Toward Zak's conjecture on graph packing

Ervin Győri^{*}, Alexandr Kostochka[†], Andrew McConvey, and Derrek Yager[‡]

Dedicated to Adrian Bondy on the occasion of his 70th birthday

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, each of order n, pack if there exists a bijection f from V_1 onto V_2 such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$. In 2014, Żak proved that if $\Delta(G_1), \Delta(G_2) \leq$ n-2 and $|E_1| + |E_2| + \max\{\Delta(G_1), \Delta(G_2)\} \leq 3n - 96n^{3/4} - 65$, then G_1 and G_2 pack. In the same paper, he conjectured that if $\Delta(G_1), \Delta(G_2) \leq n-2$, then the weaker condition $|E_1| + |E_2| + \max\{\Delta(G_1), \Delta(G_2)\} \leq 3n - 7$ is sufficient for G_1 and G_2 to pack. We prove that, up to an additive constant, Żak's conjecture is correct. Namely, there is a constant C such that if $\Delta(G_1), \Delta(G_2) \leq$ n-2 and $|E_1| + |E_2| + \max\{\Delta(G_1), \Delta(G_2)\} \leq 3n - C$, then G_1 and G_2 pack. In order to facilitate induction, we prove a stronger result on list packing.

MSC 2010 SUBJECT CLASSIFICATIONS: 05C70, 05C35. Keywords and phrases: Graph packing, maximum degree, edge sum, list coloring.

1. Introduction

Extremal problems on graph packing have been actively studied since the seventies. Recall that two *n*-vertex graphs are said to *pack* if there is an edge-disjoint placement of the graphs onto the same set of vertices. More technically, a *packing* of graphs G_1 and G_2 is a bijection $f: V_1 \to V_2$ such that for all $u, v \in V_1$, either $uv \notin E_1$ or $f(u)f(v) \notin E_2$. In 1978, Bollobás and Eldridge [1] and Sauer and Spencer [3] proved several important results

arXiv: 1508.03672

^{*}Research of this author is supported in part by OTKA Grants 78439 and 101536. [†]Research of this author is supported in part by NSF grant DMS-1266016 and by

grants 12-01-00631 and 12-01-00448 of the Russian Foundation for Basic Research. [‡]The author acknowledges support from National Science Foundation grant DMS

^{08-38434 &}quot;EMSW21-MCTP: Research Experience for Graduate Students."

on graph packing. In particular, Sauer and Spencer [3] showed that two *n*-vertex graphs pack if the product of their maximum degrees is less than n/2.

Theorem 1.1 ([3]). Let G_1 and G_2 be two n-vertex graphs. If $2\Delta(G_1)$ $\Delta(G_2) < n$, then G_1 and G_2 pack.

For n = 2k with k odd, if $G_1 = K_{k,k}$ and G_2 is a perfect matching M_k , then G_1 and G_2 do not pack; so the bound is sharp. Bollobás and Eldridge [1] and Sauer and Spencer [3] independently proved sufficient conditions for packing two graphs with given average degrees.

Theorem 1.2. Let G_1 and G_2 be two *n*-vertex graphs. If $|E(G_1)|+|E(G_2)| \leq \frac{3}{2}n-2$ then G_1 and G_2 pack.

Moreover, Bollobás and Eldridge [1] proved that Theorem 1.2 can be significantly strengthened when we additionally assume that $\Delta(G_1), \Delta(G_2) < n-1$.

Theorem 1.3 ([1]). Let G_1 and G_2 be two n-vertex graphs. If $\Delta(G_1)$, $\Delta(G_2) \leq n-2$, $|E(G_1)| + |E(G_2)| \leq 2n-3$, and $\{G_1, G_2\}$ is not one of the following pairs: $\{2K_2, K_1 \cup K_3\}, \{\overline{K_2} \cup K_3, K_2 \cup K_3\}, \{3K_2, \overline{K_2} \cup K_4\}, \{\overline{K_3} \cup K_3, 2K_3\}, \{2K_2 \cup K_3, \overline{K_3} \cup K_4\}, \{\overline{K_4} \cup K_4, K_2 \cup 2K_3\}, \{\overline{K_5} \cup K_4, 3K_3\}, then G_1 and G_2 pack.$

This theorem is also sharp: for example, graphs $G_1 = K_{1,n-2} \cup K_1$ and $G_2 = C_n$ do not pack. Recently, Żak [4] showed that with stronger restrictions on maximum degrees of G_1 and G_2 one can weaken restrictions on their sizes. Namely, he proved the following.

Theorem 1.4 ([4]). Let G_1 and G_2 be two graphs of order $n \ge 10^{10}$. If $|E(G_1)| + |E(G_2)| + \max\{\Delta(G_1), \Delta(G_2)\} < \frac{5}{2}n - 2$, then G_1 and G_2 pack.

Zak showed that this result can also be strengthened when the star on n vertices is forbidden.

Theorem 1.5 ([4]). Let G_1 and G_2 be *n*-vertex graphs with $\Delta(G_1), \Delta(G_2) \leq n-2$. If $|E(G_1)| + |E(G_2)| + \max{\{\Delta(G_1), \Delta(G_2)\}} \leq 3n - 96n^{3/4} - 65$, then G_1 and G_2 pack.

This theorem is asymptotically sharp, since $K_{1,n-2} \cup K_1$ and C_n do not pack. In the same paper Zak makes the following conjecture.

Conjecture 1.6 ([4]). Let G_1 and G_2 be n-vertex graphs with $\Delta(G_1)$, $\Delta(G_2) \leq n-2$. If $|E(G_1)| + |E(G_2)| + \max{\{\Delta(G_1), \Delta(G_2)\}} \leq 3n-7$, then G_1 and G_2 pack.

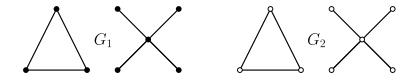


Figure 1: Sharpness example for Conjecture 1.6. In this example n = 8 and $|E(G_1)| + |E(G_2)| + \max \{\Delta(G_1), \Delta(G_2)\} = 3n - 6$ but the graphs do not pack.

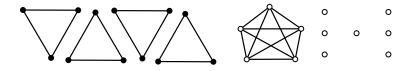


Figure 2: Zak's Conjecture is false for small values of n.

Zak also provides the following example to show that, if true, the conjecture is best possible. Let $n \geq 8$ and let G_1 and G_2 each be isomorphic to $K_3 + K_{1,n-4}$, a disjoint union of a triangle and a star (Figure 1). Then, $\Delta(G_1) = \Delta(G_2) = n - 4$ and $|E(G_1)| + |E(G_2)| + \max \{\Delta(G_1), \Delta(G_2)\} = (n-1) + (n-1) + (n-4) = 3n - 6$. A simple check shows that G_1 and G_2 do not pack.

However, for some small values of n, Conjecture 1.6 fails. For example, consider $G_1 = 4K_3$ and $G_2 = K_5 \cup \overline{K}_7$ (Figure 2). In any attempted packing, we are forced to send at least two vertices from the same component in G_1 to the clique in G_2 , so the graphs do not pack. In this example, $|E(G_1)| + |E(G_2)| + \max{\{\Delta(G_1), \Delta(G_2)\}} = 12 + 10 + 4 = 26 = 3n - 10$. We were unable to find large counterexamples, so the conjecture may hold with a finite set of exceptions. Further, the main result of this paper shows that, up to the choice of the additive constant, Conjecture 1.6 is true.

Theorem 1.7. Let $C = 11(195^2) = 418,275$. Let G_1 and G_2 be *n*-vertex graphs with $\Delta(G_1), \Delta(G_2) \leq n - 2$. If $|E(G_1)| + |E(G_2)| + \max \{\Delta(G_1), \Delta(G_2)\} \leq 3n - C$, then G_1 and G_2 pack.

Our constant C is not optimal and we can somewhat decrease it by a more detailed case analysis in our proofs. However, since $3n-96n^{3/4}-65 \leq 0$ for $n \leq 10^6$, Theorem 1.7 improves the previous best known result even for small values of n. Further, Theorems 1.7 and 1.2 together imply that Theorem 1.4 holds when n is at least $2C-2 \approx 10^6$. To see this, notice that if $\Delta(G_1) = n - 1$ or $\Delta(G_2) = n - 1$, then $|E(G_1)| + |E(G_2)| \leq \frac{3}{2}n - 1$ and

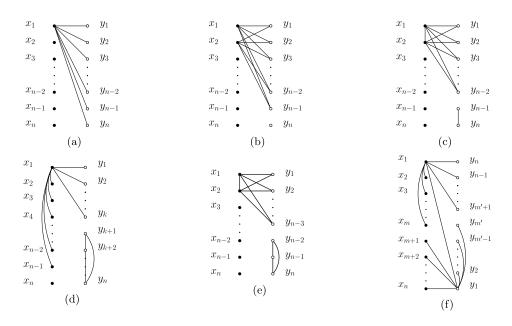


Figure 3: Sharpness examples for Theorem 1.8.

Theorem 1.2 applies. Alternatively, when $n \ge 2C - 2$, $\frac{5}{2}n - 2 \le 3n - C$ and Theorem 1.7 applies.

Our proof of Theorem 1.7 uses the concept of list packing introduced in [2]. A graph triple $\mathbf{G} = (G_1, G_2, G_3)$ consists of two disjoint *n*-vertex graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ and a bipartite graph $G_3 = (V_1 \cup V_2, E_3)$ with partite sets V_1 and V_2 . A list packing of \mathbf{G} is a packing of G_1 and G_2 such that $uf(u) \notin E_3$ for any $u \in V_1$. Essentially, a list packing is a packing of G_1 and G_2 with an additional set of restrictions on the bijection f.

We prove the following list version of Theorem 1.7.

Theorem 1.8. Let $C = 11(195^2)$. Let $n \ge 2$ and $\mathbf{G} = (G_1, G_2, G_3)$ be a graph triple with $|V_1| = |V_2| = n$, $\Delta(G_1), \Delta(G_2) \le n-2$, and $\Delta(G_3) \le n-1$. If $|E_1| + |E_2| + |E_3| + \max\{\Delta(G_1), \Delta(G_2)\} + \Delta(G_3) \le 3n - C$, then \mathbf{G} packs.

Note that Theorem 1.7 is the special case of Theorem 1.8 in which G_3 has no edges. The pair shown in Figure 2 shows that, up to an additive constant, the theorem is sharp. Moreover, there are other infinite families of examples showing that, up to an additive constant, the theorem is sharp even when E_3 is nonempty. Several of these examples are shown in Figure 3. The body of this paper contains a proof of the slightly stronger Theorem 2.3. This theorem is more technical than Theorem 1.8 and we refer the reader to

Section 2 for the statement of the theorem and an explanation of necessary notation.

The paper is organized as follows. In Section 2, we state definitions, some useful preliminary results, and the main technical result, Theorem 2.3. The proof of Theorem 2.3 will be by contradiction. In Section 3 we prove several lemmas regarding the degree requirements of a minimal counterexample $\mathbf{G} = (G_1, G_2, G_3)$. We then use these properties in Section 4 to show that a minimal counterexample has at most one vertex with at least two neighbors of degree 1. Next, in Section 5, we introduce the notion of supersponsors and show that each of G_1 and G_2 contains at least two supersponsors. Finally, in Section 6, we arrive at a contradiction by using the structure of a minimal counterexample to construct a packing.

2. The setup

A graph triple $\mathbf{G} = (G_1, G_2, G_3)$ of order *n* consists of a pair of *n*-vertex graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_1, E_2)$ together with a bipartite graph $G_3 = (V_1 \cup V_2, E_3)$. Let $V(\mathbf{G}) := V_1 \cup V_2$ be the vertex set of the graph triple, $E(\mathbf{G}) = E_1 \cup E_2 \cup E_3$ be the edge set of the graph triple, and $e(\mathbf{G}) =$ $|E(\mathbf{G})|$. We omit \mathbf{G} when it is clear. The triple \mathbf{G} packs if there is a bijection $f : V_1 \to V_2$ such that $vf(v) \notin E_3$ for any $v \in V_1$ and $uv \in E_1$ implies $f(u)f(v) \notin E_2$. An edge in $E_1 \cup E_2$ is a white edge, while an edge in E_3 is a yellow edge.

For $v \in V_i$ (i = 1, 2), the white neighborhood of v, denoted $N_i(v) \subseteq V_i$, is the set of neighbors of v in G_i and $d_i(v) = |N_i(v)|$. For convenience, when $w \in V_{3-i}$, we say that $N_i(w) = \emptyset$ (and hence $d_i(w) = 0$). The yellow neighborhood of $v \in V_i$, denoted $N_3(v) \subseteq V_{3-i}$ is the set of neighbors of v in G_3 and $d_3(v) = |N_3(v)|$. Vertices in the white (respectively, yellow) neighborhood of v are called white neighbors (respectively, yellow neighbors). For $v \in V_i$, the neighborhood of v, denoted N(v) is the disjoint union $N_i(v) + N_3(v)$ and the degree of v is $d_i(v) + d_3(v)$ and is denoted d(v). Also, we use N[v] to denote the closed neighborhood of v, i.e. $N[v] = N(v) \cup \{v\}$. For disjoint vertex sets X and Y in a graph triple, ||X, Y|| denotes the number of edges connecting X and Y. For brevity, if $X = \{x\}$ and $Y = \{y\}$, then we will write ||x, y|| instead of $||\{x\}, \{y\}||$.

When considering a specific graph triple **G**, we will let $e_i = |E_i|$ and define $\Delta_i = \max_{v \in V} d_i(v)$ for i = 1, 2, 3. In [2], the authors proved extensions of Theorem 1.1 and Theorem 1.3 to list packing. The following two theorems will be used throughout this paper.

Theorem 2.1 ([2]). Let $\mathbf{G} = (G_1, G_2, G_3)$ be a graph triple with $|V_1| = |V_2| = n$. If $\Delta_1 \Delta_2 + \Delta_3 \leq n/2$, then \mathbf{G} does not pack if and only if $\Delta_3 = 0$ and one of G_1 or G_2 is a perfect matching and the other is $K_{\frac{n}{2},\frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$. Consequently, if $\Delta_1 \Delta_2 + \Delta_3 < n/2$, then \mathbf{G} packs.

Theorem 2.2 ([2]). Let $\mathbf{G} = (G_1, G_2, G_3)$ be a graph triple with $|V_1| = |V_2| = n$. If $\Delta_1, \Delta_2 \leq n-2, \Delta_3 \leq n-1, |E_1| + |E_2| + |E_3| \leq 2n-3$ and the pair (G_1, G_2) is none of the 7 pairs in Theorem 1.3, then \mathbf{G} packs.

For a graph triple **G** = (G_1, G_2, G_3) , let $\Delta_{3|i} = \max_{v \in V_i} d_3(v)$, $D_i = \max\{\Delta_i, \Delta_{3|i}\}$, and

$$\mathcal{D} = \max \{ \Delta_1 + \max \{ \Delta_{3|2} - 4, 0 \}, \Delta_2 + \max \{ \Delta_{3|1} - 4, 0 \} \}.$$

Instead of Theorem 1.8, it is more convenient to prove the following.

Theorem 2.3. Let $C := 11(195^2) + 4$. Let $n \ge 2$ and $\mathbf{G} = (G_1, G_2, G_3)$ be a graph triple of order n. If

(1)
$$\Delta_1, \Delta_2 \le n-2, \ \Delta_3 \le n-1$$

and

(2)
$$F(\mathbf{G}) := e_1 + e_2 + e_3 + \mathcal{D} \le 3n - C,$$

then G packs.

Note that Theorem 2.3 implies Theorem 1.8 since $\Delta_3 \geq \Delta_{3|1}, \Delta_{3|2}$ and $F(\mathbf{G}) + 4 \leq e_1 + e_2 + e_3 + \max\{\Delta_1, \Delta_2\} + \Delta_3$. In proving this theorem, we will often consider two graph triples, \mathbf{G} and \mathbf{G}' and will compare $F(\mathbf{G})$ and $F(\mathbf{G}')$. Define $\partial(\mathbf{G}, \mathbf{G}') = F(\mathbf{G}) - F(\mathbf{G}')$. The rest of the paper will be a proof of Theorem 2.3.

3. Maximum and minimum degrees in a minimal counterexample

Fix $C := 11(195^2) + 4$ and let $\mathbf{G} = (G_1, G_2, G_3)$ be a graph triple of the smallest order n such that \mathbf{G} satisfies (1) and (2) but \mathbf{G} does not pack. By Theorem 2.2 and (2),

$$(3) \qquad \qquad \mathcal{D} \le n+2-C.$$

This yields $n \ge C - 2$. Moreover, since $n \ge C - 2$, Theorem 2.1 implies $\mathcal{D} \ge 2$, and thus, by (3), $n \ge C$.

Lemma 3.1. Every vertex of **G** has a white neighbor.

Proof. Suppose $v \in V$ has no white neighbor. Without loss of generality, let $v \in V_1$.

Case 1: The vertex v is isolated in **G**. If any $w \in V_2$ has degree at least 3 in **G** then taking $\mathbf{G}' = (G_1 - v, G_2 - w, G_3 - v - w)$ and n' = n - 1 gives $\partial(\mathbf{G}, \mathbf{G}') \geq 3$ and thus $F(\mathbf{G}') \leq 3n' - C$. Also by (3), for i = 1, 2,

$$\Delta'_{i} \le \Delta_{i} \le \mathcal{D} + 4 \le n + 6 - C \le (n - 1) - 2 = n' - 2.$$

So by the minimality of **G**, the new triple **G'** packs. Then this packing extends to a packing of **G** by sending v to w, contradicting the choice of **G**. So suppose the degree of each $w \in V_2$ is at most 2. By Theorem 2.1, there is a vertex $v' \in V_1$ with d(v') > n/6. By (1), there is a non-neighbor w of v' in V_2 . If w has a white neighbor, say $y \in V_2$, then let $\mathbf{G}'' = (G_1 - v - v', G_2 - w - y, G_3 - v - v' - w - y)$ with n'' = n - 2; otherwise, let $\mathbf{G}'' = (G_1 - v', G_2 - w, G_3 - v' - w)$ with n'' = n - 1. Then $\partial(\mathbf{G}, \mathbf{G}'') > d(v') =$ n/6 > 6 and so $F(\mathbf{G}'') \leq 3n'' - C$ which by (3) implies $\Delta_i'' \leq n + 6 - C \leq n'' - 2$ for i = 1, 2. Thus again by the minimality of **G**, the triple **G**'' packs. Then, we extend this packing of **G**'' to a packing of **G** by sending v' to w (and vto y if y exists), again contradicting the choice of **G**.

The last subcase of Case 1 is that $d_2(w) = 2$ for every non-neighbor w of v' in V_2 . In particular, $e_2 + e_3 \ge e_2 + d_3(v') \ge n$. So, if $X = V_1 - N[v'] - v$, then by (2)

$$\sum_{x \in X} d_1(x) \le 2e_1 - 2d_1(v') \le 2 \left[3n - C - \mathcal{D} - (e_2 + d_3(v')) - d_1(v') \right]$$

Since $d_1(v') + |X| = n - 2$, $e_3 \ge d_3(v')$, and $\mathcal{D} \ge \Delta_1 \ge d_1(v')$, we get

$$\sum_{x \in X} d_1(x) \le 2 \left(3n - C - 2d_1(v') - n \right) \le 2(2|X| + 4 - C) < 4|X| - 8.$$

So, there are nonadjacent $x_1, x_2 \in X \subset V_1$ with $d_1(x_1), d_1(x_2) \leq 3$.

Let w be a non-neighbor of v' in V_2 and let y_1 and y_2 be the white neighbors of w. Since $y_1w \in E_2$ and $d(y_1) \leq 2$, we may assume $y_1x_2 \notin E_3$. Choose $z_1, z_2, z_3 \in V_1$ so that $N_1(x_2) \subset \{z_1, z_2, z_3\}$. Let y'_1 be the white neighbor of y_1 distinct from w, if exists. Then we place v' on w, v on y_2 , x_2 on y_1 , and add yellow edges from y'_1 to $N_1(x_2)$ (Figure 4). Since this decreases $e_1 + e_2 + e_3$ by at least $n/6 + 2 \geq C/6 + 2 \geq 12$ and increases \mathcal{D} by at most 3, we are left with a graph triple \mathbf{G}' of order at least n - 3

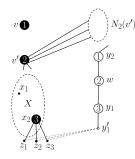


Figure 4: Packing used at the end of Case 1.

and $F(\mathbf{G}') \leq 3(n-3) - C$. Also by (3), both inequalities in (1) hold. So by the minimality of \mathbf{G} , there is a packing of \mathbf{G}' , and this packing extends of a packing of \mathbf{G} .

Case 2: The vertex $v \in V_1$ is incident to yellow edges. Let $A := N_3(v)$. By the case, $|A| \ge 1$. Since $V_2 - A \ne \emptyset$ by (3), there is some $w \in V_2 - A$. Since Case 1 does not hold, $d(w) \ge 1$. If $d(v) + d(w) \ge 3$, then we can construct a packing by sending v to w and creating a new graph triple \mathbf{G}' by removing these two vertices. In creating \mathbf{G}' , we have removed 3 edges, and observe that by (3), the inequalities in (1) hold for \mathbf{G}' . So \mathbf{G}' packs by the minimality of \mathbf{G} , and this packing extends to a packing of the original triple, a contradiction. Thus, d(v) = 1 (say $A = \{w'\}$) and d(w) = 1 for each $w \in V_2 - w'$.

Let $Y = V_2 - N[w']$. Since $d_2(w') \leq \Delta_2 \leq \mathcal{D} \leq n + 2 - C$, we have $|Y| \geq C - 3$. If d(w') = 1, then by switching the roles of v and w', we conclude that d(v') = 1 for each $v' \in V_1 - v$; so **G** packs by Theorem 2.1. Hence, $d(w') \geq 2$. There are two cases.

Case 2.1: $G_2[Y]$ has no edges. Since the white neighbors of w' cannot have other neighbors, every $y \in Y$ has no white neighbors. If also every vertex in V_1 has degree 1, then by (3),

$$e_1 + e_2 + e_3 = \frac{(2n-1) + d(w')}{2} \le n - \frac{1}{2} + \mathcal{D} + 4 \le n - \frac{1}{2} + (n+6-C) < 2n-3.$$

In this case, **G** packs by Theorem 2.2, a contradiction. So we conclude that there is a vertex $x \in V_1$ of degree at least 2.

Next, assume that two vertices $y_1, y_2 \in Y$ have distinct neighbors in V_1 . Then we may assume that x is not adjacent to one of these vertices, say y_1 , and let $\mathbf{G}' = (G_1 - x, G_2 - y_1, G_3 - x - y_1)$ and n' = n - 1. Since

 $\partial(\mathbf{G}, \mathbf{G}') \geq 3$ and (1) holds for \mathbf{G}' by (3), \mathbf{G}' packs by the minimality of \mathbf{G} , and this packing extends to a packing of \mathbf{G} by placing x on y_1 .

Hence, each vertex in Y is adjacent to the same vertex $x' \in V_1$. This implies $\mathcal{D} \geq d_2(w') + d_3(x') - 4 \geq n - 5$, a contradiction to (3).

Case 2.2: There is an edge $y_1y_2 \in E(G_2[Y])$. Then

(4) for every non-adjacent
$$x_1, x_2 \in V_1$$
, $d(x_1) + d(x_2) \le 4$,

since otherwise we could send x_1 to y_1 and x_2 to y_2 and consider $\mathbf{G}'' = (G_1 - x_1 - x_2, G_2 - y_1 - y_2, G_3 - x_1 - x_2 - y_1 - y_2)$. We have $\partial(\mathbf{G}, \mathbf{G}'') \ge 6$ and (1) holds for \mathbf{G}'' by (3), so \mathbf{G}'' packs by the minimality of \mathbf{G} , and this packing extends to a packing of \mathbf{G} .

Since none of $x \in V_1 - v$ is adjacent to v, by (4), $d(x) \leq 3$ for every $x \in V_1$, In particular, this yields $\Delta_1 \leq 3$, $\Delta_2 = \max\{1, d_2(w')\} \leq 1 + d_2(w')$, and $\Delta_3 \leq \max\{3, d_3(w')\} \leq 3 + d_3(w')$. Then,

$$\Delta_1 \Delta_2 + \Delta_3 \le 3(d_2(w') + 1) + (3 + d_3(w')) \le 3(d(w') + 2).$$

Since **G** does not pack, Theorem 2.1 implies that $\Delta_1 \Delta_2 + \Delta_3 \ge n/2$, so $d(w') \ge \frac{n}{6} - 2$.

By (3), $n + 2 - C \ge D \ge d_3(w') - 4$, so there are at least C - 6 nonneighbors of w' in V_1 . By (4), at most 4 vertices in V_1 have degree 3. Thus there exists a non-neighbor x_0 of w' such that $d(x_0) \le 2$ and the degrees of the white neighbors of x_0 , which could be neighbors of w', as well, also do not exceed 2. If $N_1(x_0) = \emptyset$, then send x_0 to w'. If $N_1(x_0) = \{z_1\}$, then send x_0 to w', z_1 to y_1 and v to y_2 . If $N_1(x_0) = \{z_1, z_2\}$ and $z_1 z_2 \notin E_1$, then send x_0 to w', z_1 to y_1 and z_2 to y_2 . Finally, if $N_1(x_0) = \{z_1, z_2\}$ and $z_1 z_2 \in E_1$, then by the choice of x_0, z_1, z_2 , these 3 vertices induce a component in **G**; so we can send x_0 to w', z_1 to y_1 and z_2 to any $y_0 \in Y - y_2$. In all cases, we have deleted at least $\frac{n}{6} - 2$ edges. Since by (3), (1) also will hold in all cases, we can pack the resulting graph triple, and then extend this to a packing of **G**, a contradiction.

Lemma 3.2. If a vertex in V_1 has degree 1, then no vertex in V_2 has degree 1.

Proof. Suppose $v \in V_1, w \in V_2$ and d(v) = d(w) = 1. Then by Lemma 3.1, the edges incident to v and w are white. Let $vv' \in E_1$ and $ww' \in E_2$. Let $A_1 = N_1(v') - v, A_2 = N_3(v') = N(v') \cap V_2, B_1 = N_3(w') = N(w') \cap V_1, B_2 = N_2(w') - w$. Let x_0 (respectively, y_0) be a vertex of maximum degree among the vertices in $V_1 - v - v'$ (respectively, in $V_2 - w - w'$).

We obtain graph triple $\mathbf{G}' = (G'_1, G'_2, G'_3)$ by first placing v' on w, v on y_0 , deleting the matched pairs, and then adding yellow edges from w'

Ervin Győri et al.

to the vertices in $A_1 \setminus B_1$. If \mathbf{G}' packs, then together with our placement of v' on w and v on y_0 we will have a packing of \mathbf{G} . If it does not pack, then by the minimality of \mathbf{G} , either (1) or (2) does not hold for \mathbf{G}' . Since $\Delta_1, \Delta_2 \leq \mathcal{D} \leq n - C + 2$ and the white degrees of vertices did not increase, if (1) is violated in \mathbf{G}' , then by (3), \mathbf{G}' has a vertex u with $d'_3(u) = n - 2$. Since $\Delta_3 = \max{\{\Delta_{3|1}, \Delta_{3|2}\}} \leq \mathcal{D} + 4$, (3) implies that u = w'. However, $n - 2 \leq d'_3(w') \leq d_1(v') + d_3(w') \leq \Delta_1 + \Delta_{3|2} \leq \mathcal{D} + 4$, a contradiction to (3). Thus (2) must be violated in \mathbf{G}' :

(5)
$$F(\mathbf{G}') = e(G'_1) + e(G'_2) + e(G'_3) + \mathcal{D}' \ge 3(n-2) - C + 1.$$

Symmetrically, we obtain graph triple $\mathbf{G}'' = (G_1'', G_2'', G_3'')$ by first placing v on w' and x_0 on w, deleting the matched pairs, and then adding yellow edges from v' to the vertices in $B_2 \setminus A_2$. Similarly to (5), we derive

(6)
$$F(\mathbf{G}'') = e(G_1'') + e(G_2'') + e(G_3'') + \mathcal{D}'' \ge 3(n-2) - C + 1.$$

The proof also will require the following claim.

Claim 3.3. If there exist constants a, b such that $d(x_0) \leq a, d(y_0) \leq b$, and $C-3 \geq \max\{2a(b+2), 2(a+2)b\}$, then **G** packs.

Proof of Claim. By symmetry, we will assume that $a \ge b$ so that $C-3 \ge 2a(b+2)$. We will construct a packing of **G** that maps v to y_0 , v' to w. Observe that since $|A_1| + |B_1| \le (\Delta_1 - 1) + \Delta_{3|2} \le \mathcal{D} + 3 \le n - C + 5$, we may choose a vertex $x \in V_1 - N_1[v'] - N_3[w']$ that we may map to w'. In order to preserve the packing property, we must ensure that white neighbors of x are not mapped to white neighbors of w'. Again, by (3), we see that there are at least C-3 vertices of $V_2 - N_2[w']$. Since y_0 has maximum degree among all vertices in $V_2 - w'$, the average degree of the vertices in this set is at most b. By Turán's Theorem, we may find an independent set of vertices in $V_2 - N_2[w']$ of size at least $(C-3)/(b+1) \ge 2a$.

Now, let $\{x_1, \ldots, x_{a'}\} = N_1(x)$ be the white neighborhood of x and notice that $a' = d_1(x) \leq d(x_0) \leq a$. Since x_0 was maximal, $d_3(x_i) \leq a - 1$, for each $i = 1, \ldots, a'$. Thus, we may successively map each x_i on a nonneighbor y_i chosen from the independent set in $V_2 - N_2[w']$. After each such mapping, we add yellow edges between the white neighbors of x_i and the white neighbors of y_i . This yields a new graph triple \mathbf{G}^* of order n - a' - 3. In this new triple, we see that $\Delta_1^* \leq a, \Delta_2^* \leq b$ and, due to the added yellow edges, $\Delta_3^* \leq a + b - 2$. However, this gives

$$2\Delta_1^*\Delta_2^* + 2\Delta_3^* \le 2ab + 2(a+b-2) \le 2ab + 4a \le C \le n-a'-3.$$

By Theorem 2.1, \mathbf{G}^* packs and this packing extends to a packing of \mathbf{G} .

Along with this Claim, we will use (5) and (6) to prove the lemma. Observe that to obtain \mathbf{G}' , we deleted $|A_1| + |A_2| + 1$ edges adjacent to v', one edge adjacent to w, $d(y_0)$ edges adjacent to y_0 (though we may have double counted the edge $v'y_0$), and added $|A_1 \setminus B_1|$ new yellow edges adjacent to w'. Thus, by (5) and similarly by (6),

(7)
$$5 \ge \partial(\mathbf{G}, \mathbf{G}') \ge |A_1 \cap B_1| + |A_2| + d(y_0) + 1 + \mathcal{D} - \mathcal{D}'.$$

(8)
$$5 \ge \partial(\mathbf{G}, \mathbf{G}'') \ge |A_2 \cap B_2| + |B_1| + d(x_0) + 1 + \mathcal{D} - \mathcal{D}''.$$

If $\mathcal{D} - \mathcal{D}' \geq -1$ and $\mathcal{D} - \mathcal{D}'' \geq -1$, then $d(x_0), d(y_0) \leq 5$ and we are done by Claim 3.3. So by symmetry, we may assume that $\mathcal{D} - \mathcal{D}'' \leq -2$. In particular, since the only vertex in \mathbf{G}'' that has increased its degree by more than 1 is v', we have $\mathcal{D}'' = \Delta_2'' + d_3''(v') - 4$. There are two cases.

Case 1: $\mathcal{D} - \mathcal{D}' \leq -2$. In creating **G**', the only vertex that has increased its degree by at least 2 is w', so $\mathcal{D}' = \Delta'_1 + d'_3(w') - 4$. Observing that $d'_3(w') = |A_1 \cup B_1|$ and plugging this in for \mathcal{D}' and \mathcal{D}'' , we can sum together (7) and (8) to get

$$10 \ge 2|A_1 \cap B_1| + 2|A_2 \cap B_2| + d(y_0) + d(x_0) + 2\mathcal{D} - \Delta_1' - \Delta_2'' - |A_1| - |B_2| + 10.$$

Since $\mathcal{D} \geq \Delta_1, \Delta_2$, we have $\mathcal{D} \geq |A_1| + 1$ and $\mathcal{D} \geq |B_2| + 1$. Furthermore, since x_0 was a maximum degree vertex in $V_1 - v'$, we have $d(x_0) \geq \Delta'_1$. Similarly, $d(y_0) \geq \Delta''_2$. Inserting these inequalities into (9), we get

$$10 \ge 2|A_1 \cap B_1| + 2|A_2 \cap B_2| + 12.$$

This is a contradiction, so the case is proved.

Case 2: $\mathcal{D} - \mathcal{D}' \geq -1$. We see from (7) that $5 \geq |A_1 \cap B_1| + |A_2| + d(y_0)$. Note also, that since w' is a vertex in \mathbf{G}' , $|B_2| \leq d'_2(w') + 1 \leq \mathcal{D}' - \Delta'_{3|1} + 5 \leq \mathcal{D} - \Delta'_{3|1} + 6$. Next, observe that $d''_3(v') \leq |A_2 \cup B_2|$, so we have

$$\mathcal{D}'' \le \Delta_2'' + |B_2| + |A_2 \setminus B_2| - 4 \le \Delta_2'' + \mathcal{D} + |A_2 \setminus B_2| - \Delta_{3|1}' + 2.$$

We now substitute these inequalities into (8),

$$5 \ge |A_2 \cap B_2| + |B_1| + d(x_0) + 1 + \mathcal{D} - \Delta_2'' - \mathcal{D} - |A_2 \setminus B_2| + \Delta_{3|1}' - 2$$

$$\ge 2|A_2 \cap B_2| + |B_1| + d(x_0) - \Delta_2'' - |A_2| + \Delta_{3|1}' - 1.$$

However, y_0 is a vertex in \mathbf{G}'' , so $\Delta_2'' \leq d(y_0) + 1$. In particular,

$$d(y_0) + |A_2| + 7 \ge 2|A_2 \cap B_2| + |B_1| + d(x_0) + \Delta'_{3|1}$$

Finally, recall that $\mathcal{D} - \mathcal{D}' \geq -1$ implies by (7) that $5 \geq |A_1 \cap B_1| + |A_2| + d(y_0)$. This gives that $d(y_0) \leq 5$, and when combined with the last inequality, that $d(x_0) \leq 12$. Since C > 1,000, by Claim 3.3, **G** packs, a contradiction.

From now on, by Lemma 3.2, we will assume that

(10)
$$d(w) \ge 2$$
 for every $w \in V_2$.

Lemma 3.4. $D_1, D_2 \ge 3$.

Proof. Suppose $D_2 \leq 2$, the case where $D_1 \leq 2$ follows similarly. The white components of G_2 are paths and cycles. By Theorem 2.1, $D_1 \geq n/6$. Also, by (2),

$$\sum_{v \in V_1} d(v) + 2\mathcal{D} \le 6n - 2C - \sum_{w \in V_2} d(w) < 5n - 2C.$$

Let $v' \in V_1$ have maximum degree in V_1 , so that $d(v') \ge n/6$. Since $\mathcal{D} \ge D_1 - 4$, this implies

(11)
$$\sum_{v \in V_1 - \{v'\}} d(v) \le 5n - 2C - d(v') - 2\mathcal{D}$$
$$\le 5n - 2C - n/6 - 2(n/6 - 4) < 9n/2 - 2C + 8.$$

Consider a vertex $w_0 \in V_2 - N_3(v')$. There are two cases.

Case 1: The white component containing w_0 is not a triangle. In this case, w_0 has at most two white neighbors, $w_1, w_2 \in V_2$. (Notice w_2 may not exist). Since $D_2 \leq 2$, there are at most 4 vertices of $V_1 - N_1[v']$ adjacent to $N_2(w_0)$. By (11), there are at most 60 vertices of degree at least n/12 - 6 in $V_1 - N[v']$. So, there are at least two vertices in $V_1 - N[v']$ that have degree less than n/12 - 6 and are not adjacent to $N(w_0)$, call them v_1, v_2 . We will map v' to w_0, v_1 to w_1 , and (if w_2 exists) v_2 to w_2 . Create a new triple $\mathbf{G}' = (G'_1, G'_2, G'_3)$ by deleting these matched pairs and adding new yellow edges from $(N_1(v_1) - v_2)$ to $(N_2(w_1) - w')$ and $(N_1(v_2) - v_1)$ to $(N_2(w_2) - w')$. Since \mathbf{G}' has order at least n - 3 and $\mathcal{D} \leq n - C + 2$, we see that (1) holds for \mathbf{G}' . Notice that w_i has at most one white neighbor other than w', so we have added at most $d_1(v_1) + d_1(v_2)$ new yellow edges. Thus,

G' has at most $e_1 + e_2 + e_3 - d(v') - d(v_1) - d(v_2) + d_1(v_1) + d_1(v_2)$ edges and $\mathcal{D}' \leq \mathcal{D} + d_1(v_1) + d_1(v_2)$. Finally, since $d(v_i) \geq d_1(v_i)$, we have

(12)
$$e'_1 + e'_2 + e'_3 + \mathcal{D}' \le e_1 + e_2 + e_3 + \mathcal{D} - (d(v') - d_1(v_1) - d_1(v_2)).$$

If $e'_1 + e'_2 + e'_3 + \mathcal{D}' \leq 3(n-3) - C$, then **G**' packs by the minimality of **G** and this packing extends to a packing of **G**. But we have chosen v_1 and v_2 so that $d(v_1), d(v_2) < n/12 - 6$. Since $d(v') \geq n/6$, we have $d(v') - d_1(v_1) - d_1(v_2) \geq 9$ and, by (12), **G**' packs and this extends to a packing of **G**, a contradiction.

Case 2: The white component containing w_0 is a triangle. Let $w_0w_1w_2$ be a triangle in G_2 and let $d = d_1(v')$. Note that $d \leq \mathcal{D} < n - C + 2$. As before, there are at most 4 vertices in $V_1 - N_1[v']$ adjacent to $\{w_1, w_2\}$. Let $X = V_1 - N_1[v'] - N_3(\{w_1, w_2\})$ and notice that $|X| \geq n - d - 5 \geq C - 7$. If there are nonadjacent vertices $x_1, x_2 \in X$, then we can match v' to w_0 , x_1 to w_1 , and x_2 to w_2 . Since $d(v') \geq n/6$, removing these vertices leaves a smaller graph triple which we can pack by the minimality of **G**. This packing extends to a packing of **G**, a contradiction.

On the other hand, if all vertices of X are adjacent to each other, then there are at least $\binom{|X|}{2} \ge 2|X|$ edges in $G_1[X]$. Since v' has d white neighbors, we see that $e_1 + \mathcal{D} \ge 2|X| + 2d \ge 2n - 10$. Finally, $e_2 + e_3 \ge \frac{1}{2} \sum_{w \in V_2} d(w) \ge n$. So, $e_1 + e_2 + e_3 + \mathcal{D} \ge 3n - 10$, a contradiction.

Lemma 3.5. $\mathcal{D} + \sum_{v \in V_1} d(v) \ge 2n - 12.$

Proof. The sum of degrees of vertices in a component M of G_1 containing a cycle is at least 2|V(M)|. Thus if $\sum_{v \in V_1} d(v) < 2n - 12$, then G_1 has at least six tree-components, each adjacent to at most one yellow edge. Let Hbe a smallest such component and vw be the yellow edge incident to V(H), if it exists. Then $s := |V(H)| \le n/6$. Let $w_1 \in V_2$ with the maximum white degree and begin by finding a permissible vertex v_1 to send to w_1 . If vwdoes not exist, then choose v_1 to be any vertex in V(H). If vw exists and $w_1 \ne w$, then choose $v_1 = v$. Finally, if vw exists and $w_1 = w$, then choose v_1 to be any vertex in V(H) - v. Consider H as a rooted tree with root v_1 , so that each $x \in V(H) - v_1$ has a unique parent in H. Order the vertices of $H: v_1, \ldots, v_s$ in the Breadth-First order. We now will consecutively place all vertices of H on vertices in V_2 . We start by placing v_1 on w_1 . Then for every $i = 2, \ldots, s$, if possible, we place v_i on a vertex $w_i \in V_2$ not adjacent to the image $w_{i'}$ of any $v_{i'}$ with i' < i, and if not possible, then just on any non-occupied non-neighbor of the image w_i of its parent v_i .

First, we show that we always can choose a vertex to place each v_i . Indeed, otherwise for some $2 \leq i \leq s$, we cannot place v_i and let's call its parent v_j . Then, each vertex of V_2 either is adjacent to w_j or is occupied by one of v_1, \ldots, v_{i-1} . If j = 1, then because H is a tree obtained via Breadth-First search, $i \leq d_1(v_1) + 1$. Thus in this case, $d_2(w_1) + d_1(v_1) \geq n - 1$ and since $v_1 \in H$, $d_2(w_1) \geq \frac{3}{4}n$. But then

$$\mathcal{D} + \sum_{v \in V_1} d(v) \ge d_2(w_1) + \left(d_1(v_1) + \sum_{v \in V_1 - v_1} d(v) \right) \ge 2n - 2,$$

contradicting our assumption. Otherwise, the host, say $w_j \neq w_1$, of the parent v_j of v_i has at least n - i + 1 neighbors in V_2 . Then by the choice of w_1 , also $\mathcal{D} \geq d_2(w_1) \geq n - i + 1$. Thus the total number of edges incident to w_1 and w_j is at least $d(w_1) + d(w_j) - 1 \geq 2n - 2i + 1$. By Lemma 3.1, $e_1 \geq n/2$. So, $\mathcal{D} + (d(w_1) + d(w_2) - 1) + e_1 \geq 3n - 3i + 2 + n/2 \geq 3n$, a contradiction to (2). Thus we can place all v_1, \ldots, v_s on the corresponding w_1, \ldots, w_s .

Next, we show that for every $i = 1, \ldots, s$,

(13) the number of edges incident to vertices in $W_i = \{w_1, \dots, w_i\}$ is at least 2i + 1.

By Lemma 3.4, (13) holds for i = 1. Suppose (13) holds for some $i \leq s-1$. If w_{i+1} is not adjacent to W_i , then (13) holds for i' = i + 1. Otherwise, by the rules, $W_i \cup N(W_i) \supseteq V_2$ and the total number of edges incident to at least one vertex in W_{i+1} is at least $n - (i+1) \ge n - s \ge 5n/6 \ge 2(i+1) + 1$. This proves (13).

By (13), for $\mathbf{G}' = \mathbf{G} - H - W_s$, $|E(\mathbf{G}')| \le |E(\mathbf{G})| - (s-1) - (2s+1) = |E(\mathbf{G})| - 3s$. Then, \mathbf{G}' does not pack, because \mathbf{G} does not pack, and a packing of \mathbf{G}' would extend to \mathbf{G} . By the minimality of \mathbf{G} , this yields (1) does not hold. Then there exists some vertex x such that $d_j(x) \ge n - s - 1$ for some j = 1, 2, 3. Hence $\mathcal{D} \ge n - s - 5$.

Now, we wish to say more about H. First, H cannot be a single vertex by Lemma 3.1. Suppose $H = K_2$. By Lemma 3.4, $d(w_1) \ge 3$. By (10), $d(w_2) \ge 2$. In this case, the triple $\mathbf{G}' = \mathbf{G} - H - w_1 - w_2$ has at most $e_1 + e_2 + e_3 - 6$ edges. So by (3) and the minimality of \mathbf{G} , triple \mathbf{G}' packs, and this packing extends to \mathbf{G} by placing v_1 on w_1 and v_2 on w_2 . Therefore, $s \ge 3$ and the average degree of H is at least $\frac{4}{3}$. In fact, since H was the smallest tree component, all of G_1 has average degree at least 4/3. Thus,

$$\mathcal{D} + \sum_{v \in V_1} d(v) \ge (n - s - 5) + \frac{4}{3}n = 2n + \frac{n}{3} - s - 5 \ge 2n + \frac{n}{3} - \frac{n}{6} - 1 > 2n,$$

contradicting our assumption.

The next lemma uses Lemma 3.5 and its proof is similar.

Lemma 3.6. Every white tree-component in G_1 has at least C/3 vertices.

Proof. Suppose T is a smallest white tree-component in G_1 and $s := |V(T)| \leq C/3$. By Lemma 3.4, G_2 has a vertex w of degree at least 3. If T contains a vertex $v \notin N(w)$, then let $v_1 = v$ and $w_1 = w$. Otherwise, let v_1 be any vertex of T and w_1 be any non-neighbor of v_1 in G_2 (such w_1 exists by (3)). Now we repeat some arguments from the proof of Lemma 3.5.

Consider T as a rooted tree with root v_1 , so that each $x \in V(T) - v_1$ has a unique parent in T. Order the vertices of $T: v_1, \ldots, v_s$ in the Breadth-First-Order. We will consecutively place all vertices of T on vertices in V_2 . We start by sending v_1 to w_1 . For every $i = 2, \ldots, s$, if possible, we send v_i to a vertex $w_i \in V_2$ not adjacent to the image $w_{i'}$ of any $v_{i'}$ with i' < i. If this is not possible, then just send v_i to any nonoccupied non-neighbor of the image w_i of its parent v_j .

If we cannot choose a vertex to place some v_i , then each vertex of V_2 either is a neighbor of both v_i and w_j , where v_j is the parent of v_i , or is occupied by one of v_1, \ldots, v_{i-1} . Thus $d_2(w_j) + d_3(v_i) + i - 1 \ge n$. Since $d_2(w_j) + d_3(v_i) + i - 1 \le \mathcal{D} + 4 + C/3 - 1$, this contradicts (3). Thus we can place all v_1, \ldots, v_s on some w_1, \ldots, w_s .

Let $W_i = \{w_1, \ldots, w_i\}$. If $d(w_1) \ge 3$, then (13) holds for i = 1. So we show that (13) holds for each $i \le s$ exactly as in the proof of Lemma 3.5. In this case, for $\mathbf{G}' = \mathbf{G} - T - W_s$, $|E(\mathbf{G}')| \le |E(\mathbf{G})| - (s - 1) - (2s + 1) = |E(\mathbf{G})| - 3s$. If $d(w_1) = 2$, then w (and each vertex of degree at least 3 in V_2) is adjacent to each vertex in T and, in addition, we have an analog of (13) with 2i in place of 2i + 1. So again, $|E(\mathbf{G}')| \le |E(\mathbf{G})| - 3s$. By the choice of \mathbf{G} , the triple \mathbf{G}' does not pack. By the minimality of \mathbf{G} , this yields that (1) does not hold. Then $\mathcal{D} \ge n - s - 5$, contradicting (3).

Claim 3.7. For $i \in \{1,2\}$ and $u \in V_i$ there are at least $\frac{2C-16}{3}$ vertices in $V_i - N_i[u]$ of degree at most 3.

Proof. We will use two cases.

Case 1: i = 1. By (10), $\sum_{w \in V_2} d(w) \ge 2n$. So since $\mathcal{D} \ge d_1(u)$, we have

$$\sum_{v \in V_1 - N_1[u]} d(v) + 4d_1(u) \le \sum_{v \in V_1 - N_1[u]} d(v) + \sum_{v \in N_1[u]} d(v) + 2d_1(u) \le 4n - 2C.$$

Therefore, $\sum_{v \in V_1 - N_1[u]} d(v) \le 4(|V_1| - |N_1[u]|) + 4 - 2C.$

Case 2: i = 2. Since $\mathcal{D} \ge d_2(u)$,

$$\sum_{v \in V_2 - N_2[u]} d(v) + 4d_2(u) \le \sum_{v \in V_2 - N_2[u]} d(v) + 3d(u) + d_2(u)$$
$$\le \sum_{v \in V_2 - N_2[u]} d(v) + \sum_{v \in N_2[u]} d(v) + d_2(u)$$
$$\le 4n + 12 - 2C,$$

where $\mathcal{D} + \sum_{v \in V_2} d(v) \le 4n + 12 - 2C$ by Lemma 3.5. Hence,

$$\sum_{v \in V_2 - N_2[u]} d(v) \le 4 \left(|V_2| - |N_2[u]| \right) + 16 - 2C.$$

Thus, in both cases,

l

$$\sum_{v \in V_i - N_i[u]} d(v) \le 4(|V_i| - |N_i[u]|) + 16 - 2C,$$

and the average degree of vertices in $V_i - N_i[u]$ is less than four. Since every vertex has positive degree, $V_i - N_i[u]$ contains at least $\frac{2C-16}{3}$ vertices of degree strictly less than 4.

For $i \in \{1, 2\}$ and every $v \in V_i$, define the *shared degree* of v, sd(v), as follows. If $d_i(v) < 15$, then $sd_i(v) := d_i(v) + \frac{2}{3} | \{x \in N_i(v) : d_i(x) \ge 15\}$ and $sd(v) := sd_i(v) + d_3(v)$. If $d_i(v) \ge 15$, then $sd_i(v) := d_i(v) - \frac{2}{3} | \{x \in N_i(v) : d_i(x) < 15\} |$ and $sd(v) := sd_i(v) + d_3(v)$. By definition, (a) $\sum_{v \in V_i} sd_i(v) = 2e_i$ and $\sum_{v \in V_i} sd(v) = 2e_i + e_3$, (b) $sd(v) \ge d(v)$ if $d_i(v) < 15$, (c) $sd(v) \ge d(v)/3 \ge 5$ if $d_i(v) \ge 15$, and (d) 3 sd(v) is an integer for every $v \in V_i$.

Claim 3.8. For $i \in \{1, 2\}$ and $u \in V_i$, there is a vertex $v \in V_{3-i} - N[u]$ of shared degree at most 4.

Proof. Let $S = V_{3-i} - N(u)$ and s = |S|. Suppose that $\operatorname{sd}(v) > 4$ for every $v \in S$. Then by the property (d) of shared degrees, $\sum_{w \in S} \operatorname{sd}(w) \ge \frac{13}{3}s$. By Lemma 3.1 and properties (b) and (c) of shared degrees, $\sum_{x \in V_{3-i}-S} \operatorname{sd}_{3-i}(x) \ge n-s$ and, since each vertex in $V_{3-i} - S$ is also a yellow neighbor of u, we have that $\sum_{x \in V_{3-i}-S} \operatorname{sd}(x) \ge 2(n-s)$. Combining these two sums, we see that $2e_{3-i} + e_3 = \sum_{x \in V_{3-i}} \operatorname{sd}(x) \ge \frac{13}{3}s + 2(n-s)$.

If i = 1, then by Lemma 3.6, $e_i = e_1 \ge n(1 - \frac{3}{C})$. If i = 2, then $\sum_{x \in V_i - u} d(x) \ge 2n - 2$. In both cases the yellow neighbors of u were not

included in the sum, so we have that

$$\sum_{x \in V_i} d(x) \ge 2n\left(1 - \frac{3}{C}\right) + (n - s).$$

By definition, $\mathcal{D} \ge (d_3(u) - 4) + \Delta_{3-i} \ge n - s - 3$. These inequalities and property (a) of shared degrees yield,

$$2(e_1 + e_2 + e_3 + \mathcal{D}) \ge 2n\left(1 - \frac{3}{C}\right) + (n - s) + 2(n - s) + \frac{13}{3}s + 2(n - s - 3) \\ = \left(7 - \frac{6}{C}\right)n - \frac{2}{3}s - 6 > 6n - 6.$$

By (2), this is at most 6n - 2C, a contradiction.

Lemma 3.9. Let
$$F := \sqrt{\frac{C}{11}} = 195$$
. Then $D_1, D_2 \ge F$.

Proof. Suppose that $D_1 \leq D_2$ and $D_1 < F = \sqrt{C/11}$; the proof for D_2 is similar. By Theorem 2.1, $D_2F + D_2 \geq D_2D_1 + \max\{D_1, D_2\} \geq n/2$, so $D_2 \geq n/(2F+2)$. Consider a vertex $w \in V_2$ of maximum degree. By the choice, $d(w) \geq D_2$. By (3), $d_2(w) < n - C + 2$. By Claim 3.8, V_1 contains a non-neighbor v of w with $sd(v) \leq 4$. In particular, by the definition of shared degree, $d(v) \leq 4$. Let $N_1(v) := \{v_1, \ldots, v_s\}$. We wish to find an independent set $\{w_1, \ldots, w_s\} \subset V_2 - N_2[w]$ such that each w_i has degree at most 3 and is not adjacent to v_i .

By Claim 3.7, at least $\frac{2C-16}{3}$ vertices in $V_2 - N_2[w]$ have degree at most 3. At most F - 1 of them are adjacent to v_1 . So, we can choose $w_1 \in V_2 - N_2[w] - N(v_1)$ with $d(w_1) \leq 3$. Continuing in this way for $j = 2, \ldots, s$, at least $\frac{2C-16}{3} - 4(j-1)$ vertices in $V_2 - N_2[w] - \bigcup_{i=1}^{j-1} N[w_i]$ have degree at most 3. Again, at most F - 1 of them are adjacent to v_j . Since $s \leq 4$ and $\frac{2C}{3} - 5 - 4(s-1) - F \geq \frac{2C-16}{3} - 17 - F > 0$, we can choose $w_j \in V_2 - N_2[w] - \bigcup_{i=1}^{j-1} N[w_i] - N(v_j)$ with $d(w_j) \leq 3$.

We now create a new graph triple $\mathbf{G}' = (G'_1, G'_2, G'_3)$ by removing $\{w, v, w_1, \ldots, w_s, v_1, \ldots, v_s\}$ and adding new yellow edges between $N_1(v_i)$ and $N_2(w_i)$ for each $1 \leq i \leq s$ and then deleting the matched pairs. Through this process, since the set $\{w_1, \ldots, w_s, w\}$ is independent, we have removed at least $d(v) + d(w) + \sum_{i=1}^s (d_1(v_i) - 1 + d_2(w_i)) - |E(G_1[N_1(v)])|$ edges, and

added at most $3\sum_{i=1}^{s} (d_1(v_i)-1)-2|E(G_1[N_1(v)])|$ edges. We have increased \mathcal{D} by at most $\max\{\max_i(d_1(v_i)-1), \max_j d_2(w_j)\} \leq F-1$. Thus, we have

$$\partial(\mathbf{G}, \mathbf{G}') \ge d(v) + d(w) + \sum_{i=1}^{s} d_2(w_i) - 2\sum_{i=1}^{s} (d_1(v_i) - 1) - F + |E(G_1[N_1(v)])| + 1,$$

and therefore

(14)
$$\partial(\mathbf{G}, \mathbf{G}') \ge d(w) - 2\sum_{i=1}^{s} (d_1(v_i) - 1) - F.$$

If $s \leq 2$, then $\sum_{i=1}^{s} (d_1(v_i) - 1) \leq 2F - 2$. If s = 3, then since $\mathrm{sd}(v) \leq 4$, at least two neighbors of v have degree less than 15, so in this case $\sum_{i=1}^{s} (d_1(v_i) - 1) \leq 2 \cdot 13 + F - 1 = 25 + F \leq 2F - 2$. If s = 4, then since $\mathrm{sd}(v) \leq 4$, all 4 neighbors of v have degree less than 15. So in this case $\sum_{i=1}^{s} (d_1(v_i) - 1) \leq 4 \cdot 13 \leq 2F - 2$. So since $d(w) \geq D_2 \geq \frac{n}{2(F+1)} \geq \frac{C}{2F+2}$, by (14) and the definitions of C and F,

$$\partial(\mathbf{G}, \mathbf{G}') \ge \frac{C}{2F+2} - 2(2F-2) - F = \frac{C}{2F+2} - 5F + 4 \ge 15 \ge 3(s+1).$$

It follows that (2) holds for **G**'. Also by above, $\mathcal{D}' - \mathcal{D} \leq F - 1$. Thus by (3),

$$\mathcal{D}' \le \mathcal{D} + F - 1 \le n + 2 - C + F - 1 = (n' + s + 1) + 1 - C + F < n' - 5,$$

and (1) holds for \mathbf{G}' . So \mathbf{G}' packs by the minimality of \mathbf{G} , and then \mathbf{G} also packs, a contradiction.

Lemma 3.10. Let $K := \frac{F}{13} = 15$. Let $i \in \{1, 2\}$ and $v \in V_i$ with $d(v) = t \le 4$ be not adjacent to some vertex $w \in V_{3-i}$ of degree at least F.

(a) Then v has a neighbor in V_i of degree at least $\frac{13K}{3t+1}$.

(b) Moreover, if $2 \le t \le 3$ and v has t - 1 neighbors of degree at most 2, then v has a neighbor in V_i of degree at least $\frac{13K}{5}$.

Proof. Suppose Statement (a) of the lemma fails for i = 1 (the proof for i = 2 is the same). This means that for a vertex $v \in V_1$ of degree t in **G**, all of its neighbors in V_1 have degree less than $\frac{13K}{3t+1}$ and some non-neighbor $w \in V_2$ of v has $d(w) \geq F$. Let $N_1(v) := \{v_1, \ldots, v_s\}$. By definition, $s \leq t \leq 4$. We wish to find an independent set $\{w_1, \ldots, w_s\} \subset V_2 - N_2[w]$ such that each w_i has degree at most 3 and is not adjacent to v_i .

By Claim 3.7, at least $\frac{2C-16}{3}$ vertices in $V_2 - N_2[w]$ have degree at most 3. Less than $\frac{13K}{3t+1} - 1$ of them are adjacent to v_1 . So, we can choose $w_1 \in$

 $V_{2} - N_{2}[w] - N(v_{1}) \text{ with } d(w_{1}) \leq 3. \text{ Continuing in this way for } j = 2, \dots, s,$ at least $\frac{2C-16}{3} - 4(j-1)$ vertices in $V_{2} - N_{2}[w] - \bigcup_{i=1}^{j-1} N[w_{i}]$ have degree at most 3. Again less than $\frac{13K}{3t+1} - 1$ of them are adjacent to v_{j} . Since $\frac{2C-16}{3} - 4s - \frac{13K}{3t+1} \geq \frac{2C-16}{3} - 16 - \frac{13K}{3t+1} > 0$, we can choose $w_{j} \in V_{2} - N_{2}[w] - \bigcup_{i=1}^{j-1} N[w_{i}] - N(v_{j})$ with $d(w_{j}) \leq 3.$

Finally, we can map v to w, vertices v_1, \ldots, v_s to w_1, \ldots, w_s , respectively, delete the matched pairs, and for each pair $\{v_i, w_i\}$, introduce yellow edges between the remaining vertices of $N_1(v_i)$ and $N_2(w_i)$. This creates a new graph triple $\mathbf{G}' = (G'_1, G'_2, G'_3)$. During this process, we have deleted at least d(w) + d(v) edges, added in strictly less than $3s(\frac{13K}{3t+1} - 1)$ new yellow edges, and increased \mathcal{D} by at most max $\{3, \max_i \{d_1(v_i) - 1\}\} \leq \frac{13K}{3t+1} - 1$. Therefore since F = 13K,

(15)
$$\partial(\mathbf{G}, \mathbf{G}') > d(v) + d(w) - (3s+1) \left(\frac{13K}{3t+1} - 1\right)$$
$$\geq s + d(w) - 13K + (3s+1)$$
$$\geq F - 13K + (4s+1) \geq 3s+2.$$

Now, we need $\partial(\mathbf{G}, \mathbf{G}') \geq 3s + 3$ but since we added *strictly* less than $3s(\frac{13K}{3t+1}-1)$ yellow edges, we have a strict inequality which, in combination with the fact that both $\partial(\mathbf{G}, \mathbf{G}')$ and 3s + 2 are integers, in fact gives $\partial(\mathbf{G}, \mathbf{G}') \geq 3s + 3$. Since $\partial(\mathbf{G}, \mathbf{G}')$ is sufficiently large and \mathbf{G} is a minimal counterexample, \mathbf{G}' packs unless (1) is violated. However, by (3), this violation would have to occur at some vertex in some $N_1(v_i)$ or $N_2(w_i)$ but the degrees of these vertices only increase by at most 3 or $(\frac{13K}{3t+1}-1) < 4K$, neither of which could get us to have a vertex of degree $(n-s-1)-2 \geq n-7$. Hence, \mathbf{G}' packs and this packing extends to a packing of \mathbf{G} , as we constructed above. This proves (a).

To prove (b), we repeat the argument of (a) with $\frac{13K}{5}$ in place of $\frac{13K}{3t+1}$ until we count the number of added yellow edges. We have added less than $3((s-1) + \frac{13K}{5})$ edges and increased \mathcal{D} by at most $\frac{13K}{5} - 1$. So, instead of (15), we will have

$$\partial(\mathbf{G}, \mathbf{G}') > d(v) + d(w) - 3(s-1) - 4\left(\frac{13K}{5} - 1\right)$$

$$\geq s + 13K - 3(s-1) - \frac{4 \cdot 13K}{5} + 4$$

$$= \frac{13K}{5} - 2s + 7 > 3s + 3.$$

Then again we simply repeat the last paragraph of the proof of (a).

4. At most one vertex in V_1 is a donor

Recall that by Lemma 3.2 we assumed (see (10)) that V_2 has no vertices of degree 1. A *donor* is a vertex in V_1 adjacent to at least two vertices of degree 1. The goal of this section is to prove that V_1 contains at most one donor.

Lemma 4.1. Suppose V_1 contains donors v and v'. If $w \in V_2$ with d(w) = 2, then $N(w) \subset V_2$ and $d(w') \ge 2K$ for each $w' \in N(w)$.

Proof. Suppose the lemma fails for some $w \in V_2$ with d(w) = 2. Let $x, y \in V_1$ be degree one neighbors of v and let $x', y' \in V_1$ be degree one neighbors of v'. By Lemma 3.10, $d(v), d(v') \ge 3K$.

Case 1: $N(w) = \{w_1, w_2\} \subset V_2$. By symmetry, assume $d(w_2) < 2K$. Begin by mapping x and y to w_1 and w_2 , respectively, and adding new yellow edges from $N_2(w_1) \cup N_2(w_2) - \{w\}$ to v. Since v is the only neighbor of xand y, this assignment is permitted and adding the yellow edges ensures that any permissible extension of the mapping will not violate the packing property. After mapping x and y, w is adjacent only to v and so v' may be mapped to w. This in turn causes x' and y' to be newly isolated vertices. After removing these 3 pairs of vertices and adding the yellow edges, let $z \in V_2 - \{w, w_1, w_2\}$ be the vertex of V_2 of highest degree and map x'to z.

We now have a new graph triple $\mathbf{G}' := (G'_1, G'_2, G'_3)$. Note that $\Delta'_1, \Delta'_2 \leq n' - 2$ since (3) holds for \mathbf{G} so that (1) is only violated if $d'_3(v) = n - 4$. However,

$$d'_3(v) \le (d_3(v) + d_2(w_1)) + d_2(w_2) \le (\mathcal{D} + 4) + 2K \le n - C + 6 + 2K < n - 4,$$

so (1) is satisfied for \mathbf{G}' as well. Now, we will consider $\partial(\mathbf{G}, \mathbf{G}')$. In particular, we have deleted at least $d(w_1) + d(w_2) - ||w_1, w_2||$ edges adjacent to w_1 and w_2 and exactly 2 edges adjacent to x and y. We then added at most $(d_2(w_1) - 1) + (d_2(w_2) - 1) - |N_2(w_1) \cap N_2(w_2) - \{w\}| - 2||w_1, w_2||$ yellow edges. Finally, we deleted at least $d(v') - 1 - ||v', \{w_1, w_2\}||$ edges adjacent to v and at least $d(z) - \max\{0, ||z, \{w_1, w_2\}|| - 1\}$ edges adjacent to z. To see this, note that if $||z, \{w_1, w_2\}|| \neq 0$, then we save one additional edge, since vz must now be a yellow edge in the modified graph (either $vz \in E_3$ and we didn't need to add it to begin with, or it was added and the degree of z grew by one before we deleted it). In any event, $|N_2(w_1) \cap N_2(w_2) - \{w\}| - \max\{0, ||z, \{w_1, w_2\}|| - 1\} \geq 0$. Thus,

$$d(w_1) + d(w_2) + ||w_1, w_2|| \ge d_2(w_1) + d_2(w_2) + ||v', \{w_1, w_2\}||.$$

Therefore, the total change in the number of edges is:

(16)
$$e(\mathbf{G}) - e(\mathbf{G}') \ge d(v') + d(z) + 1.$$

Next, consider the difference $\mathcal{D} - \mathcal{D}'$. If $\mathcal{D} - \mathcal{D}' \geq -1$, then $\partial(\mathbf{G}, \mathbf{G}') \geq d(v') + d(z) \geq 12$ and \mathbf{G}' packs by the inductive assumption. If $\mathcal{D} - \mathcal{D}' \leq -2$, then we must have that $\mathcal{D}' = d'_3(v) + \Delta'_2 - 4$. In particular, since $d(z) \geq \Delta'_2$, $\Delta_2 \geq d_2(w_1)$, and $d_3(v) - d'_3(v) \geq 2 - d_2(w_1) - d_2(w_2)$,

$$\mathcal{D} - \mathcal{D}' \ge 2 - d_2(w_1) - d_2(w_2) + d_2(w_1) - d(z) = 2 - d_2(w_2) - d(z).$$

Combining this with (16), we see that

$$\partial(\mathbf{G}, \mathbf{G}') \ge (d(v') + d(z) + 1) + (2 - d_2(w_2) - d(z)) = d(v') - d_2(w_2) + 3.$$

Since $d(v') \ge 3K$ and $d(w_2) \le 2K$, we have $\partial(\mathbf{G}, \mathbf{G}') \ge 12$. By the minimality of \mathbf{G} , we conclude that \mathbf{G}' packs. And we can extend any packing of \mathbf{G}' to a packing of \mathbf{G} .

Case 2: $N_2(w) = \{w'\}$. This case follows in a similar fashion to Case 1. Since $d_3(w) = 1$, we may assume that $v' \notin N(w)$. We begin by mapping x to w' and adding new yellow edges from v to $N_2(w') - w$. We then map v' to w and choose a remaining vertex $z \in V_2$ of maximum degree to have x' map to z. Then we delete the matched pairs. This process creates a new graph triple $\mathbf{G}'' := (G''_1, G''_2, G''_3)$. Again, the only way (1) is violated is if $d'_3(v) = n - 3$, but this is not the case, since

$$d'_3(v) \le d_3(v) + d_2(w') \le \mathcal{D} + 4 \le n + 6 - C < n - 3.$$

During this process, we removed d(w') edges adjacent to w', one edge adjacent to x, one yellow edge adjacent to w, at most d(v') - 1 - ||v', w'||edges adjacent to v', and d(z) - ||w', z|| edges adjacent to z. We have added in $d_2(w') - 1 - ||w', z||$ new yellow edges. Since $d(w') \ge d_2(w') + ||v', w||$, we see that:

$$e(\mathbf{G}) - e(\mathbf{G}'') \ge d(v') + d(z) + 2.$$

As in Case 1, if $\mathcal{D} - \mathcal{D}' \geq -1$, then $\partial(\mathbf{G}, \mathbf{G}') \geq d(v') + d(z) \geq 12$ and \mathbf{G}'' packs by the inductive assumption. If $\mathcal{D} - \mathcal{D}' \leq -2$, then we must have that $\mathcal{D}' = d'_3(v) + \Delta'_2 - 4$. Since $d(z) \geq \Delta'_2$, $\Delta_2 \geq d_2(w')$, and $d_3(v) - d'_3(v) \geq 1 - d_2(w')$, we must have that

$$\mathcal{D} - \mathcal{D}' \ge 1 - d_2(w') + d_2(w') - d(z) = 1 - d(z).$$

Thus,

$$\partial(\mathbf{G}, \mathbf{G}') \ge (d(v') + d(z) + 1) + (1 - d(z)) \ge d(v') + 2 \ge 9.$$

By the minimality of \mathbf{G} , triple \mathbf{G}' has a packing, which we can extend to a packing of \mathbf{G} .

Corollary 4.2. Suppose V_1 contains donors v and v'. Then $2e_2 + e_3 = \sum_{v \in V_2} d(v) \ge 3n$.

Proof. Consider the following discharging. For each vertex $v \in V_2$, assign v charge d(v). The total charge allocated is $\sum_{v \in V_2} d(v) = 2e_2 + e_3$. Now, each vertex of degree at least 6 will give charge $\frac{1}{2}$ to each neighbor and save $d(v)/2 \geq 3$ for itself. By Lemma 4.1, each vertex of degree 2 is adjacent to two vertices in V_2 with degree at least $2K \geq 30$. Thus, after discharging each vertex has charge at least 3. So the total charge is at least 3n and $2e_2 + e_3 \geq 3n$, as needed.

Remark 4.3. Suppose V_1 contains donors v and v'. If $w \in V_2$ with d(w) = 3 and $v'w \notin E(\mathbf{G})$, then w has a neighbor in V_2 of degree at least K + 1.

Proof. If w has no yellow neighbors, this follows from Lemma 3.10. Otherwise, suppose the remark fails for some $w \in V_2$ with d(w) = 3. Then each of the neighbor(s) w_1 and w_2 (if it exists) of w in V_2 has degree at most K. Map w to v' and map two degree one neighbors of v to w_1 and w_2 . Next, form a new graph triple \mathbf{G}' by adding new yellow edges from v to $W := N_2(w_1) \cup N_2(w_2) - \{w, w_1, w_2\}$ and deleting the previously matched pairs. We have deleted at least $d(v') + 2 + d_2(w_1) + d_2(w_2) - ||w_1, w_2||$ edges and added |W| new yellow edges. We have increased \mathcal{D} by at most |W|. Since $d(w_1) + d(w_2) - ||w_1, w_2|| - 1 \ge |W|$ (in fact, it is at least |W| + 1 if w_2 exists), $\partial(\mathbf{G}, \mathbf{G}') \ge d(v') + 3 - |W|$. Now $|W| \le 2K - 2$ and $d(v') \ge 3K$, so that $\partial(\mathbf{G}, \mathbf{G}') \ge 12$. In particular, by the minimality of \mathbf{G} , \mathbf{G}' has a packing, and it extends to a packing of \mathbf{G} , a contradiction. □

Lemma 4.4. Suppose V_1 contains donors v and v'. Then $\mathcal{D} \leq \frac{9n}{4K}$.

Proof. Suppose $\mathcal{D} > \frac{9n}{4K}$. By Lemma 3.6, $e_1 \ge n(1-3/C)$.

Consider the following discharging on $V_2 \cup E_3$. The initial charge, ch(v), of every $v \in V_2$ is d(v) and of every edge in E_3 is 1. The total sum of charges, ch(w), over $w \in V_2 \cup E_3$ is $2(e_2 + e_3)$. We use two rules.

(R1) Each vertex $w \in V_2$ of degree at least 5 gives to every neighbor in V_2 charge $\frac{d(w)-4}{d(w)}$.

(R2) Each edge in E_3 gives charge 1 to its end in V_2 .

Let $ch^*(w)$ denote the new charge of $w \in V_2 \cup E_3$. By (R2), $ch^*(w) = 0$ for every $w \in E_3$. By (R1), if $w \in V_2$ and $d(w) \ge 4$, then $ch^*(w) \ge 4$. If d(w) = 3 then by (R1), (R2) and Lemma 3.10, $ch^*(w) \ge 3 + (1 - \frac{4}{K})$. If d(w) = 2 then by Lemmas 3.10 and 4.1,

$$ch^*(w) \ge 2 + 2(1 - \frac{2}{K}) = 4 - \frac{4}{K}.$$

Since the total sum of charges did not change, we conclude that

$$2(e_2 + e_3) = \sum_{w \in V_2} ch^*(w) \ge 4n \left(1 - \frac{1}{K}\right).$$

It follows that

$$e_1 + e_2 + e_3 + \mathcal{D} \ge n\left(1 - \frac{3}{C}\right) + n\left(2 - \frac{2}{K}\right) + n\left(\frac{9}{4K}\right)$$
$$\ge 3n + n\left(-\frac{3}{C} + \frac{1}{4K}\right).$$

Since $4K \leq \frac{C}{3}$, this contradicts (2).

For $v \in V_1$, let L(v) be the set of neighbors of v of degree 1.

Lemma 4.5. Suppose V_1 contains donors v and v'. Then $|L(x)| \le d(x)/2$ for every $x \in V_1$.

Proof. Suppose $x \in V_1$, $\ell = |L(x)| > d(x)/2$ and $L(x) = \{x_1, \ldots, x_\ell\}$. By Lemma 3.10, $d(x) \ge K$. Thus, x is a donor, so we may assume x = v.

Case 1: There is a vertex $w \in V_2 - N_3(v)$ with $d_2(w) \leq 2$. Let w_1 be a white neighbor of w and, if it exists, let w_2 be the other white neighbor of w. We wish to find a vertex in $V_2 - \{w, w_1, w_2\}$ with low degree that is adjacent to none of w_1, w_2 , or v'. By Lemma 4.4 and since K = 15, we have $\mathcal{D} \leq \frac{9n}{4K} = \frac{3n}{20}$. By definition, $d_2(w_1) + (d_3(v') - 4) \leq \mathcal{D}$. Therefore,

$$|V_2 - N[\{w_1, w_2, v'\}]| \ge (n-3) - \mathcal{D} - (\mathcal{D}+4) \ge \frac{14n}{20} - 7 \ge \frac{n}{2}.$$

Since $\sum_{w \in V_2} d(v) < 4n$ by Lemma 3.5 and (2), the average degree of the vertices in $V_2 - N[\{w_1, w_2, v'\}]$ is less than 8. So, there exists a vertex $w' \in V_2 - N[\{w_1, w_2, v'\}]$ with $d(w') \leq 7$.

Construct a packing in the following way. Since $\ell \geq \frac{13}{8}K > 7$, we may send $x_1, \ldots, x_{d_2(w')}$ to the white neighbors of w'. Send two degree 1 neighbors

of v' to w_1 and w_2 . Finally, send v to w and v' to w'. Let \mathbf{G}' be obtained by deleting the matched pairs. Then $n - n' \leq 11$. By Lemma 3.10, we have deleted at least $d(v) + d(v') - ||v, v'|| \geq \frac{13}{2}K - 1 \geq 36$ edges and (1) still holds, so \mathbf{G}' packs. This packing extends to a packing of \mathbf{G} , a contradiction.

Case 2: Every vertex $w \in V_2 - N_3(v)$ has $d_2(w) \ge 3$. If there is a vertex $w \in V_2$ with d(w) = 2, then $N(w) \subset V_2$ by Lemma 4.1 and we have Case 1. So, $d(w) \ge 3$ for all $w \in V_2$. If every vertex in $X := V_1 - N_1[v] - N_1[v']$ has degree at least 3, then

(17)
$$\sum_{x \in V_1} d(x) + 2\mathcal{D} = \sum_{x \in N_1(v) \cup N_1(v')} d(x) + \sum_{y \in X} d(y) + d(v) + d(v') + 2\mathcal{D}$$
$$\geq d_1(v) + d_1(v') + 3(n - 2 - d_1(v) - d_1(v')) + d(v) + d(v') + 2\mathcal{D}$$
$$\geq 3n - 6.$$

Since every vertex in V_2 has degree at least 3, we get

$$\sum_{x \in V} d(x) + 2\mathcal{D} \ge (3n - 6) + 3n \ge 6n - 6,$$

a contradiction to (2). So there is a vertex $v_0 \in V_1 - N_1[v] - N_1[v']$ with $d(v_0) \leq 2$.

By Lemma 3.5 and (2), $\sum_{v \in V_2} d(v) + \mathcal{D} \leq 4n - 2C + 12$ and so there are at least $2C + \mathcal{D} - 12$ vertices of degree 3 in V_2 . Moreover, since $d_3(v) \leq \mathcal{D} + 4$, there is a vertex $w \in V_2 - N_3(v)$ with d(w) = 3. By Case 1, all neighbors of w are white so let $\{w_1, w_2, w_3\} = N_2(w)$ with

(18)
$$d_2(w_1) \ge d_2(w_2) \ge d_2(w_3) \ge 3.$$

Similarly to Case 1, we wish to find a vertex in V_2 with low degree that is adjacent to none of w_1, w_2, w_3, v' . As in Case 1, we use $d_2(w_1) + (d_3(v') - 4) \leq \mathcal{D}$. This yields that

$$|V_2 - N[\{w_1, w_2, w_3, v'\}]| \ge (n-4) - 2\mathcal{D} - (\mathcal{D}+4) \ge \frac{11n}{20} - 8 \ge \frac{n}{2}.$$

Since $\sum_{w \in V_2} d(v) < 4n$ by Lemma 3.5 and (2), the average degree of $V_2 - N[\{w_1, w_2, w_3, v'\}]$ is less than 8 and there exists a vertex w' in this set with degree at most 7.

Let j be the largest index such that $v_0w_j \notin E_3$ and $j \leq 3$. Since $d(v_0) \leq 2$ and v_0 has a neighbor in V_1 , $||v_0, \{w_1, w_2, w_3\}|| \leq 1$. So, $j \geq 2$.

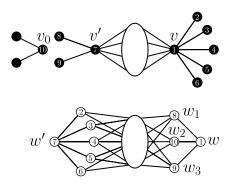


Figure 5: Sketch of the packing used in Lemma 4.5.

Since $\ell \geq \frac{13}{8}K > 7$, we may send $x_1, \ldots, x_{d_2(w')}$ to the white neighbors of w'. Send two degree 1 neighbors of v' to the vertices in $\{w_1, w_2, w_3\} - w_j$ and v_0 to w_3 . Send v to w and v' to w'. Finally, add yellow edges between the white neighbors of v_0 and the white neighbors of w_j . Delete the matched pairs. The resulting triple **G'** has order $n - 5 - d_2(w')$. We added at most $d_1(v_0)(d_2(w_j) - 1) \leq 2(d_2(w_j) - 1)$ yellow edges, and

(19)
$$\mathcal{D}' \leq \mathcal{D} + \max\{2, d_2(w_j) - 1\} \leq 2\mathcal{D} - 1.$$

By Lemma 4.4 and (19), (1) holds. The number of deleted edges is at least

$$d_{2}(w') + d_{2}(w_{1}) + d_{2}(w_{2}) + d_{2}(w_{3}) - |E(G_{2}[\{w_{1}, w_{2}, w_{3}\})| + d(v) + d(v') - ||v, v'|| + d(v_{0})$$

$$(20) \geq d_{2}(w') + d_{2}(w_{1}) + d_{2}(w_{2}) + d_{2}(w_{3}) - 4 + d(v) + d(v') + d(v_{0})$$

Case 2.1: j = 3. Then by (19), the number of added yellow edges plus $\mathcal{D}' - \mathcal{D}$ is at most $3(d_2(w_3) - 1) + \max\{3 - d_2(w_3), 0\}$. Since $d_2(w_3) \ge 1$, by (18), this is at most $d_2(w_1) + d_2(w_2) + d_2(w_3) - 1$. So by (20) and because $d(w') \le 7$,

(21)
$$\partial(\mathbf{G}, \mathbf{G}') \ge d_2(w') + d(v) + d(v') - 2 \ge d_2(w') + \frac{13}{2}K - 2 \ge 3(d_2(w') + 5).$$

Therefore, \mathbf{G}' packs by the minimality of \mathbf{G} , and this packing extends to a packing of \mathbf{G} , a contradiction.

Case 2.2: j = 2. By the choice of j, this means $v_0w_3 \in E_3$. Since $d(v_0) \leq 2$ and v_0 has a white neighbor, $d(v_0) = 2$ and $d_1(v_0) = 1$. It follows

that we have added at most $d_2(w_2) - 1$ yellow edges, and so by (20), similarly to (21), we get

$$\partial(\mathbf{G}, \mathbf{G}') \ge d_2(w') + d_2(w_3) + d(v) + d(v') - 2$$

$$\ge d_2(w') + \frac{13}{2}K - 2 \ge 3(d_2(w') + 5),$$

which similarly yields a contradiction.

Lemma 4.6. V_1 contains at most one donor.

Proof. Suppose v and v' are donors in V_1 . Consider the following discharging.

At start, we let $ch(v) = d(v) + \mathcal{D} + 4$, $ch(v') = d(v') + \mathcal{D} + 4$, and ch(u) = d(u) for each $u \in V(\mathbf{G}) - v - v'$. By definition, the total sum of charges is $\sum_{v \in V(\mathbf{G})} d(v) + 2\mathcal{D} + 8 = 2F(\mathbf{G}) + 8$. We redistribute charges according to the following rules.

(R1) Each vertex u not adjacent to 1-vertices with $d(u) \ge 4$ gives to each neighbor charge $\frac{d(u)-4}{d(u)}$ (and keeps 4 for itself).

(R2) Each vertex x adjacent to 1-vertices (it must be in V_1 and have degree at least 3K) gives to each $z \in L(x)$ charge $\frac{4}{3}$ and to each $z' \in$
$$\begin{split} N(x) - L(x) & \text{charge } \frac{|N(x) - L(x)| - \frac{1}{3}|L(x)| - 3}{|N(x) - L(x)|}. \\ \text{(R3) Each of } v, v', \text{ in addition, gives 1 to each yellow neighbor.} \end{split}$$

We will show that the resulting charge, ch^* , satisfies (22)

$$ch^*(x) \ge \frac{7}{3}$$
 for each $x \in V_1$ and $ch^*(y) \ge \frac{11}{3}$ for each $y \in V_2$.

This would mean that $\sum_{v \in V(\mathbf{G})} d(v) + 2\mathcal{D} + 8 \ge \frac{7}{3}n + \frac{11}{3}n = 6n$, a contradiction to (2).

If d(u) = 1, then $u \in V_1$ and by (R2), $ch^*(u) = d(u) + \frac{4}{3} = \frac{7}{3}$, as claimed. If d(u) = 2 and $u \in V_1$, then by Lemma 3.10, u has a neighbor x with $d(x) \geq \lfloor \frac{13K}{7} \rfloor = 28$. If x has no neighbors of degree 1, then by (R1) it gives to u charge $\frac{d(x)-4}{d(x)} \ge 1 - \frac{4}{28} > \frac{1}{3}$. Otherwise, by (R2), it gives to u charge $\frac{|N(x)-L(x)|-\frac{1}{3}|L(x)|-3}{|N(x)-L(x)|}$. By Lemmas 4.5 and 3.10, this is at least $1-\frac{1}{3}-\frac{3}{|N(x)-L(x)|} \ge \frac{2}{3}-\frac{3}{28/2} \ge \frac{1}{3}$. If d(u) = 2 and $u \in V_2$, then by Lemma 4.1, both neighbors of u are in V_2 , and each of them has degree at least 2K. So by (R1), $ch^*(u) \ge 2 + 2\frac{2K-4}{2K} = 4 - \frac{4}{K} = 4 - \frac{4}{15} > \frac{11}{3}$. If $d(u) \ge 3$, $u \in V_1$ and u has no neighbors of degree 1, then either u

keeps all its original charge (when $d(u) \leq 4$) or keeps for itself charge 4 by (R1). In both cases, $ch^*(u) \geq 3$. If $d(u) \geq 3$, $u \in V_1 - v - v'$ and u has

a neighbor of degree 1, then by Lemma 3.10, $d(u) \geq 3K$. By Lemma 4.5, $|N(u) - L(u)| - \frac{1}{3}|L(u)| \geq \frac{1}{3}d(u) \geq K = 15$. So, after giving away charges by (R2), u keeps for itself charge at least 3. If $u \in \{v, v'\}$, then it originally had extra $\mathcal{D} + 4$ of charge and it gives out by (R3) at most $\mathcal{D} + 4$.

If $u \in V_2$ and $d(u) \ge 4$, then by (R1), it keeps 4 for itself. Suppose finally that $u \in V_2$ and d(u) = 3. If it is adjacent to v or v', then by (R3), $ch^*(u) \ge 3+1 = 4$. Otherwise, by Remark 4.3, u has a neighbor $y \in V_2$ with degree at least K+1 and by (R1) receives from y charge $1 - \frac{4}{K+1} > \frac{2}{3}$. \Box

5. Weak vertices and sponsors

A weak vertex is either a 1-vertex or a 2-vertex with a neighbor of degree 2. The sponsor, s(u), of a weak vertex u is the unique neighbor of u of degree at least 3. By Lemma 3.10, $d(s(u)) \geq \frac{13}{5}K$ for each weak u. A supersponsor is a vertex with at least two neighbors that are weak. Notice that, for example, every donor is also a supersponsor. By definition, each supersponsor is the sponsor for each of its weak neighbors.

Lemma 5.1. Either V_1 or V_2 contains more than one supersponsor.

Proof. Suppose not. Choose $v_0 \in V_1$ and $w_0 \in V_2$ so that no $x \in V(\mathbf{G}) - v_0 - w_0$ is a supersponsor. For $x \in V(\mathbf{G})$, let W(x) denote the set of weak neighbors of x. By our assumption, $|W(x)| \leq 1$ for each $x \in V(\mathbf{G}) - v_0 - w_0$. Consider the following discharging.

To start we let $ch(v_0) = d(v_0) + 2\mathcal{D} + 7$, $ch(w_0) = d(w_0) + 3$, ch(u) = d(u)for each $u \in V(\mathbf{G}) - v_0 - w_0$.

(23) The total charge is
$$2(e_1 + e_2 + e_3 + \mathcal{D} + 5)$$
.

We redistribute charges according to the following rules.

(R1) Each vertex u of degree at least 4 not adjacent to weak vertices gives to each neighbor charge $\frac{d(u)-3}{d(u)}$ (and keeps 3 for itself).

(R2) Each vertex $u \in V(\mathbf{G}) - v_0 - w_0$ with d(u) = 3 gives to each neighbor of degree 2 charge 1/4.

(R3) Each sponsor $u \in V(\mathbf{G}) - v_0 - w_0$ (then its degree is at least $\frac{13}{5}K$ by Lemma 3.10(b)) gives to each $x \in W(u)$ charge 2 and to each other neighbor charge $\frac{d(u)-5}{d(u)}$, and leaves charge at least $5 - 2 \cdot |W(u)| \ge 3$ for itself.

(R4) Vertex v_0 gives 2 to each neighbor and leaves $(2\mathcal{D} + d(v_0) + 7) - 2d(v_0) \ge 3$ for itself.

(R5) Vertex w_0 gives 1 to each neighbor and leaves 3 for itself.

We will show that the resulting charge, $ch^*(x)$, is at least 3 for each $x \in V(\mathbf{G})$. Together with (23), this will contradict (2).

Indeed, if x is weak and has degree 1, then it must be in V_1 and so it will get 2 by (R3) or by (R4). If it is weak and degree 2, then it gets at least 1 by (R3), (R4), or (R5). If d(x) = 2, and x is not weak, then x gets at least $1 - \frac{5 \cdot 7}{13K} = 1 - \frac{7}{39}$ from its neighbor of degree at least $\frac{13K}{7}$ and at least $\frac{1}{4}$ from another neighbor; in total, more than 1. If d(x) = 3, then x gets at least $\frac{K-5}{K} = \frac{2}{3}$ from its neighbor of degree at least K, and gives away at most $\frac{2}{4}$ by (R2). Similarly, if $d(x) \ge 4$, then by (R1),(R3),(R4) or (R5), it reserves charge 3 for itself.

Lemma 5.2. If V_i contains at least two supersponsors, then for each weak $w \in V_{3-i}$, the unique sponsor of w is also contained in V_{3-i} .

Proof. Suppose a weak $w \in V_{3-i}$ is adjacent to a vertex $x_1 \in V_i$ of degree at least $\frac{13}{5}K$. By Lemma 3.1, d(w) = 2 and w has a neighbor $w' \in V_{3-i}$ with d(w') = 2. Let w'' be the other neighbor of w' (possibly, $w'' \in V_i$). By the conditions of the lemma, there is a supersponsor $x_2 \in V_i - x_1$. By Claim 3.7, there is a vertex $x_3 \in V_i - N[x_2] - w''$ of degree at most 3. Send x_2 to w, x_3 to w', and, if $w'' \in V_{3-i}$, join w'' with the white neighbors of x_3 (there are at most 3 of them) by yellow edges. This way we eliminate all $d(x_2) + d(w) + 1$ edges incident with x_2 or w or w', add at most 3 yellow edges and increase \mathcal{D} by at most 3. Moreover, the remaining graph triple \mathbf{G}' satisfies (1) since for i = 1, 2, 3,

$$\Delta_i \le \Delta_i + 3 \le (\mathcal{D} + 4) + 3 \le n + 9 - C < (n - 2) - 2.$$

Since $d(x_2)+d(w)+1 \ge \frac{13}{5}K+3 \ge 18$, we see that $\partial(\mathbf{G}, \mathbf{G}') \ge 18-3-3 = 12$. Hence, we are able to pack the remaining graph triple since **G** was a minimal counterexample.

Lemma 5.3. Each of V_1 and V_2 contains at least two supersponsors.

Proof. Suppose V_i contains at most one supersponsor and this supersponsor is w_0 , if such donor exists, call it v_0 . Then by Lemma 5.1, V_{3-i} contains two supersponsors x_1 and x_2 . By Lemma 5.2, the sponsor of each weak vertex in V_i is also in V_i . By Lemma 4.6, **G** has at most one donor. Let v_0 denote such a vertex, if it exists. By (10), $v_0 \in V_1$, and by definition it is a supersponsor.

Case 1: i = 2. We use the following discharging. Let ch(u) = d(u) for each $u \in V - v_0 - w_0$. If w_0 and/or v_0 exist, then let $ch(v_0) = d(v_0) + \Delta_1 + \Delta_{3|1} + 4$, and $ch(w_0) = d(w_0) + \Delta_2 + \Delta_{3|2} + 4$. By the definition of \mathcal{D} ,

$$\Delta_1 + \Delta_{3|1} + \Delta_2 + \Delta_{3|2} \le 2\mathcal{D} + 8,$$

so the total charge is at most $2(e_1 + e_2 + e_3 + \mathcal{D} + 8)$.

Then we redistribute the charges using the following set of rules.

(R1) Each vertex u of degree at least 5 not adjacent to weak vertices gives to each neighbor charge $\frac{d(u)-19/6}{d(u)} \geq \frac{1}{3}$ (and keeps $\frac{19}{6}$ for itself).

(R2) Each vertex $u \in V(\mathbf{G})$ with d(u) = 3 or d(u) = 4 gives to each neighbor of degree 2 charge $\frac{1}{3}$.

(R3) Each sponsor $u \in V(\mathbf{G})$ (then by Lemma 3.10(b) its degree is at least $\frac{13K}{5} = 39$) but not a supersponsor gives charge $\frac{13}{6}$ to its weak neighbor, and charges $\frac{d(u)-4.5}{d(u)}$ to each other neighbor.

(R4) Each supersponsor $u \notin \{v_0, w_0\}$ gives $\frac{13}{6}$ to each adjacent 1-vertex (by Lemma 4.6 and the definition of v_0 , there is at most 1 such neighbor) and $\frac{d(u)-4.5}{d(u)}$ to each other neighbor.

(R5) Each of w_0 and v_0 gives $\frac{11}{6}$ to each neighbor.

We will show that the resulting charge, $ch^*(y)$, is at least $\frac{17}{6}$ for each $y \in V_1$ and at least $\frac{19}{6}$ for each $y \in V_2$. This would mean the total charge is at least 6n, a contradiction to (2).

Indeed, if y is a 1-vertex, then it is in V_1 and will get $\frac{11}{6}$ by (R3), (R4), or (R5). If y is a weak 2-vertex and not adjacent to a supersponsor, then it will get $\frac{13}{6}$ from its sponsor by (R3). If y is a weak 2-vertex adjacent to a supersponsor and $y \in V_1$, then by (R4) or (R5), it will get at least $1 - \frac{4.5}{39} > \frac{5}{6}$ from its sponsor, and its resulting charge will be at least $\frac{17}{6}$. If y is a weak 2-vertex in V_2 adjacent to a supersponsor, then by Lemma 5.2, this supersponsor is w_0 , and y gets $\frac{11}{6}$ from w_0 .

If d(y) = 2, and y is not weak, then by Lemma 3.10(a), y has a neighbor of degree at least $\lceil \frac{13K}{7} \rceil = 28$. So y gets from it at least $1 - \frac{4.5}{28}$ (by (R1), (R3), (R4) or (R5)) and at least $\frac{1}{3}$ from another neighbor (by one of (R1)– (R5)). Then $ch^*(y) \ge 3 - \frac{4.5}{28} + \frac{1}{3} > \frac{19}{6}$. If d(y) = 3 and y has two neighbors of degree 2, then by Lemma 3.10(b), y has a neighbor x of degree at least $\frac{13K}{5} = 39$, so it gets from x at least $\frac{39-4.5}{39} \ge \frac{5}{6}$, and gives away at most $\frac{2}{3}$ by (R2). If d(y) = 3 and y has at most one neighbor of degree 2, then it gets from its neighbor of degree at least $\lceil \frac{13K}{10} \rceil = 20$ charge at least $\frac{15.5}{20}$ and gives away at most $\frac{1}{3}$. If d(y) = 4, then y gets at least $\frac{K-5}{K} = \frac{2}{3}$ from it neighbor of degree at least K and gives away at most $3 \cdot \frac{1}{3} = 1$ by (R2). If $d(y) \ge 5$ and y has no weak neighbors, then it leaves $\frac{19}{6}$ for itself by (R1).

If y has a weak neighbor and $y \notin \{v_0, w_0\}$, then $d(y) \ge 39$ and by (R3) or (R4), it reserves for itself charge

Ervin Győri et al.

$$\begin{aligned} d(y) - \frac{13}{6} - (d(y) - 1)\frac{d(y) - 4.5}{d(y)} &= -\frac{13}{6} + \frac{5.5d(y) - 4.5}{d(y)} \\ &= \frac{10}{3} - \frac{4.5}{d(y)} \ge \frac{10}{3} - \frac{4.5}{39} > \frac{19}{6}. \end{aligned}$$

The vertex w_0 gives away charge $\frac{11}{6}d_2(w_0) + \frac{11}{6}d_3(w_0) \leq d(w_0) + \Delta_2 + \Delta_{3|2}$ and saves more than 4 for itself. Similarly, v_0 saves more than 4 for itself. This proves the case.

Case 2: i = 1. In this case either v_0 does not exist, or $v_0 = w_0$. The discharging is very similar to that in Case 1, but a bit simpler. Let ch(u) = d(u) for each $u \in V - w_0$. If w_0 exists, then let $ch(w_0) = d(w_0) + 2\mathcal{D} + 4$. So, the total charge is at most $2(e_1 + e_2 + e_3 + \mathcal{D} + 4)$. The first 3 rules of discharging are again (R1)–(R3), but instead of (R4) and (R5), we have

(Q4) Each supersponsor $u \neq w_0$ gives $\frac{d(u)-4.5}{d(u)}$ to each neighbor.

(Q5) Vertex w_0 gives $\frac{13}{6}$ to each neighbor.

Symmetrically to Case 1, we will show that the resulting charge, $ch^*(y)$, is at least $\frac{19}{6}$ for each $y \in V_1$ and at least $\frac{17}{6}$ for each $y \in V_2$, again yielding a contradiction to (2).

If y is a 1-vertex, then it is in V_1 and its neighbor also is in V_1 . Since all supersponsors apart from w_0 are in V_2 , Rule (Q4) does not apply to y, so y will get $\frac{13}{6}$ by (R3) or (Q5). If y is a weak 2-vertex and not adjacent to a supersponsor, then it will get $\frac{13}{6}$ from its sponsor by (R3). If y is a weak 2-vertex adjacent to a supersponsor and $y \in V_2$, then by (Q4) or (Q5), it will get at least $1 - \frac{4.5}{13K/5} = 1 - \frac{3}{26}$ from its sponsor, so that its resulting charge will be more than $\frac{17}{6}$. If y is a weak 2-vertex in V_1 adjacent to a supersponsor, then by Lemma 5.2, this supersponsor is w_0 , and y gets $\frac{13}{6}$ from w_0 .

Counting of charges for other vertices apart from w_0 simply repeats that in Case 1 (using (Q4) and (Q5) in place of (R4) and (R5)). Since the starting charge of w_0 was at least $3d(w_0)$, by (Q5), its new charge is at least $\frac{5}{6}d(w_0) + 4 > 4$.

6. Proof of Theorem 2.3

By Lemma 5.3, V_1 contains supersponsors x_1 and x_2 and V_2 contains supersponsors y_1 and y_2 . Let v_1 (resp. w_1) be a weak neighbor of x_1 (of y_1), let v'_1 (w'_1) be the other neighbor of it which is of degree 2 if it exists, and let v''_1 (w''_1) be the other neighbor of v'_1 (of w'_1). Let v_2 (w_2) be a weak neighbor of x_2 (of y_2) that is not adjacent to v_1 (to w_1); this is possible since x_2 (y_2) is

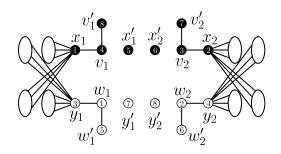


Figure 6: Sketch of Packing.

adjacent to multiple weak vertices. Let $v'_2(w'_2)$ be the other neighbor of it which is again of degree 2 if it exists, and let $v''_2(w''_2)$ be the other neighbor of v'_2 (of w'_2).

We are now ready to construct our packing. For j = 1, 2, begin by placing x_j on w_j , and v_j on y_{3-j} . Notice that by Lemma 5.2, $v_j \in V_1$ and $w_j \in V_2$ so this assignment is well defined. Since the weak vertices have only one sponsor, v_j is not adjacent to x_{3-j} , y_1 , nor y_2 , and w_j is not adjacent to y_{3-j} , x_1 , nor x_2 . Together with the fact that v_1 (w_1) was chosen to be not adjacent to v_2 (w_2), we see that these mappings do not violate the packing property.

As we extend this packing, we only need to ensure that v'_j is not mapped to a vertex in $N_2(y_{3-j})$ and no vertex in $N_1(x_j)$ is mapped to w'_j . This can only be an issue if $v'_j \in V_1$ ($w'_j \in V_2$) and in this case, we will find an appropriate assignment for v'_j . If $v'_j \in V_2$ ($w'_j \in V_1$), we will simply ignore this part of the construction.

By Claim 3.7, there is a vertex $x'_1 \in V_1 - N(x_1) - \bigcup_{i=1,2} \{v_i, v'_i, v''_i, w_i, w'_i, w''_i\}$ $w''_i\} (y'_1 \in V_2 - N(y_1) - \bigcup_{i=1,2} \{v_i, v'_i, v''_i, w_i, w'_i, w''_i\})$ with degree at most 3. Similarly, there are vertices $x'_2 \in V_1 - N(x_2) - x'_1 - \bigcup_{i=1,2} \{v_i, v'_i, v''_i, w_i, w''_i\}$ and $y'_2 \in V_2 - N(y_2) - y'_1 - \bigcup_{i=1,2} \{v_i, v'_i, v''_i, w_i, w''_i\}$ of degree at most 3.

For the following mappings, refer to Figure 6. If $w'_j \in V_2$, then send x'_j to w'_j and, if $w''_j \in V_2$, add the yellow edges connecting w''_j with the at most 3 white neighbors of x'_j . Similarly, if $v'_j \in V_1$, then send v'_j to y'_{3-j} (if $v'_j \in V_1$) and, if $v''_j \in V_1$, add the yellow edges connecting v''_j with the at most three white neighbors of y'_{3-j} .

Let \mathbf{G}' be the triple obtained by deleting the assigned vertices. By construction, if \mathbf{G}' packs, then together with our placement, we get a packing of \mathbf{G} . We decreased n by at most 8 and decreased the number of edges by at least $d(x_1) + d(x_2) + d(y_1) + d(y_2) - 16 \ge 12K - 16$. We have increased \mathcal{D} by at most 6 (with the new yellow edges). So, $\partial(\mathbf{G}, \mathbf{G}') \ge 12K - 22 \ge$ 24 = 3(n - n'). Since $d_i(v) \leq \mathcal{D} + 4 \leq n - C + 6$ for every $v \in V$ (and $C \geq 8$), (1) holds for \mathbf{G}' . Thus \mathbf{G}' (and hence \mathbf{G}) packs, a contradiction to the choice of \mathbf{G} .

Case 1: The vertices $w_0 \in V_2$ and $v_0 \in V_1$ are distinct. In this case, $w_0 \in V_2$ is the only supersponsor in V_2 .

Case 2: The vertex v_0 does not exist or $w_0 = v_0$. In this case, the initial charge will be slightly different. For each $u \in V - w_0$, ch(u) = d(u) and $ch(w_0) = d(w_0) + 2\mathcal{D} + 16$. As in Case 1, the total charge is at most $2(e_1 + e_2 + e_3 + \mathcal{D} + 8)$. Further, the charge assigned to w_0 in this case is at least the charge assigned to it in Case 1.

Case 3: The vertex v_0 exists but w_0 does not. This case is symmetric to Case 2. For each $u \in V - v_0$, ch(u) = d(u) and $ch(v_0) = d(v_0) + 2\mathcal{D} + 16$. As in the previous cases, the total charge is at most $2(e_1 + e_2 + e_3 + \mathcal{D} + 8)$. Further, the charge assigned to v_0 is at least the charge assigned to it in Case 1.

For *all* cases, we redistribute the charges using the following same set of rules.

(R1) Each vertex u of degree at least 5 not adjacent to weak vertices gives to each neighbor charge $\frac{d(u) - \frac{19}{6}}{d(u)} \ge \frac{1}{3}$ (and keeps $\frac{19}{6}$ for itself).

(R2) Each vertex $u \in V(\mathbf{G})$ with d(u) = 3 or d(u) = 4 gives to each neighbor of degree 2 charge $\frac{1}{3}$.

(R3) Each non-weak vertex $u \in V(\mathbf{G})$ adjacent to a weak vertex (then its degree is at least K by Lemma 3.10) but not a supersponsor gives charge $\frac{11}{6}$ to its neighbor of degree 1 (if such neighbor exists) or $\frac{7}{6}$ to its weak neighbor of degree 2, and charges $\frac{d(u)-5}{d(u)}$ to each other neighbor.

(R4) Each supersponsor $u \notin \{v_0, w_0\}$ gives $\frac{11}{6}$ to each adjacent 1-vertex (by Lemma 4.6 and the definition of v_0 , there is at most 1 such neighbor) and $\frac{d(u)-5}{d(u)}$ to each other neighbor.

(R5) The vertex w_0 gives $\frac{11}{6}$ to each neighbor.

(R6) The vertex v_0 , if it is distinct from w_0 , gives charge $\frac{11}{6}$ to each neighbor.

Remark 6.1. If in the statement of Lemma 3.10, $v \in V_i$, $2 \leq d(v) = t \leq 4$ and at least one neighbor of v has degree less than 5, then either v has a neighbor in V_i of degree at least $\frac{13K}{3t-1}$, or v is adjacent to all vertices in V_{3-i} of degree at least F.

Proof. Let $N_1(v) := \{v_1, \ldots, v_s\}$. If s < t, then the proof of Lemma 3.10 works. So suppose s = t and $d(v_s) \le 4$. We almost word by word repeat the

proof of Lemma 3.10 with $\frac{13K}{3t-1}$ in place of $\frac{13K}{3t+1}$, only the number of added yellow edges is now at most $3((s-1)(\frac{13K}{3t-1}-1)+4)$, so that instead of (15), we get

$$\partial(\mathbf{G}, \mathbf{G}') \ge d(v) + d(w) - (3s - 2)(\frac{13K}{3t - 1} - 1) - 12$$
$$\ge (s + 1) + d(w) - 13(1 - \frac{1}{3t - 1})K + (3s - 2) - 12$$

Since $d(w) \ge F = 13K$ and $2 \le s = t \le 4$, this is at least

$$F - 13K + \frac{13K}{11} + (4s - 1) - 12 > 3s + 3.$$

Thus, as in the proof of Lemma 3.10, \mathbf{G}' packs and so \mathbf{G} packs.

Acknowledgements

We thank the referees for their helpful comments.

References

- B. Bollobás and S. E. Eldridge (1978). Packings of graphs and applications to computational complexity. *Journal of Combinatorial Theory*, *Series B* 25, 105–124. MR0511983
- [2] E. Győri, A. V. Kostochka, A. McConvey, and D. Yager (2014). A list version of graph packing. Submitted.
- [3] N. Sauer and J. Spencer (1978). Edge disjoint placement of graphs. Journal of Combinatorial Theory, Series B 25, 295–302. MR0516262
- [4] A. Zak (2014). On packing two graphs with bounded sum of size and maximum degree. SIAM J Discrete Math 28, 1686–1698. MR3267154

ERVIN GYŐRI Alfréd Rényi Institute of Mathematics Budapest Hungary and Department of Mathematics Central European University Budapest Hungary *E-mail address:* ervin@renyi.hu ALEXANDR KOSTOCHKA DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS URBANA, IL 61801 USA AND SOBOLEV INSTITUTE OF MATHEMATICS NOVOSIBIRSK RUSSIA *E-mail address:* kostochk@math.uiuc.edu

ANDREW MCCONVEY DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS URBANA, IL 61801 USA *E-mail address:* mcconve2@illinois.edu

DERREK YAGER DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS URBANA, IL 61801 USA *E-mail address:* yager2@illinois.edu

Received 12 January 2015