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The Erdős-Sós conjecture for spiders of four legs

Genghua Fan
∗
and Zhenxiang Huo

The Erdős-Sós Conjecture states that if G is a graph with average
degree more than k − 1, then G contains every tree of k edges.
A special case of the conjecture is the well-known Erdős-Gallai
theorem: if G is a graph with average degree more than k − 1,
then G contains a path of k edges. A spider is a tree with at most
one vertex of degree more than 2, called the center of the spider
(if no vertex of degree more than two, then any vertex can be the
center). A leg of a spider is a path from the center to a vertex of
degree 1. Thus, a path can be regarded as a spider of 1 or 2 legs.
In this paper, we prove that if G is a graph with average degree
more than k − 1, then G contains every spider of 4 legs.
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1. Introduction

The graphs considered in this paper are finite, undirected, and simple (no
loops or multiple edges). The sets of vertices and edges of a graph G are
denoted by V (G) and E(G), respectively, and e(G) = |E(G)|. The following
conjecture is one of the most challenging problems in extremal graph theory.

Erdős-Sós Conjecture. Let T be a tree of k edges. If G is a graph on n
vertices with e(G) > k−1

2 n, then G contains a copy of T .

A special case of the conjecture is the well-known Erdős-Gallai theorem
[1]: if G is a graph on n vertices with e(G) > k−1

2 n, then G contains a path
of k edges. The conjecture has been investigated on two directions. One is to
verify the conjecture for certain families of graphs. For instance, Brandt and
Dobson [2] proved that the conjecture is true for graphs without cycles of
length less than 5, which was extended by Saclé and Woźniak [7] to graphs
without cycles of length 4. Another direction is to verify the conjecture for
certain families of trees. The above-mentioned Erdős-Gallai theorem is a
classical result on this direction. A spider is a tree with at most one vertex
of degree more than 2, called the center of the spider (if no vertex of degree
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more than two, then any vertex can be the center). A leg of a spider is a
path from the center to a vertex of degree 1. Thus, a path can be regarded
as a spider of 1 or 2 legs. Woźniak [8] proved that the conjecture is true if T
is a spider in which each leg has at most 2 edges, which was extended by Fan
and Sun [5] to spiders in which each leg has at most 4 edges. In the same
paper, Fan and Sun [5] proved that the conjecture is true if T is a spider of
3 legs. In this paper, we prove that

Theorem. If G is a graph on n vertices with e(G) > k−1
2 n, then G contains

every spider of 4 legs.

If xy ∈ E(G), we say that x is adjacent to y and that y is a neighbor
of x. For a subgraph H of G, NH(x) is the set of the neighbors of x which
are in H, and dH(x) = |NH(x)| is the degree of x in H. When no confusion
can occur, we shall write N(x) and d(x), instead of NG(x) and dG(x). The
maximum degree of G is defined by Δ(G) = max{d(v) : v ∈ V (G)}. We use
G−H to denotes the graph obtained from G by deleting all the vertices of H
together with all the edges with at least one end in H. For two subgraphs A
and B in G, A+B denotes the subgraph induced by V (A)∪V (B). E(A,B)
is the set, and e(A,B) is the number, of edges with one end in A and the
other end in B. The length of a path/cycle is the number of the edges in it.
We also use |C|, instead of e(C), to denote the length of a cycle C.

Let C = v0v1 · · · vc be a cycle. For x ∈ V (C), say x = vi, we use x+

for vi+1 and x− for vi−1. For x, y ∈ V (C), C[x, y] denotes the segment
xx+ · · · y−y. These notations are also applied to vertices of a path P . Thus,
if x, y ∈ V (P ), then P [x, y] is the segment of P from x to y.

2. Lemmas

Several lemmas are given in this section, which will be needed in the proof
of the main theorem. The first one appeared in [6]. Since the proof is simple,
we present it here.

Lemma 1. Let G be a 2-connected graph on n vertices. Then every vertex

of G is contained in a cycle of length at least 2e(G)
n−1 .

Proof. Let x ∈ V (G). Construct a new graph G′ by adding a new vertex x′

joined to, and only to, all neighbors of x. Clearly, G
′
is also a 2-connected.

The average degree of the vertices of V (G′) \ {x, x′} is

∑
v∈V (G′)\{x,x′} dG′(v)

|V (G′) \ {x, x′}| =
2e(G)

n− 1
.



The Erdős-Sós conjecture for spiders of four legs 273

By Theorem 1 in [3], x and x′ are connected by a path of length at least
2e(G)
n−1 in G′. Since NG′(x′) = NG′(x), this path yields a cycle in G containing

x, of the same length 2e(G)
n−1 .

Lemma 2. Let G be a graph on n vertices and let T be a k-edge spider
of s legs. For any vertex x ∈ V (G) with d(x) ≥ s, if d(v) ≥ k for all
v ∈ V (G) \ {x}, then G has a copy of T centered at x.

Proof. Use induction on k. If k = 1, it is trivially true. If T is a star, it
is also trivially true. Suppose that k > 1 and T is not a star. Let w be a
leaf (d(w) = 1 in T ) with uw ∈ E(T ), where u is not the center of T . Set
T ′ = T − w, which is a (k − 1)-edge spider. By the induction, G has a copy
of T ′ centered at x. Since d(u) ≥ k in G, and thus u is joined to some vertex
z ∈ V (G) \ V (T ′). Then, T ′ + uz is the required copy of T in G.

Lemma 3. Let T be a k-edge spider. Let C be a cycle in a graph G and
v0 ∈ V (C). If |N(v0) ∩ V (C)| ≥ k, then G has a copy of T centered at v0.

Proof. Let C = v0v1 · · · vcv0, where |C| ≥ |N(v0)∩V (C)|+1 ≥ k+1. Suppose
that T has s legs. We use induction on s. For s = 1, since |C| ≥ k + 1, the
lemma holds. Assume thus that s ≥ 2. Let L be a shortest leg of T with
e(L) = �. Let Q = v1v2 · · · v�. If k ≤ 2, the result trivially holds. Assume
that k ≥ 3, and so k − � ≥ 2. Thus, there is an integer q, � < q < c,
such that v0vq ∈ E(G). Choose such a q as small as possible, and let C ′ =
v0vqvq+1 · · · vcv0 and G′ = G−Q. Then

|NG′(v0) ∩ V (C ′)| ≥ k − e(v0, Q) ≥ k − �.

Let k′ = k− � and T ′ be the k′-edge spider obtained from T by deleting the
leg L, except for the center. By the induction, G′ has a copy of T ′ centered
at v0, which together with v0v1Q gives a copy of T centered at v0.

Lemma 4. Let C be a maximal cycle in G, containing a given vertex v0. Let
P = v0u1u2 · · ·u� be a path in which ui ∈ V (G − C), 1 ≤ i ≤ �. If |C| ≥ k
and e(u�, C − v0) ≥ k+1

2 − �, then for any given k-edge spider T of 3 legs, G
has a copy of T centered at v0.

Proof. Let L1, L2, L3 be the three legs of T , where e(L1) ≤ e(L2) ≤ e(L3).
Let C = v0v1v2 · · · vc. Let y1, y2, · · · , yt be the neighbors of u� on C − v0,
with that order around C, where

(1) t = e(u�, C − v0) ≥
k + 1

2
− �.



274 Genghua Fan and Zhenxiang Huo

If � ≥ e(L1), then P gives a copy of L1 and C gives L2, L3, which together
yield a copy of T centered at v0. Assume thus that � ≤ e(L1) − 1 ≤ k

3 − 1,
and thus t ≥ 2. For each yb, 1 ≤ b ≤ t, the cycle Cb = v0Pu�yby

−
b · · · v1v0

has length

|Cb| = e(P ) + 1 + e(C[v0, y1]) + e(C[y1, yb]).

By the maximality of C, e(C[v0, y1]) ≥ � + 1, and yi, yi+1 are not adjacent
on C, which implies that e(C[y1, yb]) ≥ 2(b− 1). Consequently,

(2) |Cb| ≥ �+ 1 + (�+ 1) + 2(b− 1) = 2(�+ b).

In particular, |Ct| ≥ 2(�+ t), and by (1),

|Ct| ≥ 2(�+ (
k + 1

2
− �)) = k + 1 ≥ e(L1) + e(L2) + 1.

So we may choose b such that |Cb| ≥ e(L1)+e(L2)+1, and subject to this, b is
as small as possible. If b > 1, by the minimality of b, |Cb−1| ≤ e(L1)+e(L2).
But, by (2) with b replaced by b− 1, we have that |Cb−1| ≥ 2(�+ b− 1), and
thus

(3) b ≤ e(L1) + e(L2)

2
− �+ 1.

If b = 1, since � ≤ e(L1) − 1, clearly we have (3). Using e(L1) + e(L2) =
k − e(L3) in (3), we obtain that

b ≤ k − e(L3)

2
− �+ 1,

which together with (1) yields that

t− b ≥ k + 1

2
− �− (

k − e(L3)

2
− �+ 1) =

e(L3)− 1

2
.

By the maximality of C, e(C[y+b , yt]) ≥ (2(t−b)−1) and e(C[yt, v0]) ≥ �+1.
Hence, the segment of C from y+b to v0 of length

e(C[y+b , yt]) + e(C[yt, v0]) ≥ (2(t− b)− 1) + (�+ 1) ≥ e(L3)− 1 + � ≥ e(L3),

which gives a path of length e(L3), starting at v0. Since |Cb| ≥ e(L1) +
e(L2)+1, we see that Cb gives two paths of lengths e(L1) and e(L2), respec-
tively, starting at v0. Thus G has a copy of T centered at v0.
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A cycle C in a graph G is 2-dominating if G − C consists of isolated
vertices and isolated edges. C is non-extendable if for each edge xy ∈ E(C),
there is no path xv1v2 · · · vsy with all vi ∈ V (G−C), 1 ≤ i ≤ s. The following
technical lemma was proved in [4].

Lemma 5. Let T be a k-edge spider. Let C be a 2-dominating non-extendable
cycle in a graph G and v0 ∈ V (C) with dG(v0) ≥ k. Suppose that for each
component H in G− C with V (H) ∩N(v0) �= ∅, we have that e(H,C) ≥ k

2
if H is a single vertex, and e(H,C) ≥ k − 1 if H is a single edge. Then G
has a copy of T .

3. Proof of the theorem

Proof. If this is not true, let G be a counterexample with a minimum number
of vertices. Let T be a k-edge spider of four legs. For any subgraph G′ of G,
since a copy of T in G′ is also a copy in G, by the minimality of G, we have
that e(G′) ≤ k−1

2 |V (G′)|. For any vertex v ∈ V (G), taking G′ = G − v, we
obtain that

(4) dG(v) ≥
k

2
,

and for any edge xy ∈ E(G), taking G′ = G− x− y, we have that

(5) dG(x) + dG(y) ≥ k + 1.

Suppose that L1, L2, L3 and L4 are the four legs of T . Let e(Li) = �i,
1 ≤ i ≤ 4. We may assume that 1 ≤ �1 ≤ �2 ≤ �3 ≤ �4. If �4 ≤ 4, we are done
by [5]. Suppose therefore that �4 ≥ 5, and thus k ≥ 8. By the minimality, G

is connected. Since e(G) > (k−1)n
2 , we have that Δ(G) ≥ k. We shall prove

that

Claim 1. There is a vertex x ∈ V (G) with dG(x) ≥ k and x is contained in
a cycle of length at least k.

Proof. If G is 2-connected, let x ∈ V (G) with d(x) = Δ(G) ≥ k. By

Lemma 1, x is contained in a cycle C of length at least |C| ≥ 2e(G)
n−1 > k− 1.

By integrality, |C| ≥ k.
If G is not 2-connected, let H be an endblock of G with b as the unique

cut vertex and set h = |V (H)|. Let R = G− (H − b). We have that V (R)∩
V (H) = b and E(R) ∩ E(H) = ∅. Then,

e(R) = e(G)− e(H) >
(k − 1)n

2
− e(H).
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If e(H) ≤ k−1
2 (h− 1), then e(R) > k−1

2 |V (R)|, contradicting the minimality
of G. Suppose thus that

e(H) >
k − 1

2
(h− 1).

Note that H is 2-connected. By Lemma 1, every vertex in H is contained in

a cycle C (in H) of length at least |C| ≥ 2e(H)
h−1 > k − 1, and by integrality,

|C| ≥ k. Thus, if there is a vertex x ∈ V (H) with dG(x) ≥ k, then we
have the claim. Suppose therefore that dH(v) = dG(v) ≤ k − 1 for each
v ∈ V (H − b) and dH(b) ≤ dG(b)− 1 ≤ k − 2, which means that

(6) e(H) ≤ (k − 1)(h− 1) + k − 2

2
=

(k − 1)h− 1

2
,

with equality only if dH(v) = k−1 for each v ∈ V (H−b) and dH(b) = k−2.
Since b is contained by a cycle C of length at least k in H, we see that H

has a copy of L3 ∪L4 centered at b. Noting that �1 + �2 ≤ k/2, if dR(b) ≥ 2,
then by (4) and Lemma 2, R has a copy of L1 ∪ L2 centered at b. Conse-
quently,G has a copy of T centered at b. Therefore we assume that dR(b) = 1.

Let B = R− b. By the minimality of G, e(B) ≤ (k−1)
2 |V (B)|, and so

e(H) + 1 = e(G)− e(B) >
k − 1

2
n− k − 1

2
|V (B)| = k − 1

2
h,

which gives that

e(H) ≥ (k − 1)h− 1

2
.

Thus we have equality in (6). So, dH(v) = k − 1 for each v ∈ V (H − b) and
dH(b) = k − 2 ≥ 3. By Lemma 2 with s = 3, H has a copy of L2 ∪ L3 ∪ L4

centered at b, and by (4), R has a path of length �1, starting at b. Together
G has a copy of T centered at b. This contradiction proves Claim 1.

By Claim 1, we may let

C = v0v1v2 · · · vc−1vcv0

be a cycle in G, where |C| ≥ k and dG(v0) ≥ k. Suppose that C has been cho-
sen such that |C| is as large as possible. If N(v0) ⊆ V (C), then by Lemma 3,
we are done. If for each component H of G − C with V (H) ∩ N(v0) �= ∅,
we have that |V (H)| ≤ 2, then let G′ be the graph obtained from G by
removing all components F of G−C with V (F ) ∩N(v0) = ∅. Then, by the
maximality of C and by (4) and (5), C is a cycle in G′ satisfying the condi-
tions of Lemma 5. By Lemma 5, G′ has a copy of T , and so does G. Assume
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therefore that there is a component H of G−C with V (H) ∩N(v0) �= ∅ and
|V (H)| ≥ 3. Let

P = v0u1u2 · · ·u�−1u�

be a path with ui ∈ V (H), 1 ≤ i ≤ �. Suppose that P has been chosen such
that � is as large as possible, and subject to this, dG(u�) is maximum. Since
|V (H)| ≥ 3, we see that � ≥ 2.

Let s be the smallest integer such that usu� ∈ E(G), where u0 = v0. Let
x1, x2, · · · , xp be the neighbors of u� in the order on P , where x1 = u�−1,
xp = us, and p = e(u�, P ). Let y1, y2, · · · , yt be the neighbors of u� on C−v0,
with that order around C, where t = e(u�, C − v0). By the maximality of P ,
NG(u�) ⊆ V (C) ∪ V (P ), and hence,

(7) t = dG(u�)− p.

By (4),

(8) t ≥ k

2
− p.

By definitions, p ≤ �. If p ≤ �− 1, then from (8) above,

(9) t ≥ k

2
− �+ 1.

If p = �, then uiu� ∈ E(G) for all i, 0 ≤ i ≤ � − 1, which implies that
v0u1 · · ·u�−2u�u�−1 is a path of the same length as P , and then by the choice
of P , dG(u�−1) ≤ dG(u�), and by (5), we have that dG(u�) ≥ k+1

2 . Applying
this to (7) yields that

(10) t ≥ k + 1

2
− �.

In either case, we have (10). Combining (10) and (8) yields that 2t ≥ k −
(�+ p) + 1

2 , and by integrality,

(11) 2t ≥ k − (�+ p) + 1.

The rest of the proof is divided into two parts, according to the values
of t.

Part I. t ≥ 2.

Case 1. p ≤ �1. As seen in the proof of (2), for each yb, 1 ≤ b ≤ t, the cycle
Cb = v0Pu�yby

−
b · · · v1v0 has length |Cb| ≥ 2(� + b). Let b be the smallest
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integer such that |Cb| ≥ �1 + �2 + 1. If b > 1, as seen in (3),

(12) b ≤ �1 + �2
2

− �+ 1.

Combining this with (10), we have that

t− b ≥ k + 1

2
− �1 + �2

2
− 1 ≥ �3 + �4 − 1

2
.

If b = 1, by (8) and using p ≤ �1, we have that

t− b = t− 1 ≥ k

2
− �1 − 1 ≥ �3 + �4

2
− 1.

In either case, using �4 ≥ 5, t − b ≥ �3+3
2 . Hence, the segment u�yb+1 · · ·

yb+2 · · · yty+t has length at least 2(t− b) > �3. Let

Q1 = u�yb+1 · · · yb+2 · · · ymy+m,

where m is the smallest integer such that e(Q1) ≥ �3. By this choice of m,
we have that m− b ≤ �3+1

2 , and so

(13) m ≤ �3 + 1

2
+ b.

If b > 1, by (12),

m ≤ �1 + �2 + �3 + 3

2
− � =

k − �4 + 3

2
− �.

That is, 2m ≤ k − �4 − 2�+ 3, which together with (11) gives that

(14) 2(t−m) ≥ �4 + �− p− 2.

Since p ≤ � and �4 ≥ 5, we have that t−m > 0. Thus, we may let

Q2 = u�ym+1 · · · yt · · · vc.

We have that

e(Q2) = 1 + e(C[ym+1, yt]) + e(C[yt, vc]).

Noting that e(C[ym+1, yt]) ≥ 2(t−m− 1) and e(C[yt, vc]) ≥ �,

(15) e(Q2) ≥ 2(t−m) + �− 1.
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By (14),

e(Q2) ≥ �4 + (�− p) + (�− 3).

If p ≤ � − 1 or � ≥ 3, then e(Q2) ≥ �4. Since |Cb| ≥ �1 + �2 + 1, there is a
copy of L1 ∪L2 centered at u� in Cb, which together with Q1 and Q2 yields
a copy of T centered at u�. Thus we have that p = � = 2, which means that
v0u2 ∈ E(G), and by the maximality of P and since |V (H)| ≥ 3, H is a star
centered at u1. Let u′ ∈ V (H) \ {u1, u2}. Then P ′ = v0u2u1u

′ is a path of
length e(P ) + 1, contradicting the choice of P . This shows that b = 1, and
then by (13),

(16) m ≤ �3 + 3

2
.

Combining this with (8), we have that t−m ≥ k−2p−�3−3
2 . Since 2p ≤ 2�1 ≤

�1 + �2, we obtain that t − m ≥ �4−3
2 > 0. Thus, we have the path Q2 in

(15). Combining (16) with (11) and using p ≤ �1,

2(t−m) ≥ k − (�+ �1 + �3)− 2.

Applying this to (15) gives that

(17) e(Q2) ≥ k − (�1 + �3)− 3 = �4 + �2 − 3.

If �2 ≥ 3, then e(Q2) ≥ �4, and as above we are done. We shall show that
this is indeed the case. If not, then �1 ≤ �2 ≤ 2. Let Q′

2 = Q2 ∪ (vcv0v1).
Using (17),

e(Q′
2) ≥ e(Q2) + 2 ≥ �4 + �2 − 1 ≥ �4.

Since |V (H)| ≥ 3 and u� is the end of a maximum path, there is a path P1

in H, starting at u� and e(P1) ≥ 2. Let P2 = u�y1y
−
1 . Then, P1, P2, Q1, Q

′
2

together give a copy of T centered at u�. This proves Case 1.

Case 2. �1 + 1 ≤ p ≤ �1 + �2. Let P
′ = u�u�−1 · · ·ur with e(P ′) = �1. Then

e(u�, P
′) ≤ �1, and so there is i < r such that uiu� ∈ E(G). Choose such an

i as large as possible and consider the cycle

C ′
b = u�uiui−1 · · ·u1v0v1 · · · y1 · · · ybu�.

Then

|C ′
b| = e(P [ui, v0]) + e(C[v0, y1]) + e(C[y1, yb]) + 2.



280 Genghua Fan and Zhenxiang Huo

Using that e(P [ui, v0]) ≥ p− �1 − 1, e(C[v0, y1]) ≥ �+ 1, and e(C[y1, yb]) ≥
2(b− 1), we obtain that

(18) |C ′
b| ≥ 2b+ �+ p− �1.

In particular, |C ′
t| ≥ 2t+�+p−�1, and by (11), |C ′

t| ≥ k−�1+1 > �2+�3+1.
Hence we may choose the smallest b such that |C ′

b| ≥ �2 + �3 + 1.
If b > 1, then |C ′

b−1| ≤ �2 + �3. By (18) with b− 1 in the place, we have
that

2(b− 1) + �+ p− �1 ≤ �2 + �3.

That is,

2(b− 1) ≤ �1 + �2 + �3 − (�+ p) = k − �4 − (�+ p).

By (11), 2(b− 1) ≤ 2t− 1− �4, which gives that

(19) 2(t− b) ≥ �4 − 1.

So t− b > 0 and we may let

Q = u�yb+1 · · · yt · · · vc−1vc.

We have that

(20) e(Q) = 1 + e(C[yb+1], yt]) + e(C[yt, vc]) ≥ 1 + 2(t− b− 1) + �.

By (19), e(Q) ≥ �4 + �− 2 ≥ �4.
If b = 1, then since t ≥ 2, we directly have that t − b > 0, and as

above, we also have the path Q. Substituting b = 1 in (20) yields that
e(Q) ≥ 2t + � − 3, and by (11), e(Q) ≥ k − p − 2. Since p ≤ �1 + �2, we
have that e(Q) ≥ �4 + �3 − 2. If �1 = �2 = �3 = 1, then it is easy to see that
G has a copy of T centered at v0. We assume thus that �3 ≥ 2, and hence,
e(Q) ≥ �4.

In either case (b > 1 or b = 1), we have the path Q with e(Q) ≥ �4.
Then, Q gives a path of length �4 starting at u�, P

′ is a path of length �1
starting at u�, and C ′

b has a copy of L2 ∪ L3 centered at u�. Together, we
have a copy of T centered at u�.

Case 3. p ≥ �1+ �2+1. Let q = �1+ �2. The cycle C1 = P [u�, xq]∪xqu� has
length at least �1+ �2+1, which gives a copy of L1 ∪L2 centered at u�. The
cycle C2 = u�xq+1 · · ·xp · · ·u1v0v1 · · · y1 · · · ytu� has length

|C2| ≥ p− (�1 + �2) + (�+ 1) + 2(t− 1) + 1 = p+ �− (�1 + �2) + 2t.
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By (11), |C2| ≥ k − (�1 + �2) + 1 = �3 + �4 + 1. So C2 has a copy of L3 ∪ L4

centered at u�. Together we have a copy of T centered at u�. This completes
the proof of Part I.

Part II. t ≤ 1.

By (10), � ≥ k−1
2 . If v0u� ∈ E(G), then C ′ = P ∪ {v0u�} is a cycle of

length at least |C ′| = � + 1 ≥ k+1
2 > �1 + �2. So C ′ gives a copy of L1 ∪ L2

centered at v0. Together with a copy of L3∪L4 centered at v0 in C, we have
a copy of T centered at v0. Thus v0u� /∈ E(G). That is, xp �= v0.

Let q = �1+�2+�3. If p ≥ q, consider the cycle Cq = xq · · ·u�−1u�xq. Then
Cq contains q neighbors of u�. It follows from Lemma 3 that there is a copy of
L1∪L2∪L3 centered at u�. If p ≥ q+1, then u�xq+1 · · ·xp · · ·u1v0v1v2 · · · vc
give a path of length �4 starting at u�; if p = q and t = 1, then u�y1y

+
1 · · ·

vcv0v1 · · · y−1 gives a path of length �4 starting at u�. In either case, we have
a copy of T centered at u�. In what follows, we assume that,

p ≤ �1 + �2 + �3,

with equality only if t = 0. By (8), k ≤ 2p+ 2t, and so

�1 + �2 + �3 = k − �4 ≤ 2p+ 2t− �4.

Combining the above two inequalities, we obtain that �4 ≤ p + 2t, with
equality only if t = 0. Noting that t ≤ 1, we have that

(21) �4 ≤ p+ 1.

Let P1 be the segment of P from xp to u�. Let P0 be a shortest path from
v0 to xp with all internal vertices in V (H − P1). (Such a path exists since
v0u1u2 · · ·xp is a candidate.) Let P ′ = P0 ∪ P1. Then e(P ′) ≥ p+ 1, and by
(21), e(P ′) ≥ �4, which means that P ′ has a copy of L4 centered at v0.

If v0ur ∈ E(G) for some ur ∈ V (P1−xp), then let j be the largest integer
with j < r and uju� ∈ E(G) and consider the cycle

C ′ = v0urur+1 · · ·u�ujuj−1 · · ·xpP0v0.

Then NH(u�) ⊆ V (C ′) and {u�, v0} ⊆ V (C ′), and hence |C ′| ≥ p + 2. But,
by (8) and since t ≤ 1, we have that p ≥ k

2 − 1, and so |C ′| ≥ k
2 + 1, which

means that C ′ has a copy of L1 ∪L2 centered at v0. As seen before, G has a
copy of T centered at v0. This shows that N(v0)∩V (P1−xp) = ∅. Moreover,
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by the minimality of P0, |N(v0) ∩ V (P0)| = 1, and hence

(22) |N(v0) ∩ V (P ′)| = 1.

Let u ∈ V (G) \ (V (P ′) ∪ V (C)). If e(u, P0) ≥ 4 (so it must be that
u ∈ V (H−P ′)), then P0+u contains a shorter path from v0 to xp through u,
contradicting the choice of P0. Thus,

(23) e(u, P0) ≤ 3.

Let T ′ = L1∪L2∪L3, k
′ = |T ′| = k−�4, and G′ = G−(P ′−v0). By (22),

dG′(v0) ≥ dG(v0)− 1. If NG′(v0) ⊆ V (C), then by Lemma 3, G′ has a copy
of T ′ centered at v0, which together with P ′ gives a copy of T centered at v0.
Thus, there is w1 ∈ V (G′ − C) and v0w1 ∈ E(G′). Let W = v0w1w2 · · ·wm

be a longest path in G′ in which wi ∈ V (G′ − C), 1 ≤ i ≤ m. If, in G,
wmur ∈ E(G) for some ur ∈ V (P1−xp), then as seen in C ′ above (with v0ur
replaced by v0Wwmur), we have a copy of T centered at v0. Therefore, in G,

e(wm, P1 − xp) = 0.

By (23), e(wm, P0) ≤ 3, and consequently

(24) e(wm, P ′) ≤ 3.

By the maximality of W , NG′(wm) ⊆ V (W ) ∪ V (C), and so

e(wm, C − v0) ≥ dG(wm)− e(wm, P ′ ∪W ).

By (24) and noting that V (P ′)∩V (W ) = {v0}, we have that e(wm, P ′∪W ) ≤
m+ 2, and so e(wm, C − v0) ≥ k

2 −m− 2. Using �4 ≥ 5, we obtain that

e(wm, C − v0) ≥
k′ + 1

2
−m.

It follows from Lemma 4 that G′ has a copy of T ′ centered at v0, which
together with P ′ gives a copy of T centered at v0. This completes the proof
of the theorem.
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