there is an edge e of X joining ui,j
and ui′,j′ such that e does not belong to C, then ui′,j′ does not belong to
C. To see this fact, note that ui′,j′ cannot belong to C as e would then be
a chord.

In the special case that there are exactly two non-vertical edges in C,
then C consists of a path in column k with one vertex in another column.
It is easy to see how to get cycles of all odd lengths from γo(X) through at
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least r+ 2m/r because either column k− 1 or column k+ 1 has no vertices
of C, r ≥ 4 and the lone vertex blocks only one row and one column. So we
may assume there are at least four non-vertical edges.

We perform a sequence of 3-bypasses on C starting with the subpath P
of vertical edges in C in column k �∈ {1, 2m/r}. Let uk,a and uk,b be the end
vertices of P in column k. If the non-vertical edge incident with uk,a is not
uk−1,auk,a, then do a horizontal 3-bypass to the left on the vertical edge of
P incident with uk,a. Follow with a horizontal 3-bypass to the right on the
next edge of P . Continue in this way alternating horizontal bypasses to the
left and right. When you reach the last edge of P—incident with uk,b—do a
horizontal 3-bypass to the left unless the edge uk−1,buk,b already belongs to
C in which case we omit the last horizontal 3-bypass. On the other hand,
if the non-vertical edge incident with uk,a is uk−1,auk,a, then we reverse the
role of left and right horizontal bypasses. Let C∗ denote the cycle we have
after carrying out the bypasses on the edges of P .

We now carry out a sequence of 3-bypasses on the non-vertical edges of
C working around the cycle in a cyclic fashion starting with the non-vertical
edge uk,aui,j incident with uk,a. We do not carry out a bypass on this edge.
We move to the next edge ui,jui′,j′ on C. If ui,j+1 is on C∗, then we take no
bypass on the edge ui,jui′,j′ . On the other hand, if ui,j+1 is not on C∗, let
the edge ui,jui,j+1 be generated by s ∈ S1. We then take the (s, t, s)-bypass
on the edge ui,jui′,j′ , where t generates the edge ui,jui′,j′ .

Let ui′,j′ui′′,j′′ be the next edge of C. If the edge ui′,j′+1ui′,j′ is not an
edge of the preceding bypass, then take the 3-bypass on the edge ui′,j′ui′′,j′′

that starts with ui′,j′ui′,j′+1. But if the edge ui′,j′+1ui′,j′ is an edge of the
preceding bypass, then take the 3-bypass on the edge ui′,j′ui′′,j′′ that starts
with ui′,j′ui′,j′−1.

We continue this way until reaching the last non-vertical edge as we
work along C, and we do not perform a 3-bypass on this last edge which is
incident with uk,b. We want the final subgraph to be a cycle and we may
need to make a small adjustment near the end of the procedure. In order
to do so, we must deal with the following. If C has a vertex in row j, a
vertex in row j + α > j + 1, but none in the rows in between, then we let
gap(j) = {j + 1, j + 2, . . . , j + α − 1} (recall that we work modulo r in the
second coordinate). We continue with the verification that we finish with a
cycle (after a possible adjustment).

The initial horizontal bypasses on the vertical edges of P bring in new
vertices none of which lie on C by Fact 8. All remaining new vertices re-
sult from bypasses on non-vertical edges. Two bypasses in the same column
cannot require the same vertex by Fact 7 as the vertical edges would have a
common neighbor. No vertical edge that is part of a bypass on a non-vertical
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edge requires a vertex that arose from the initial horizontal bypasses by
Fact 7 because we would then have two vertices of C in adjacent columns
at distance 2.

Note that we avoided the duplication problem at the beginning when
ui,j+1 lies on C∗ as we did not perform a 3-bypass on the edge ui,jui′,j′

in that situation. The bypasses at the end of the procedure may require
adjustment. We do no bypass on the non-vertical edge uk′,b′uk,b incident
with uk,b. However, a new vertical edge may now be present at uk′,b′ because
of a bypass on the preceding edge ui,juk′,b′ . If the new vertical edge does not
encounter a vertex added earlier, then we leave the bypass intact. On the
other hand, if the new vertical edge encounters a vertex v that arose earlier,
then v had to come on a horizontal bypass for P (note that this means
k′ = k − 1 or k′ = k + 1). But this means there already is a horizontal edge
in the row containing v so that we are free to make an adjustment to the
bypass on the edge ui,juk′,b′ .

If gap(b′) does not exist, that is, there is a vertex of C in row b′ + 1,
then we do not perform a bypass on ui,juk′,b′ and the problematic vertical
edge does not arise. Assume then that gap(b′) does exist which implies that
the vertex uk′,b′+1 is not on C. Let B1 denote the bypass on ui,juk′,b′ which
finishes with the edge uk′,b′+1uk′,b′ . If the other end of B1 is ui,jui,j′ and is
not used in the bypass B2 on the preceding edge adjacent to ui,juk′,b′ , then
substitute B1 for the bypass containing the problematic vertical edge.

The preceding substitution cannot be done if the edge ui,jui,j′ is used in
B2. Then if gap(j) does not exist, remove the edge ui,jui,j′ from B1∪B2 and
we have a path of length 4 replacing a subpath of length 2 in C such that
the edge uk′,b′uk′,b′+1 is in the path. Finally, if gap(j) does exist, then we
compare |gap(j)| and gap(b′)| as one of them will be ‘sacrificed.’ If |gap(b′)|
is smaller, then perform no bypass on the edge ui,juk′,b′ . If |gap(b′)| is equal
or larger, then carry out the 4-path substitution.

Therefore, we obtain a cycle C ′ after carrying out the sequence of al-
terations above. We have introduced many vertical edges that may be used
for horizontal bypasses to fill column gaps. Normally (exceptions are dis-
cussed next) C ′ has vertical edges in columns k − 1, k + 1 and any column
i, i �∈ {k − 1, k, k + 1}, which contained a vertex of C. Also, no vertices are
introduced to columns not containing a vertex of C other than k − 1 and
k + 1. So horizontal bypasses to the left fill in all column gaps to the left
of column k − 1 and bypasses to the right take care of gaps to the right of
column k + 1. This gives us a cycle of odd length at least 4m/r.

One exceptional situation is when P has length 1. There are a few sub-
cases to be checked which we leave to the reader but here are a few hints. If
a new vertical edge has been added to column k, then the edge of P may be
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used for bypasses to the left and the new edge for bypasses to the right and
the column gaps may be filled. If no new edge is added to column k, then
column k contains only two vertices of C. This allows us to have room to do
a vertical bypass on a horizontal edge adjacent to the edge of P in C ′. That
then gives us a new vertical edge in column k enabling us to now carry out
the column gap filling.

The second exceptional situation comes from doing a 4-path substitution
described above. This is column i in the notation above. If another vertex
of column i lies in C, then we already have a vertical edge in column i and
there is no problem. Otherwise, C ′ has just one vertex ui,j′ in column i
and it might block horizontal bypasses we need. Let’s build a bypass on the
edge ui,j′uk′,b′+1. One of ui,j′+1 and ui,j′−1 is not the original ui,j that we
eliminated and we assume it is ui,j′−1. Let t generate the edge from ui,j′ to
uk′,b′ . Now consider the potential bypass starting ui,j′ui,j′−1 and followed by
the edge generated by t taking us to vertex x in column k′.

If x is not on C ′, then we have a bypass on the edge ui,j′uk′,b′+1 giving us
a vertical edge in column i so that we may complete the horizontal bypasses
as required. If x is on C ′, then it is on a vertical edge not involving the
vertices uk′,b′ or uk′,b′+1. Thus, there is a horizontal bypass to column i on
this vertical edge again giving us a vertical edge in column i.

Hence, we reach a cycle with odd length at least 4m/r. Therefore, if
r ≤ 4m/r, the final cycle has length at least r and at least 4m/r = 2m/r +
2m/r ≥ r/2 + 2m/r.

The preceding completes the argument when r ≤ 4m/r. So we now
assume that r > 4m/r and we look at gaps involving rows rather than
columns. The argument is more complicated now. We need some facts again.

Fact 9. Let ui,j be a vertex of C not lying on P . Any one of the vertices
ui−1,j and ui+1,j belongs to C

′ if and only if the corresponding edge ui−1,jui,j
or ui,jui+1,j , respectively, belongs to C. This follows from Facts 6, 7 and 8.

Fact 10. If two edges ui,j′ui,j and ui+1,j′′ui+1,j both are added as a
result of bypasses, where ui,j′ and ui+1,j′′ are vertices of C, then we may
assume that ui,j′ui+1,j′′ is an edge of C. Let’s prove this fact.

We can see that the distance between ui,j′ and ui+1,j′′ is at most 3 in X.
If the distance is 3, then that must be their distance apart on C and the path
joining them on C can have at most one vertical edge because both vertices
have admitted bypasses. We can then replace the 3-path joining them by
the 3-path ui,j′ui,jui+1,jui+1,j′′ which has two vertical edges contradicting
the choice of C.

If the distance between them in X is 2, then a vertical edge is involved
but this is impossible. Hence, the distance between them is 1 and the edge
must then be part of C.
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The strategy now is clear. For any row bounding a gap for C ′, we want
to find a horizontal edge in that row. We may then fill the gap by successive
vertical bypasses on the horizontal edge. Here is the pillar for that strategy.
Suppose ui,j is a vertex of C and we have added the edges ui,jui,j+1 and
ui,jui,j′ in building C ′. Further, suppose that ui+1,j , ui+1,j+1 and ui+1,j′ do
not lie on C ′. Then if both gap(j+1) and gap(j′) exist, we may do the follow-
ing. The horizontal (ui,j , ui+1,j , ui+1,j+1, ui,j+1)-bypass on the edge ui,jui,j+1

yields a horizontal edge in row j + 1. Now replace the 2-path ui+1,jui,jui,j′

with the 2-path ui+1,jui+1,j′ui,j′ to also attain a horizontal edge in row j′.
Of course, it is easy to get a horizontal edge in only one of the rows if that
is all that is required.

Any row containing a vertex of P acquires a horizontal edge at the
beginning so that we are interested only in gap rows arising from vertical
bypass edges. So for a given ui,j incident with two bypass edges ui,jui,j+1

and ui,jui,j′ , we consider j′ = j − 1 and j′ �= j − 1 separately. From Fact 9
we know that ui+1,j is a vertex of C ′ if and only if the edge ui,jui+1,j is in C.
So we first examine the subcase that ui+1,j is in C ′ and assume we traverse
C in the direction from ui,j to ui+1,j .

When j′ �= j − 1, the 3-path ui,jui,j+1ui+1,j+1ui+1,j is the bypass on
ui,jui+1,j . This already gives a horizontal edge in row j + 1. If we need a
horizontal edge in row j′, then because ui,j−1 is not on C ′ by Facts 7 and 8,
we may replace the 5-path

ui,j′ui,jui,j+1ui+1,j+1ui+1,jui+1,j−1

with the 7-path

ui,j′ui+1,j′ui+1,jui+1,j+1ui,j+1ui,jui,j−1ui+1,j−1

and obtain horizontal edges in both row j + 1 and row j′.
When j′ = j−1, then one possibility is that we have the same 3-path as

in the preceding paragraph. We already have a horizontal edge in row j + 1
and gap(j′) does not exist so we are done.

The other possibility is that we have the 5-path

ui,j+1ui,jui,j−1ui+1,j−1ui+1,jui+1,j+1

because of the way we construct the bypasses. So in this case we make no
further changes unless we need a horizontal edge in row j+1. If either edge
that is adjacent to ui,jui+1,j is horizontal, then we have a horizontal edge in
row j + 1 because of the way the bypasses work. If neither of the adjacent
edges is horizontal, then ui+2,j is not on C ′ by Fact 9. The vertex ui+2,j+1
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also is not on C ′ because of Fact 10. We can then do a horizontal bypass to
the right on the vertical edge ui+1,jui+1,j+1 to obtain a horizontal edge in
row j + 1. We may do the same to the left if column i+ 2 does not exist.

We now consider the other case that ui+1,j is not on C ′. The edge
ui,j+1ui+1,j+1 is not part of the bypass starting with ui,jui,j+1 because this
would force the edge ui,jui+1,j to be on C. Thus, if ui+1,j+1 is on C ′, it arises
from a bypass edge. Fact 10 then tells us that it must be from an edge of C
incident with ui,j . But this edge is not ui,jui+1,j so that the bypass cannot
go through ui+1,j+1. So neither ui+1,j nor ui+1,j+1 belong to C ′ and we are
free to use a horizontal bypass to the right on ui,jui,j+1. We now have a
horizontal edge in row j + 1.

Now gap(j′) exists only when j′ �= j−1. If the vertex ui+1,j′ is not on C ′,
then we may use the earlier mentioned pillar for the strategy. On the other
hand, if ui+1,j′ does lie on C ′, then Fact 10 tells us that we have the 4-path
ui,j′ui,jui,j+1ui+1,j′ui+1,j′′ after applying a bypass on the edge ui,jui+1,j′′ .
We may then replace that 4-path by the 6-path

ui,j′ui+1,j′ui,j+1ui+1,j+1ui+1,jui,jui+1,j′′

to get horizontal edges in both row j + 1 and row j′.
The last thing to examine is the issue of the adjustment we may have

made for the edge returning to P at vertex uk,b. When we add vertices to
a row to fill in a gap, we add two vertices to the row. Thus, even if we
obtain no new vertices in the smaller of gap(c) and gap(j), we add at least
|gap(c)|+ |gap(j)| vertices for the rows in these two gaps. This implies that
the final cycle has at least length r. Because r > 4m/r, the length of the
cycle is greater than r and r/2 + 2m/r as required. This completes the
proof.

4. Final comments

The glaring omission in searching for an analogue of Theorem 1.1 for the
family of Cayley graphs on generalized dihedral groups is the case that
X1 (and thus X2) has no edges, that is, S1 = ∅. This is, of course, no
surprise because we do not know whether or not all connected Cayley graphs
on the dihedral group are hamiltonian. It is known that [3] all connected
trivalent graphs on dihedral groups are hamiltonian. The identical proof for
the aforementioned result works to prove the following so we omit the proof.

Theorem 4.1. If X is a connected trivalent graph on a generalized dihedral
group, then X has a Hamilton cycle.
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The preceding theorem suggests that perhaps we can say something
about pancyclicity for Cayley graphs on generalized dihedral groups when
S1 = ∅ and |S2| = 3 because at least we know the longest cycle is there. The
graphs are bipartite so that we may achieve only even length cycles.

The definition of HTG(m,n, �) still makes sense when m = 1 as the hon-
eycomb toroidal graph is then a Hamilton cycle of length n with alternating
chords of some odd length, but in this case n > 4 must hold. We refer to
these as degenerate honeycomb toroidal graphs, but they include important
graphs. For example, the Heawood graph is HTG(1, 14, 5). The only reason
we call these degenerate is because there is a natural embedding of honey-
comb toroidal graphs on the torus and when m = 1, there is the possibility
that the hexagonal faces have a boundary walk that uses edges more than
once.

The Heawood graph is an interesting example to consider. It is not hard
to verify that it has girth 6 and cycles of all even lengths from 6 through 14.
So here is an example of a graph in our family of Cayley graphs not having
cycles of length 4. Because of this example, might it be possible that they
miss at most cycles of length 4?

Proposition 4.2. The degenerate honeycomb toroidal graph HTG(1, n, �)
has girth 4 if and only if one of the following holds: � = 3, � = n − 3,
� = n/2 and n ≡ 2(mod 4), or � = (n± 2)/2 and n ≡ 0(mod 4).

Proof. Let X = HTG(1, n, �) and label the vertices u0, u1, . . . , un−1. Recall
from above that n > 4 must hold. If � = 3, then u1u2u3u4u1 is a 4-cycle.
If � = n − 3, then u0u1u2u3u0 is a 4-cycle. Similarly, when n ≡ 2(mod 4)
and � = n/2, we find the 4-cycle u1u1+n/2un/2u0u1 in X. Finally, when
n ≡ 0(mod 4), we have the 4-cycle u0u1un/2u1+n/2u0, when � = (n − 2)/2,
and the 4-cycle u1u2u(n+2)/2u(n+4)/2u1 when � = (n+ 2)/2.

We have seen that we have 4-cycles when any of the four conditions hold.
We need to show that this is the only way 4-cycles may arise. A 4-cycle must
use at least one chord because n > 4. If exactly one chord is used, then the
three edges from the outside Hamilton cycle must form a subpath of length
3 in the 4-cycle. Hence, � is either 3 or n− 3.

Now suppose a 4-cycle uses more than one chord. Chords are not adja-
cent so that there must be two chords, and these two chords must alternate
with edges from the Hamilton cycle. So the 4-cycles have either the form
uiui+1uj+1ujui or uiui+1ujuj+1ui.

If the 4-cycle has the form uiui+1uj+1ujui and i is odd, then 2� = n. This
implies that � = n/2 and since the chord length must be odd, n ≡ 2(mod 4)
must hold. If i is even, the same conclusion arises.
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If the 4-cycle has the form uiui+1ujuj+1ui and i is odd, then � = (n+2)/2
which forces n ≡ 0(mod 4) because � is odd. On the other hand, if i is even,
then � = (n− 2)/2 and again n ≡ 0(mod 4) must hold. This completes the
proof.

The preceding proposition tells us exactly when a degenerate honeycomb
toroidal graph has girth 4.

Corollary 4.3. The degenerate honeycomb toridal graph HTG(1, n, �) is
even edge-pancyclic if and only if one of the following holds: � = 3, � =
n− 3, � = n/2 and n ≡ 2(mod 4, or (1, n, �) ∈ {(1, 12, 5), (1, 12, 7), (1, 16, 7),
(1, 16, 9), }.
Proof. In order for HTG(1, n, �) to be even edge-pancyclic, it must contain
a 4-cycle so that Proposition 4.2 tells us the conditions of the corollary
are necessary. It is easy to verify that HTG(1, n, 3) is even edge-pancyclic.
The same conclusion holds for HTG(1, n, n− 3) because it is isomorphic to
HTG(1, n, 3).

The graph HTG(1, n, n/2) is isomorphic to the circulant graph of order
n with connection set {±1, n/2}, and the latter graph is even edge-pancyclic
by Theorem 1.1 when n ≡ 2(mod 4).

Because HTG(1, n, (n− 2)/2) and HTG(1, n, (n+ 2)/2) are isomorphic,
we concentrate on the former. It is easy to verify directly that HTG(1, 12, 5)
and HTG(1, 16, 7) and are even edge-pancyclic. The proof is complete upon
showing that HTG(1, n, (n − 2)/2) is not even edge-pancyclic when n ≥ 24
and n ≡ 0(mod 4).

We claim that the latter graphs contain no 8-cycles. If they contain
an 8-cycle, then the cycle contains subpaths of the outer Hamilton cycle
connected by chords. The only cycles with a single chord have lengths n/2
and (n+ 2)/2 both of which are greater than 8.

If a cycle uses exactly two chords, by checking the possible lengths of
the paths joining them, we see that we can obtain the small lengths 4, 6,
and 10 but not 8. If a cycle use three chords and we want to achieve length
8, then there must be two additional vertices in the cycle. One possibility is
to have a path of length 3 from the outside Hamilton cycle joining two ends
of two of the chords. But then the other ends of the two chords are either
next to each other or distance 5 apart. There is no way a third chord can
be used to form an 8-cycle because the chords have length at least 9 (when
n = 20).

If we have a single vertex between two chords on a cycle, then the other
ends of the chords also are distance 2 from each other. It is impossible to
use a third chord to form an 8-cycle.
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The last possibility is that four chords can be used to form an 8-cycle.
As the chords form a matching, there can be no additional vertices involved,
that is the ends of the four chords must pair up as neighbors on the outer
cycle. Because of the rotational symmetries of the graph, we may assume
such a subpath either is u0u1 or u1u2 are the ends of neighboring chords.

For the subpath u0u1, the chords join to u(n−2)/2 and u(n+4)/2, respec-
tively. It is now easy to verify that there is no way of using two additional
chords to get an 8-cycle. A similar argument works for the edge u1u2. This
completes the proof.

Honeycomb toroidal graphs have a natural embedding on the torus so
that all faces are hexagons. From this it easy to find cycles of all lengths
� ≡ 2(mod 4). We have seen that there are some with no 8-cycles. It may
be the case that other cycles of length � ≡ 0(mod 4) are missing but we do
not have a good picture of what is going on here. A nice problem is to try
to get an accurate picture of which cycle lengths are not achieved for not
only honeycomb toroidal graphs but Cayley graphs on generalized dihedral
groups for which S1 = ∅.
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