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Considering uniform hypergraphs, we prove that for every non-
negative integer h there exist two non-negative integers k and t
with k ≤ t such that two h-uniform hypergraphs H and H′ on
the same set V of vertices, with |V | ≥ t, are equal up to comple-
mentation whenever H and H′ are k-hypomorphic up to comple-
mentation. Let s(h) be the least integer k such that the conclusion
above holds and let v(h) be the least t corresponding to k = s(h).
We prove that s(h) = h + 2�log2 h�. In the special case h = 2� or
h = 2�+1, we prove that v(h) ≤ s(h)+h. The values s(2) = 4 and
v(2) = 6 were obtained in [9].
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1. Main results

We extend to hypergraphs a reconstruction result about graphs obtained
in [9].

We start recalling the result. Let V be a set of cardinality v (possibly
infinite). Two graphs G and G′ with vertex set V are isomorphic up to com-
plementation if G′ is isomorphic to G or to the complement G of G. Let k be
a non-negative integer, G and G′ are k-hypomorphic up to complementation
if for every k-element subset K of V , the induced subgraphs G�K and G′

�K
are isomorphic up to complementation. A graph G is k-reconstructible up
to complementation if every graph G′ which is k-hypomorphic to G up to
complementation is in fact isomorphic to G up to complementation.

It is shown in [9] that two graphs G and G′ on the same set of n vertices
are equal up to complementation whenever they are k-hypomorphic up to
complementation and 4 ≤ k ≤ n − 4 (see [10] for the case k = n − 3: it
is shown that under the same hypothesis G and G′ are isomorphic up to
complementation). It is also shown that 4 is the least integer k such that

arXiv: 1501.05181v1

285

http://www.intlpress.com/JOC/
http://arxiv.org/abs/1501.05181v1


286 Maurice Pouzet and Hamza Si Kaddour

every graph G having a large number n of vertices is k-reconstructible up
to complementation.

We show here that this result extends to uniform hypergraphs. Our result
is the following (see the definitions in the next section).

Theorem 1. Let h be a non-negative integer. There are two non-negative
integers k and t, k ≤ t such that two h-uniform hypergraphs H and H′ on the
same set V of vertices, |V | ≥ t, are equal up to complementation whenever
H and H′ are k-hypomorphic up to complementation.

Let s(h) be the least integer k such that there is some t such that the the
conclusion above holds and let v(h) be the least t corresponding to k = s(h).

Theorem 2. 1. s(h) = h+ 2�log2 h�;
2. v(h) ≤ s(h) + h if h = 2� or h = 2� + 1.

Problem 1. Does v(h) = s(h) + h for every h?

The proof of the result of [9] was based on a result of Wilson on the
rank of incidence matrices over the two-element field [25]. Here, we use
essentially Ramsey’s theorem, Lucas’s theorem and the notion of almost
constant hypergraph. We use Ramsey’s theorem and compactness theorem
of first order logic in order to obtain the existence of k and t (see Theorem
8 and Claim 2). We use Lucas’s theorem to prove (1) of Theorem 2 (we
use it for the inequality s(h) ≥ h + 2�log2 h� (see Theorem 10) and also for
the reverse inequality (see Theorem 9), where we use also a decomposition
result about hypergraphs (see Proposition 3)). With Wilson’s theorem, we
get both (1) and (2) when h is of the form 2� or 2� + 1 (see Corollary 3 and
Theorem 7).

In Section 5 of the paper we introduce a generalization of the notion
of isomorphy up to complementation. We consider colorations of complete
graphs and hypergraphs and isomorphy up to permutations of the colors.
We raise some questions.

We refer to [5] for notions of graph theory. We use also basic notions of
set theory, we denote by ℘(V ) the power set of V and by [V ]h the collection
of h-element subsets of V .

2. Hypergraphs, incidence matrices and almost constant
hypergraphs

2.1. Isomorphy up to complementation

Recall that a hypergraph is a pair H := (V, E) where E is a collection of
subsets of V ; members of V are the vertices of H, whereas members of E
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are the hyperedges. We denote by V (H), resp. E(H), the sets of vertices,
resp. hyperedges, of a hypergraph H; we denote by v(H), resp. e(H), the
cardinality of V (H), resp. E(H). If E ∈ E(H) we set H(E) = 1; otherwise
we set H(E) = 0. If K is a subset of V , the hypergraph induced by H on V is
H�K = (K, E ∩ ℘(K)). Let h be an integer; the hypergraph H is h-uniform
(or h-regular) if all its edges have size h (for instance every graph is a 2-
uniform hypergraph); we make the convention that a hypergraph with no
hyperedge is h-uniform for every h. With this convention, if H is h-uniform,
the complement of H, H := (V, [V ]h \ E) is h-uniform.

Let H := (V, E), H′ := (V ′, E ′), be two hypergraphs. An isomorphism
from H onto H′ is any bijective map f from V onto V ′ such that the natural
extension f to ℘(V ) induces a bijective map from E onto E ′. If such a map
exists,H andH′ are isomorphic. They are isomorphic up to complementation
if either H is isomorphic to H′ or H is isomorphic to H′. If H and H′ have
the same set V of vertices, we say that they are equal up to complementation
if H = H′ or H = H′; if moreover, the induced hypergraphs H�K and H′�K
are isomorphic up to complementation for all the k-element subsets of V ,
we say that H and H′ are k-hypomorphic up to complementation.

The relationship between k-hypomorphy for different values of k is given
by Proposition 1 below. The case of graphs is treated by Proposition 2.4 [9]
by means of Gottlieb-Kantor theorem [14, 16]. The general case follows the
same lines.

2.2. Incidence matrices

Let V be a finite set, with v elements. Given non-negative integers t, k, let
Wt k be the

(
v
t

)
by

(
v
k

)
matrix of 0’s and 1’s, the rows of which are indexed

by the t-element subsets T of V , the columns are indexed by the k-element
subsets K of V , and where the entry Wt k(T,K) is 1 if T ⊆ K and is 0
otherwise.

A fundamental result, due to D.H. Gottlieb [14], and independently W.
Kantor [16], is this:

Theorem 3. For t ≤ min(k, v − k), Wt k has full row rank over the field Q
of rational numbers.

If k := v−t then, up to a relabelling, Wt k is the adjacency matrix At,v of
the Kneser graph KG(t, v), graph whose vertices are the t-element subsets
of V , two subsets forming an edge if they are disjoint.

An equivalent form of Theorem 3 is:

Theorem 4. At,v is non-singular for t ≤ v
2 .
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Applications to graphs and relational structures were given in [12] and
[22]. Let us explain why the use of this result in our context is natural.

Let X1, . . . , Xr be an enumeration of the h-element subsets of V ; let
K1, . . . ,Ks be an enumeration of the k-element subsets of V and Wh k be
the matrix of the h-element subsets versus the k-element subsets. If H is a h-
uniform hypergraph with vertex set V , let wH be the row matrix (g1, . . . , gr)
where gi = 1 if Xi is a hyperedge of H, 0 otherwise. We have wHWh k =
(e(H�K1

), . . . , e(H�Ks
)). Thus, if H and H′ are two hypergraphs with vertex

set V such that H�K and H′
�K have the same number of hyperedges for every

k-element subset of V , we have (wH − wH′)Wh k = 0. Thus, provided that
v ≥ k + h, by Theorem 3, wH − wH′ = 0 that is H = H′.

Proposition 1. Let v, k be non-negative integers, let t ≤ min(k, v − k) and
H and H′ be two h-uniform hypergraphs on the same set V of v vertices.
If H and H′ are k-hypomorphic up to complementation then they are t-
hypomorphic up to complementation.

Proof. Let G be a hypergraph on t vertices. Set Is(G,H) := {L ⊆ V :
H�L � G}, Isc(H,G) := Is(G, H) ∪ Is(G,H) and wG,H the 0− 1-row vector
indexed by the t-element subsets X1, . . . , Xr of V whose coefficient of Xi is
1 if Xi ∈ Isc(G,H) and 0 otherwise. From our hypothesis, it follows that
wG,HWt k = wG,H′Wt k. From Theorem 3, this implies wG,H = wG,H′ that is
Isc(G,H) = Isc(G, H ′). Since this equality holds for all hypergraphs G on
t-vertices, the conclusion of the proposition follows.

In particular, two h-uniform hypergraphs H and H′ on the same set V of
vertices, |V | ≥ 2k− 1, are k′-hypomorphic up to complementation for every
k′ ≤ k provided that there are k-hypomorphic up to complementation.

As noted by a referee of this paper, Proposition 1 can be obtained di-
rectly by a counting argument similar to Kelly’s lemma (cf Lemma 2.20 p.
67 [5]). A generalization of Kelly’s lemma for such a type of result was in
[23] which appeared after [22].

A fundamental result, due to R. M. Wilson [25], is the following.

Theorem 5. (R. M. Wilson [25]) For t ≤ min(k, v − k), the rank of Wt k

modulo a prime p is ∑(
v

i

)
−
(

v

i− 1

)
where the sum is extended over those indices i, 0 ≤ i ≤ t, such that p does
not divide the binomial coefficient

(
k−i
t−i

)
.

In the statement of the theorem,
(

v
−1

)
should be interpreted as zero.
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We will apply Wilson’s theorem to h-uniform hypergraphs, for p = 2,
t = h, k = 2rh where r is a positive integer. In this case we will obtain that
the rank of Wh k (mod 2) is

(
v
h

)
− 1.

Let n, p be positive integers, the decomposition of n =
∑n(p)

i=0 nip
i in

the basis p is also denoted [n0, n1, . . . , nn(p)]p where nn(p) 	= 0 if and only if
n 	= 0.

Theorem 6. (Lucas’s Theorem [19]) Let p be a prime number, t, k be pos-
itive integers, t ≤ k, t = [t0, t1, . . . , tt(p)]p and k = [k0, k1, . . . , kk(p)]p. Then

(
k

t

)
=

t(p)∏
i=0

(
ki
ti

)
(mod p), where

(
ki
ti

)
= 0 if ti > ki.

For an elementary proof of Theorem 6, see Fine [11]. We will use the
following well-known consequences of Theorem 6.

Corollary 1. 1. Let p be a prime and t, k be positive integers, t ≤ k, let
t = [t0, t1, . . . , tt(p)]p and k = [k0, k1, . . . , kk(p)]p.

(a) Then p|
(
k
t

)
if and only if there is i ∈ {0, 1, . . . , t(p)} such that

ti > ki.

(b)
(
k
t

)
is odd if, and only if, for all integers i ∈ {0, 1, . . . , t(2)},

ti = 1 ⇒ ki = 1.

2. Let v ≥ 2. Then v is a power of 2 if, and only if,
(
v
k

)
is even for all

k ∈ {1, . . . , v − 1}.
Corollary 2. Let h and k be positive integers. Then the rank of Wh k modulo
2 is

(
v
h

)
−1 if and only if h is a power of 2 and k = 2rh where r is a positive

integer.

Proof. First we prove the converse implication. We have h = 2� for some
integer � and r =

∑t
j=0 εj2

j for some t with εt = 1, then k =
∑t

j=0 εj2
�+j+1.

Let s be the first integer j such that εj 	= 0. We have 2�+s+1 = 2l+
∑s

p=0 2
l+p.

For i ≤ h,
(
k−i
h−i

)
=

((2l−i)+
∑s

p=0 2
l+p+

∑t
j=s+1 εj2

�+j+1

2l−i

)
. Applying Lucas’s theo-

rem,
(
k
h

)
is even and

(
k−i
h−i

)
is odd if i 	= 0. Now by Wilson’s theorem, the

rank of Wh k modulo 2 is
(
v
h

)
− 1.

Let us prove the direct implication. Note that the rank of Wh k modulo
2 is

(
v
h

)
− 1 if and only if

(
k−i
h−i

)
is odd for all i ∈ {1, . . . , h} and

(
k
h

)
is even,

in particular k > h. We have h
(
k
h

)
= k

(
k−1
h−1

)
. Since

(
k
h

)
is even and

(
k−1
h−1

)
is

odd then k is even. Now (h− 1)
(
k−1
h−1

)
= (k− 1)

(
k−2
h−2

)
. Since

(
k−1
h−1

)
and

(
k−2
h−2

)
are odd then h and k have the same parity. So h and k are even.
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We have h = [h0, h1, . . . , hh(2)]2 and k = [k0, k1, . . . , kk(2)]2 with h0 =
k0 = 0.

First we prove that for all i < hh(2), hi = ki. By contradiction, let j be the
first integer i ≥ 1 such that hi 	= ki. If hj = 0 and kj = 1, then (h− 2j)j = 1

and (k − 2j)j = 0, this contradicts the fact that
(
k−2j

h−2j

)
is odd. So hj = 1

and kj = 0. Since
(
k−2h(2)

h−2h(2)

)
is odd then kh(2) = 0. Let n be the first integer

m > h(2) such that km 	= 0. We have 2n−2h(2) = 2h(2)+2h(2)+1+ . . .+2n−1.
Then (k − 2h(2))h(2) = 1 and (h − 2h(2))h(2) = 0. That contradicts the fact

that
(
k−2h(2)

h−2h(2)

)
is odd. So we have proved that for all i < hh(2), hi = ki. Then,

since
(
k
h

)
is even, we have kh(2) = 0. Thus, for all i < hh(2), hi = ki = 0 since(

k−2i

h−2i

)
is odd. That gives h = 2� for some integer � and k =

∑t
i=�+1 ki2

i for
some integer t. Then k = 2rh where r is a positive integer.

Proposition 2. Let h be a power of 2, k = 2rh where r is a positive integer,
and H and H′ be two h-uniform hypergraphs on the same set V of v ≥ k+h
vertices. Then the following properties are equivalent:

(i) e(H�K) and e(H′
�K) have the same parity for all k-element subsets K

of V ;
(ii) H′ = H or H′ = H.

Proof. The implication (ii) ⇒ (i) is trivial. We prove (i) ⇒ (ii).
We have h = 2l for some integer l. Let Wh k be the matrix defined page

3 and tWh k its transpose. Let U := H+̇H′. From the fact that e(H�K) and
e(H′

�K) have the same parity for all k-element subsets K, the boolean sum

U belongs to the kernel of tWh k over the 2-element field. By Corollary 2,
the rank of Wh k modulo 2 is

(
v
h

)
− 1. Then the kernel of its transpose tWh k

has dimension 1. Since (1, · · · , 1)Wh k = (0, · · · , 0) (mod 2) then wUWh k =
(0, · · · , 0) (mod 2) amounts to wU = (0, · · · , 0) or wU = (1, · · · , 1), that is
U is empty or complete, so H′ = H or H′ = H.

Corollary 3. Let h be a power of 2, k = 2rh where r is a positive integer,
and H and H′ be two h-uniform hypergraphs on the same set V of v ≥ k+h
vertices. If H and H′ are k-hypomorphic up to complementation then H′ = H
or H′ = H.

Proof. From Corollary 1,
(
k
h

)
is even. Then we conclude using Proposition 2.

Theorem 7. Two (2�+1)-uniform hypergraphs H and H′ on the same set V
of v vertices, v ≥ 3.2�+2 and � ≥ 1, are equal up to complementation when-
ever H�K and H′

�K have the same number of edges up to complementation

for all k-element subsets K of V for k ∈ {2�+1, 2�+1 + 1}.
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Proof. Let U := H+̇H′. By Corollary 1,
(
2�+1

2�+1

)
and

(
2�+1+1
2�+1

)
are even. Then

for k ∈ {2�+1, 2�+1 + 1}, e(H�K) and e(H′
�K) have the same parity for all k-

element subsets K of V . Hence wU belongs to the kernel of tW2�+1 k over

the 2-element field, for k ∈ {2�+1, 2�+1 + 1}. By Corollary 1 and Theorem

5, the rank of W2�+1 2�+1 modulo 2 is v − 1 +
(

v
2�+1

)
−

(
v
2�

)
, the rank of

W2�+1 2�+1+1 modulo 2 is
(

v
2�+1

)
− v, the second rank is obvious to obtain;

the first one uses this:
(
2�+1−i
2�+1−i

)
is odd for i = 1, 2� + 1; for i even

(
2�+1−i
2�+1−i

)
is even; for i odd, 3 ≤ i ≤ 2� − 1, set j := i − 1, then j is even and

2 ≤ j ≤ 2� − 2, we have
(
2�+1−i
2�+1−i

)
=

(
2�+2�−1−j

2�−j

)
, 2� − j =

∑t
q=s θq2

q with

θs = θt = 1, thus 2� − 1− j =
∑s−1

q=0 2
q +

∑t
q=s+1 θq2

q, that shows that(
2�+1−i
2�+1−i

)
is even. Then the dimension of Ker(tW2�+1 2�+1) is

(
v
2�

)
− v + 1

and the dimension of Ker(tW2�+1 2�+1+1) is v. Note that (1, 1, . . . , 1) ∈
Ker(tW2�+1 2�+1) ∩Ker(tW2�+1 2�+1+1).

Let X1, . . . , Xr be the enumeration of the (2� + 1)-element subsets of

V which appears as rows of the matrices W2�+1 2�+1 and W2�+1 2�+1+1. For

a ∈ V , we set va := (ε1, . . . , εr) where εi = 1 if a ∈ Xi, 0 otherwise. We have
tva ∈ Ker(tW2�+1 2�+1+1). Note that for all A ⊆ V , A 	= ∅,

∑
a∈A

tva 	= 0,

indeed if
∑

a∈A
tva = 0 then A 	= V and |A∩Xi| is even for all i ∈ {1, . . . , r}.

Let i0 be such that A ∩ Xi0 	= ∅. Let u ∈ A ∩ Xi0 and w ∈ V \ A, set

Y := (Xi0\{u})∪{w}. Then Y is someXi, but |A∩Y | is odd, that contradicts
|A ∩Xi| even for all i. So the family {tva : a ∈ V } is linearly independent

and thus forms a basis of Ker(tW2�+1 2�+1+1). Let u ∈ Ker(tW2�+1 2�+1) ∩
Ker(tW2�+1 2�+1+1) with u 	= 0. Then u =

∑
a∈A

tva for some non-empty

A ⊆ V . Since u ∈ Ker(tW2�+1 2�+1),
∑

a∈A
tW2�+1 2�+1

tva = 0. It follows

that
∑

a∈A∩F |{Xi : a ∈ Xi, Xi ⊆ F}| = 0 for every 2�+1-element subset

F of V and thus |A ∩ F | is even. From that we deduce A = V . Indeed, if

A 	= V , pick b ∈ V \ A, let F1 be a 2�+1-element subset of V such that

A ∩ F1 	= ∅. Let b1 ∈ A ∩ F1, set F := (F1 \ {b1}) ∪ {b}, then we have

|A ∩ F | odd, a contradiction. Thus tu =
∑

a∈V va = (1, 1, . . . , 1) proving

that {t(1, 1, . . . , 1)} forms a basis of Ker(tW2�+1 2�+1)∩Ker(tW2�+1 2�+1+1).

Since twU ∈ Ker(tW2�+1 2�+1)∩Ker(tW2�+1 2�+1+1), then wU = (0, · · · , 0) or
wU = (1, · · · , 1), that is U is empty or complete, so H′ = H or H′ = H.

Problem 2. Extend the proof of Theorem 7 to others values of h. For

an example, if h = 6, s(h) = 10. We guess that v(h) ≤ 16. Does the

same number of edges up to complementation for the k-element subsets,

k = 8, 9 and 10, suffice for the equality of hypergraphs up to complementa-

tion?
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2.3. Monomorphic decomposition of hypergraphs

We present in this section a notion of monomorphic decomposition of a uni-
form hypergraph. This notion was introduced in [24]. Due to the introduction
of an equivalence relation previously considered in [21] and developed in [20],
our presentation is simpler. Let H := (V, E) be a h-uniform hypergraph. Let
F ⊆ V , we say that H is F -constant or that V \ F is a constant block if
H(A) = H(A′) for every A,A′ ∈ [V ]h such that A ∩ F = A′ ∩ F . We say
that H is almost-constant if it is F -constant for some finite subset F .

Example 1. A 2-uniform hypergraph is simply a (undirected) graph. If
G := (V, E) is a graph then a subset B of V is a constant block if and only
if it satisfies the two conditions:

1. B is either a clique or an independent of G;
2. B is an autonomous subset of G, that is for every y ∈ V \B and every

x, x′ ∈ B, {y, x} ∈ E ⇔ {y, x′} ∈ E.
Similarly, if H := (V, E) is a h-uniform hypergraph (h ≥ 1), a subset B

of V is a constant block if and only if it satisfies the two conditions:

1. H�B is either complete (i.e. [B]h ⊆ E) or empty (i.e. [B]h ∩ E = ∅);
2. For every k ≤ h, K ∈ [V \ B]k and X,X ′ ∈ [B]h−k, X ∪ K ∈ E ⇔

X ′ ∪K ∈ E.
A monomorphic decomposition of a h-uniform hypergraph H is a parti-

tion of V into constant blocks.

Lemma 1. A partition P of V is a monomorphic decomposition if H(A) =
H(A′) for every A,A′ ∈ [V ]h such that |A ∩ B| = |A′ ∩ B| for every block
B ∈ P.

This is essentially Lemma 2.9 p.13 of [24].
Let x, y ∈ V . We set x ≡H y if

(1) H(K ∪ {x}) = H(K ∪ {y})

for every K ∈ [V \ {x, y}]h−1.

Proposition 3. The relation ≡H is an equivalence relation on V . The blocks
of this equivalence are constant. They form a monomorphic decomposition
of H and every monomorphic decomposition is finer.

Except for the introduction of the equivalence relation, this is essentially
Lemma 2.11 and Proposition 2.12 p. 14 of [24]. We give an outline of the
proof below.
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Proof. First, ≡H is an equivalence relation. For that it suffices to check that
it is transitive. Let x, y, z ∈ V with x ≡H y and y ≡H z. We check that x ≡H
z. We may suppose these elements pairwise distinct. Let K ∈ [V \{x, z}]h−1.

Case 1. y 	∈ K. In this case H(K∪{x}) = H(K∪{y}) and H(K∪{y}) =
H(K ∪ {z}). Hence H(K ∪ {x} = H(K ∪ {z}). Thus x ≡H z.

Case 2. y ∈ K. Set K ′ := (K\{y})∪{z}. Since x ≡H y, we have H(K ′∪
{x}) = H(K ′ ∪{y}) = H(K ∪{z}). Similarly, setting K ′′ := (K \ {y})∪{x}
then, since y ≡H z, we have H(K ∪ {x}) = H(K ′′ ∪ {y}) = H(K ′′ ∪ {z}).
Since K ′ ∪ {x} = K ′′ ∪ {z}, we have H(K ∪ {x}) = H(K ∪ {z}) and thus
x ≡H z as claimed. Next, the blocks of this equivalence are constant. Let
C be a block of ≡H. We prove that H(A) = H(A′) for every A,A′ ∈ [V ]h

such that A \ C = A′ \ C. Let � := |A \ A′|. If � = 0, A = A′, there is
nothing to prove. If � = 1, then A = {x}∪ (A∩A′) and A′ = {y}∪ (A∩A′),
with x, y ∈ C; in this case H(A) = H(A′) since x ≡H y. If � > 1, set
K := A\C and k := |K|. We may find a sequence of (h−k)-element subsets
of C, say A0, . . . Ai, . . . , Ar such that A0 = A ∩ C, Ar = A′ ∩ C and the
symmetric difference of Ai and Ai+1 is 0 or 1. From the case � = 1 we have
H(Ai ∪ K) = H(Ai+1 ∪ K) for i < r. Hence H(A) = H(A′). Since these
blocks are constant, they form a monomorphic decomposition. To conclude
that every other monomorphic decomposition is finer, note that the elements
of a constant block are pairwise equivalent w.r.t. ≡H hence contained into
a block of this equivalence.

We call components the blocks of the equivalence relation ≡H. Note that
the equivalence relations ≡H and ≡H coincide and also that if H′ in another
h-uniform hypergraph, every isomorphism of H onto H′ will transform ≡H
into ≡H′ , thus carrying the components of H onto the components of H′.

Let us recall Fräıssé’s theorem on almost constant hypergraphs [12], this
result is a consequence of the infinite form of Ramsey’s theorem.

Theorem 8. Let h be a non-negative integer, H be a h-uniform hypergraph
on an infinite set V and F be a finite subset of V . Then there is an infinite
subset V ′ of V such that H�V ′ is F -constant.

Let ψ(h) := h + 2t where t is the largest integer t′ such that 2t
′ ≤ h,

that is ψ(h) = h+ 2�log2 h�.

Theorem 9. Let H and H′ be two h-uniform hypergraphs on the same set
V of vertices. Suppose that

1) H and H′ are F -constant for some F ⊆ V ,
2) |V \ F | ≥ h,
3) H and H′ are ψ(h)-hypomorphic up to complementation.
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Then H = H′ or H = H′.

Proof. We may suppose that H and H′ coincide on V \F (otherwise replace
H′ by H′) and for example that there is no hyperedge in V \ F . We prove
that H = H′. For that, we prove by induction on � that:

(2) H(A) = H′(A)

for every A ∈ [V ]h such that |A ∩ F | ≤ �.
If � := 0 then since H and H′ coincide on V \ F , Equation (2) holds.
Suppose that � ≥ 1. Let A ∈ [V ]h such that |F ∩A| ≤ �. Let F0 := A∩F .

If |F0| < � then (2) holds by induction. Suppose that |F0| = �. Let S and
K := A ∪ S where S ⊆ V \ (F ∪ A), |S| = s, and k := h + s = ψ(h). Let
H0 := H�K , H′

0 := H′
�K . We have K ∈ [V ]k and F0 = K ∩ F .

Since H and H′ are F -constant, the h-uniform hypergraphs H0 and H′
0

are F0-constant.
The set E(H0) of hyperedges of H0 is the disjoint union of E<�(H0) :=

{A′ ∈ E(H0) : |A′ ∩ F | < �} and E=�(H0) := {A′ ∈ E(H0) : |A′ ∩ F | = �}:

(3) E(H0) = E<�(H0) ∪ E=�(H0).

Similarly, H′
0 decomposes into E<�(H′

0) and E=�(H′
0):

(4) E(H′
0) = E<�(H′

0) ∪ E=�(H′
0).

By induction hypothesis,

(5) E<�(H0) = E<�(H′
0).

Claim 1. If H0 � H′
0 then H0 = H′

0 and hence (2) holds.

Indeed, we have |E(H0)| = |E(H′
0)|. From (3), (4) and (5), it follows

that |E=�(H0)| = |E=�(H′
0)|. Since H0 is F0-constant, then E=�(H0) = ∅ or

E=�(H0) = {F0 ∪ I : I ∈ [S]h−l}. The same holds for H′, hence E=�(H0) =
E=�(H′

0).
Thus E(H0) = E(H′

0) proving H0 = H′
0.

To conclude, we prove that H0 	� H′
0.

Case 1. k ≥ 2l + 1. Let C := K \ F0. We have |C| > |F0|. Since H0 is
F0-constant, C is a constant block. According to Proposition 3, C is included
into a component D of H0. Similarly C is included into a component D′ of
H′

0. Since |C| > |F0|, all components of H0 distinct of D have a cardinality
strictly smaller than |D|. The same with D′ the component of H′

0 containing

C. An isomorphism from H0 onto H′
0 will map D onto D′. But there is no
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hyperedge of H in D whereas every h-element subset of D is a hyperedge of
H′

0. Contradiction.
Case 2. k − � ≤ �. By the induction hypothesis for �′ < � and the fact

that H0 � H′
0, we have:

(6) 2.|E<�(H0)|+
(
k − l

h− l

)
=

(
k

h

)
.

Recall that k = h+s = ψ(h) with s = 2t where t is the largest integer t′ such
that 2t

′ ≤ h. Then s ≤ h < 2t+1. We have h =
∑t

i=0 ai2
i with ai ∈ {0, 1},

at = 1, k =
∑t−1

i=0 ai2
i+2t+1. From Corollary 1,

(
k
h

)
is even. Since k

2 ≤ � ≤ h

then
(
k−�
h−�

)
is odd. Indeed, � ≥ s, thus h− l < 2t, so h− l =

∑t−1
i=0 ci2

i with

ci ∈ {0, 1}, and thus k − l =
∑t−1

i=0 ci2
i + 2t. Then, by Corollary 1,

(
k−�
h−�

)
is

odd. The facts that
(
k
h

)
is even and

(
k−�
h−�

)
is odd contradict Equation (6).

3. Proof of Theorem 1

Suppose that for some h the statement is false.

Claim 2. There are two h-uniform hypergraphs H(i), i = 1, 2, on N∗ which
are not equal up to complementation but are k-hypomorphic up to comple-
mentation for every k ∈ N.

Proof of Claim 2. We use a compactness argument. Let H(h,N∗) be the set
of h-uniform hypergraphs with domain N∗ := N\{0}. Essentially, this is the
power set ℘([N∗]h). Once equipped with the product topology, the power set
is a compact space, hence we may view H(h,N∗) as a compact space and also
the product spaceH2(h,N∗) := H(h,N∗)×H(h,N∗) of pairs (H(1),H(2)) of h-
uniform hypergraph with domain N∗. Let B be the set of pairs (H(1),H(2)) ∈
H2(h,N∗) which are k-hypomorphic up to complementation for every k ∈ N
but whose restrictions to {1, . . . , 2h} are not equal up to complementation.
To prove our claim, it suffices to prove that B is non-empty. For that, we
prove that this set is the intersection of a decreasing sequence of non-empty
closed subsets of H2(h,N∗). The compactness of this set ensures the non-
emptyness of B. For every integer k, let Bk be the set of pairs (H(1),H(2)) ∈
H2(h,N∗) such that the restrictions to {1, . . . , 2k − 1} are k-hypomorphic
up to complementation and the restrictions to {1, . . . , 2h} are not equal up
to complementation. Trivially, we have B =

⋂
k∈N Bk. Due to Proposition

1, we have Bk+1 ⊆ Bk. Since the set of restrictions to {1, . . . , 2k − 1} of
members of H(h,N∗) is finite, the Bk’s are closed. To conclude, it suffices
to observe that they are non-empty. Let k ∈ N. Since the statement of the
theorem is assumed to be false, then for every t, k ≤ t, there is some t′ ≥ t
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and two hypergraphs H(i)
k (i = 1, 2) on Vt′ := {1, . . . , t′} which are not equal

up to complementation, but are k-hypomorphic up to complementation. We

can assume that H(i)
k (i = 1, 2) are not equal up to complementation on

{1, . . . , l} where l ≤ 2h (otherwise, consider the hypergraphs obtained via a
permutation transforming a subset L of Vt′ on which they are not equal up
to complementation into {1, . . . , l}). Let t := 2k− 1 and t′ corresponding to

t. Let H(i) be a h-uniform hypergraph on N∗ which extends H(i)
k arbitrarily.

We have (H(1),H(2)) ∈ Bk.

A contradiction is obtained through Theorem 8. Indeed, there is a subset
F with at most 2h elements on which H1 and H2 are not equal up to
complementation. According to Theorem 8, applied twice, there is an infinite
subset V ′ of V containing F such that H1

�V ′ and H2
�V ′ are F -constant. These

two hypergraphs are k-hypomorphic up to complementation for all k. This
contradicts Theorem 9.

4. Proof of Theorem 2

Let ϕ(h) := h+2�log2 h� − 1. For example ϕ(h) = 2h− 1 if h is a power of 2.
Theorem 9 asserts that s(h) ≤ ψ(h) = ϕ(h) + 1. Theorem 10 below asserts
that s(h) ≥ ϕ(h) + 1. Thus s(h) = h+ 2�log2 h�. This proves (1) of Theorem
2. Theorem 3.1 and Proposition 4.1 of [9] assert that s(2) = 4. We obtain
(2) of Theorem 2 with Theorem 7.

Theorem 10. Let h be an integer. There are two h-uniform infinite hyper-
graphs H and H′ on the same domain such that H 	= H′ and H 	= H′, but H
and H′ are k-hypomorphic up to complementation for all k ≤ ϕ(h). These
two hypergraphs are F -constant for some subset F of cardinality at most h.

Proof. Let V be an infinite set, and F ⊆ V having r elements with 2 ≤ r ≤ h.
Let ℘�(F ) := ℘(F ) \ {∅, F} be the set of proper subsets of F . Suppose

that {A,A′} is a partition of ℘�(F ) into two blocks and that ϕ is a permu-
tation of F such that for all X ∈ ℘�(F ):

(7) X ∈ A ⇐⇒ ϕ(X) ∈ A′.

We define two hypergraphs H and H′ as follows:

H := (V, E) where E := {A ∈ [V ]h : A ∩ F ∈ A}
and H′ := (V, E ′) where E ′ := E ∪ {A ∈ [V ]h : F ⊆ A}.

Claim 3. H 	= H′ and H 	= H′.

Proof. Every h-element subset of V containing F belongs to H′, whereas
none of these sets is in H. This proves that H 	= H′. Every h-element subset
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of V \ F belongs to H′, none of these sets is in H proving H 	= H′.

Claim 4. H and H′ are k-hypomorphic up to complementation for k ≤
h+ r − 1.

Proof of Claim 4. Since V is infinite, Proposition 1 applies. Hence it suffices
to prove this property for k = h+ r − 1. Let K ⊆ V , with |K| = h+ r − 1.

Case 1. F � K. Then clearly H�K = H′�K .
Case 2. F ⊆ K. Let ϕ the map from K into K defined by ϕ(x) = ϕ(x)

if x ∈ F , and ϕ(x) = x if x ∈ K \ F . Clearly, ϕ is a permutation of K. We
will show that ϕ is an isomorphism from H�K onto H′�K . Let A ∈ [K]h, we
will check the equivalence:

(8) A ∈ E�K ⇐⇒ ϕ(A) ∈ E ′�K

Note that A ∈ E�K ⇐⇒ A ∩ F ∈ A. Also, note that A ∩ F ∈ A ⇐⇒
ϕ(A ∩ F ) ∈ A′. Since ϕ(A) ∩ F = ϕ(A ∩ F ) we have

(9) A ∈ E�K ⇐⇒ ϕ(A) ∩ F ∈ A′

Now, ϕ(A) ∈ E ′�K ⇐⇒ ϕ(A) ∩ F ∈ A or F ⊆ A, that is:

(10) ϕ(A) /∈ E ′�K ⇐⇒ ϕ(A) ∩ F /∈ A and F � A.

To check (8) it suffices to check

(11) ϕ(A) ∩ F ∈ A′ ⇐⇒ ϕ(A) ∩ F /∈ A and F � A.

ϕ(A) ∩ F ∈ A′ ⇒ ϕ(A) ∩ F /∈ A (because {A,A′} is a partition), and
F � ϕ(A). Since ϕ(F ) = F , F � A. Conversely, since F � A, F ∩ A 	= F .
From |F | = r ≤ h = |A|, F ⊆ K and |K| = h + r − 1, we have F ∩ A 	= ∅.
Then F ∩A is a proper subset of F , thus ϕ(A)∩ F is a proper subset of F .
Since ϕ(A) ∩ F /∈ A, ϕ(A) ∩ F ∈ A′.

Claim 5. Let F be a r-element subset of V , r ≥ 2. Then there is a parti-
tion {A,A′} of ℘�(F ) into two blocks and a permutation ϕ of F satisfying
Equation (7) if and only if r is a power of 2.

Proof of Claim 5. If there is a partition {A,A′} of ℘�(F ) into two blocks
and a permutation ϕ of F satisfying Equation (7), then for each integer k,
with 1 ≤ k ≤ r − 1, the number of k-element subsets of F is even, thus

(
r
k

)
is even for all k ∈ {1, . . . , r − 1}. Then, by Corollary 1, r is a power of 2.

Conversely, if r is a power of 2, with r ≥ 2, we can find a permutation
ϕ of a r-element set F and a partition of ℘�(F ) into two classes A,A′ such
that for each proper subset K of F , ϕ(K) and K are not in the same class



298 Maurice Pouzet and Hamza Si Kaddour

(where ϕ(X) = {ϕ(x) : x ∈ X}). Take for ϕ a circular permutation of
F . Fix an integer k. Let ϕ be the induced permutation on [F ]k. We have
ϕr = ϕr = id℘�(F ). Then the order of ϕ divides r, therefore it is of the form

2r
′
. It is easy to see that ϕr has no fixed point. Decompose ϕ in cycles, the

order of each cycle divides 2r, so is even. So each cycle is not trivial with
even order. We say that two subsets of F of size k are equivalent if we pass
from one to the other by some ϕs with s even. This gives a partition {A,A′}
of ℘�(F ) into two blocks satisfying Equation (7).

5. Possible generalizations

Various kind of isomorphy have been considered for hypergraphs e.g [2].
Here we consider the following notion. Let W be a set and G a subgroup of
the group S(W ) of permutations of W . Let h be an integer. A h-uniform
hypergraph valued by W is a pair H := (V, c) where c is a map from [V ]h

into W . Let H := (V, c) and H′ := (V ′, c′) be two h-uniform hypergraphs
valued by W ; a map f : V → V ′ is an isomorphism up to G if there is some
σ ∈ G such that c′ ◦ f = σ ◦ c (where f is the extension of f to [V ]h). We
say that H and H′ are equal up to G if V = V ′ and the identity map is an
isomorphism up to G of H onto H′ (that is c′ = σ ◦ c for some σ ∈ G).

5.1. Equality and isomorphy up to a permutation group

It is natural to ask if there are two non-negative integers k and t, k ≤ t, such
that two h-uniform hypergraphs H and H′ on the same set V of vertices,
|V | ≥ t, and valued by W , are equal up to G whenever H and H′ are
k-hypomorphic up to G.

The answer is negative in general. Here is an example for h = 2, W =
{0, 1, 2} and G := S(W ) the symmetric group on W .

Take V := N, H := (V, c) where c({0, 1}) = c({1, 2}) = 0, c({0, 2}) =
1, c({x, y}) = 2 for all other pairs and H′ := (V, c′) where c′({0, 1}) =
c′({0, 2}) = 0, c′({1, 2}) = 1 and c′({x, y}) = 2 for all other pairs.

Problem 3. Is it true that there are two non-negative integers k and t, k ≤
t, such that two graphs G and G′ on the same set V of vertices, |V | ≥ t and
valued by W , are isomorphic up to S(W ) whenever they are k-hypomorphic
up to S(W )?

The integers k and t if they exist will depend upon the cardinality of W .
We give an example of two labelled graphs showing that k must be at least
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2
3 |W | − 2. This example, inspired of [23], somewhat codes a cylinder and a
Moebius band.

Let n ∈ N, n ≥ 3, W := (Z/nZ×Z/3Z)∪{0, 1} and V := Z/nZ×Z/2Z.
Let c : [V ]2 → W defined by: c({(i, 0), (i, 1)}) := 1, c({(i, 0), (i + 1, 0)}) =
c({(i, 1), (i + 1, 1)}) := (i, 0), c({(i, 0), (i + 1, 1)}) := (i, 1), c({(i, 1), (i +
1, 0)}) := (i, 2) and c({u, v}) = 0 for all other pairs. Let c′ : [V ]2 → W
be obtained from c by changing the values on the pairs {(0, i), (1, j)} with
i, j ∈ {0, 1} so that c′({(0, 0), (1, 1)}) = c′({(0, 1), (1, 0)}) = (0, 0), c′({(0, 1),
(1, 1)}) = (0, 2), and c′({(0, 0), (1, 0)}) = (0, 1).

Lemma 2. The valued graphs G := (V, c) and G′ := (V, c′) are not iso-
morphic up to S(W ) but their restrictions to every proper subset of V are
isomorphic up to S(W ).

If we set k := 2n − 1 then since |W | = 3n + 2 and |V | = 2n, we have
k < 2

3 |W |−2 (= 2n− 2
3), the claim ensures that this values of k is too small

to yield an isomorphy up to a permutation group.

Proof of Lemma 2. 1) G and G′ are not isomorphic up to S(W ). Indeed,
associate to G = (V, c) the graph Gc whose vertex set is the set 2V of
directed pairs (x, y) of distinct elements of V and edges are pairs {e, e′}
with e = (x, y), e′ = (x′, y′) such that c({x, y}) = c({x′, y′}), c({x, x′}) =
c({y, y′}) 	= c({x, y}), c({x, y′}) 	= c({y, x′}), c({x, y′}) and c({y, x′}) dis-
tinct from c({x, y}) and c({x, x′}). Then, observe that if a directed pair
e := (x, y) is not an isolated vertex in this graph then {x, y} ∈ {{(i, 0), (i, 1)},
{(i, 0), (i+1, 0)}, {(i, 1), (i+1, 1)}}. Next, observe that Gc contains exactly
two cycles of length n; one made of the vertices ((i, 0), (i, 1)), i ∈ Z/nZ,
the other made of vertices ((i, 1), (i, 0)) for i ∈ Z/nZ. Let G′

c′ be the graph
defined by the same way. This graph contains a cycle of length 2n, made
of vertices ((i, j), (i, j + 1)), (i, j) ∈ Z/nZ× Z/2Z, the cycle being enumer-
ated as ((0, 0), (0, 1)), ((1, 1), (1, 0)), ((2, 1), (2, 0)), . . . , ((n−1, 1), (n−1, 0)),
((0, 1), (0, 0)), ((1, 0), (1, 1)), ((2, 0), (2, 1)), . . . , ((n− 1, 0), (n− 1, 1)). There
is no shorter cycle. Suppose that G and G′ are isomorphic up to S(W ) via
some map f and some permutation of W . The map f induces an isomor-
phism from Gc onto G′

c′ hence a n-cycle of Gc is sent onto an n-cycle of G′
c′ ,

but there are none. A contradiction.
2) For every proper subset K of V the restrictions G�K and G′

�K are
isomorphic up to S(W ). First, suppose that K is disjoint from one of the
sets {(0, 0), (0, 1)}, {(1, 0), (1, 1)} then the two valued graphs are identical
hence isomorphic. Next, suppose that K is not disjoint from these sets but
does not contain some element of L := {(0, 0), (0, 1), (1, 0), (1, 1)}. We claim
that in this case, the identity on K and some permutation σ of W form
an isomorphism up to S(W ) from G�K onto G′

�K . Suppose for an example
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that (0, 1) 	∈ K holds, thus (0, 0) ∈ K. In this case, set σ the permutation
of W such that σ((0, 0)) = (0, 1), σ((0, 1)) = (0, 0) and σ(u) = u for every
u ∈ W \ {(0, 0), (0, 1)}. Finally, suppose that L ⊆ K. Let i1 be the largest
integer such that K1 := {1, 2, . . . , i1} × Z/2Z ⊆ K. Since (1, 0), (1, 1) ∈ K,
the integer i1 is well-defined. Furthermore, i1 < n − 1. Otherwise, since
(0, 0) and (0, 1) belong to K, we would have K = Z/nZ× Z/2Z = V . From
the definition of i1, we have (i1 + 1, 0) or (i1 + 1, 1) /∈ K. Suppose that
(i1 + 1, 1) /∈ K. The case (i1 + 1, 0) /∈ K will be similar. Let f be the map
from K to K which is the identity on K \K1 and which exchanges (i, 0) and
(i, 1) on K1 and let σ be the permutation of W such that σ(i1, 0) = (i1, 2),
σ(i1, 2) = (i1, 0), σ(i, 1) = (i, 2), σ(i, 2) = (i, 1) for i ∈ {1, 2, . . . , i1 − 1} and
σ(u) = u for other elements of W .

Note that

(12) σ(i, j) 	= (i, j) ⇒ i ∈ {1, 2, . . . , i1}.

We check that f is an isomorphism with respect to σ, that is:

(13) σ(c(u, v)) = c′(f(u), f(v)) for every u, v ∈ K.

If u, v ∈ K\K1, then f(u) = u, f(v) = v and due to (12), c′(u, v) = σ(c(u, v))
as required by (13).

Suppose that u, v ∈ K1. We have u = (i, j), v = (i′, j′) and u′ :=
f(i, j) = (i, j+̇1), v′ := f(i′, j′) = (i′, j′+̇1) where +̇ is the sum modulo 2.

If i = i′, c′(u′, v′) = c(u, v) = σ(c(u, v)) as required by (13). If i 	= i′,
we may suppose i′ = i+̇1. There are two cases. First j = j′. In this case,
c(u, v) = (i, 0), c′(u′, v′) = (i, 0) = σ(i, 0) since i 	= i1. Next j 	= j′, if
u = (i, 1) and v = (i+ 1, 0), then c(u, v) = (i, 2), c′(u′, v′) = (i, 1) = σ(i, 2).
The case u = (i, 0) and v = (i+ 1, 1) is similar.

Suppose that u ∈ K1 and v ∈ K \ K1. Hence u′ = (i, j + 1) and v′ =
v = (i′, j′). We may suppose that either (i = 1 and i′ = 0) or i = i1 and
i′ = i1 + 1. In the first case, suppose that u = (1, 1). If v = (1, 0) then
c(u, v) = (0, 0), whereas c′(u′, v′) = (0, 0) = σ(c(u, v)). If v = (0, 0) then
c(u, v) = (0, 1), whereas c′(u′, v′) = (0, 1) = σ(c(u, v)). The case u = (0, 0)
is similar. In the second case, we have j′ = 0. If j = 1 then, c(u, v) = (i1, 2)
and c′(u′, v′) = (i1, 0) = σ(c(u, v)). If j = 0 then c(u, v) = (i1, 0) and
c′(u′, v′) = (i1, 2) = σ(c(u, v)).

Problem 4. Find examples showing that k ≥ 2|W |.
A special instance of Problem 3 is this. Let n be a non-negative in-

teger, suppose that W := {0, 1}n and that G is the permutation group
made of the identity and the involution on W defined by u := u + 1 where
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1 := (1, . . . , 1) ∈ W and the addition is modulo 2. A valued graph G := (V, c)
by W identifies to a multigraph; if we define the complement of G by setting
G := (V, c) where c({x, y}) := c({x, y}), then isomorphy up to complemen-
tation means isomorphy up to G. Find k and t such that the conclusion of
Problem 3 holds. For n = 1 this is the result of [9].

5.2. Isomorphy of hypergraphs up to a permutation group and
isomorphy of relational structures

Associate to each valued h-uniform hypergraph H := (V, c) valued by W
the pair Ĥ := (V,Eqc) where Eqc is the kernel of c, that is the equivalence
relation defined on [V ]h by AEqcA

′ if c(A) = c(A′). Associate also the 2h-
ary-structure H̃ := (V, ρc) where ρc is the subset of V 2h made of 2h-uples
(x1, . . . x2h) such that c({x1, . . . xh}) = c({xh+1, . . . , x2h}).

We have:

Lemma 3. Let G := S(W ) be the symmetric group on W . Let H := (V, c)
and H′ := (V ′, c′) be two h-uniform hypergraphs valued by W and a map
f : V → V ′. Then the following properties are equivalent:

(i) f is an isomorphism up to G from H onto H′;
(ii) f is bijective and

(14) HEqcH
′ ⇔ f(H)Eqc′f(H

′) for all H,H ′ ∈ [V ]h;

(iii) f is an isomorphism from H̃ onto H̃′.

We mention that with Lemma 3 and Theorem 3, Proposition 1 is gen-
eralized as follows.

Proposition 4. Let W be a set and G be a subgroup of the group S(W ) of
permutations of W . Let v, k be non-negative integers, Let t ≤ min(k, v − k)
and H and H′ be two h-uniform hypergraphs, on the same set V of v vertices,
valued by W . If H and H′ are k-hypomorphic up to G then they are t-
hypomorphic up to G.

6. Conclusions

The motivation of this line of research comes from several reconstruction
results and conjectures about binary structures. The Ulam’s reconstruction
conjecture, still unsolved, is well-known (see the surveys [3, 4]). Fräıssé made
a related conjecture about relational structures. The case of binary struc-
tures was handled by Lopez. A binary structure can be understood as a pair
R := (V, c) where c is a map from the set V 2 of ordered pairs (x, y) of ele-
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ments of V into a set W . The notion of isomorphism, and k-hypomorphism
can be defined as for valued graphs. It was shown by Lopez [17] (see also [13])
that if two binary structures R and R′ on a finite set V are k-hypomorphic
for all k ≤ 6 then they are k-hypomorphic for every integer k. Supposing
W = {0, 1}, Hagendorf and Lopez [15] say that two binary structures R
and R′ are hemimorphic if either they are isomorphic or one is isomorphic
to the dual of the other (the dual of R := (V, c) is Rd := (V, cd) where
cd(x, y) := c(y, x)). They prove that hemimorphy behaves as hypomorphy,
with a threshold of 12 instead of 6. Numerous publications are built on these
results (e.g. [18, 6, 7, 8]). But for W := {0, 1}n and the corresponding no-
tion of duality, the reconstruction problem is unsolved. Recently, Ben Amira,
Chaari, Dammak and Si Kaddour [1] replace the dual of a binary structure
R := (V, c) (with value in W = {0, 1}) by its complement R := (V, c) de-
fined by setting c(x, y) := 1 + c(x, y) (where the addition is defined modulo
2), they consider the notion of isomorphy up to complementation, and ob-
tain some encouraging results. Instead of W = {0, 1} we may suppose that
W = {0, 1}n, fix a group of permutations G on W and ask the same question
as in Problem 3. As it is easy to see, results mentionned above are special
instances of this question. On an other hand, none of these results extend
to ternary relations [23]. Since the relation associated to a h-uniform hyper-
graph has arity 2h, the answer to Problem 3 does not seem to follow from
general results.
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Université Claude-Bernard Lyon1

43 Bd 11 Novembre 1918

69622 Villeurbanne Cedex

France

E-mail address: sikaddour@univ-lyon1.fr

Received 14 January 2015

mailto:sikaddour@univ-lyon1.fr

	Main results
	Hypergraphs, incidence matrices and almost constant hypergraphs
	Isomorphy up to complementation
	Incidence matrices
	Monomorphic decomposition of hypergraphs

	Proof of Theorem 1
	Proof of Theorem 2
	Possible generalizations
	Equality and isomorphy up to a permutation group
	Isomorphy of hypergraphs up to a permutation group and isomorphy of relational structures

	Conclusions
	Acknowledgements
	References

