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Let G be a graph, let Γ be an Abelian group with identity 0Γ,
and, for each vertex v of G, let p(v) be a prescription such that∑

v∈V (G) p(v) = 0Γ. A (Γ, p)-flow consists of an orientation D of

G and, for each edge e of G, a label f(e) in Γ \ {0Γ} such that, for
each vertex v of G,

∑

e points in to v

f(e)−
∑

e points out fromv

f(e) = p(v).

If such an orientation D and labelling f exists for all such p, then
G is Γ-connected.

Our main result is that if G is a 5-edge-connected planar graph
and |Γ| ≥ 3, then G is Γ-connected. This is equivalent to a dual
colourability statement proved by Lai and Li (2007): planar graphs
with girth at least 5 are “Γ-colourable”. Our proof is considerably
shorter than theirs. Moreover, the Γ-colourability result of Lai and
Li is already a consequence of Thomassen’s (2003) 3-list-colour
proof for planar graphs of girth at least 5.

Our theorem (as well as the girth 5 colourability result) easily
implies that every 5-edge-connected planar graph for which |E(G)|
is a multiple of 3 has a claw decomposition, resolving a question of
Barát and Thomassen. It also easily implies the dual of Grötzsch’s
Theorem, that every planar graph without 1- or 3-cut has a 3-flow;
this is equivalent to Grötzsch’s Theorem.

1. Introduction

Barát and Thomassen [1] considered whether there is a particular edge-
connectivity kc so that every kc-edge-connected graph G with |E(G)| a mul-
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tiple of 3 has a claw-decomposition (for a simple graph, this means its edge
set partitions into sets of size 3, each inducing a K1,3). Thomassen [13] re-
cently showed edge-connectivity 8 suffices. (This has recently been reduced
to 6 by Lovász et al. [9].) Barát and Thomassen further thought that re-
stricting attention to planar graphs would be more tractable. For example,
Dehn [4] proved that every planar triangulation (minus a 3-cycle) has a
claw-decomposition.

Jaeger et al. [5] introduced the notions of group colouring and group
connectivity to generalize colourings and flows in graphs. Let Γ be an Abelian
group with identity 0Γ. Assign to each edge of a graph G an orientation and
some element w(e) ∈ Γ. A (Γ, w)-colouring is a function c : V (G) → Γ such
that, for each oriented edge uv of G, c(u) �= c(v) + w(uv). The graph G is
Γ-colourable if, for every w, G has a (Γ, w)-colouring.

Likewise, if, for each vertex v of G, we assign an element p(v) ∈ Γ such
that

∑
v∈V (G) p(v) = 0Γ, then a (Γ, p)-flow consists of an orientation D of

G and a function f : E(G) → Γ \ {0Γ} such that, for every vertex v of G,

∑

e∈δ+(v)
f(e)−

∑

e∈δ−(v)

f(e) = p(v) .

Here δ+(v) and δ−(v) are the sets of edges oriented to point in to v and out
from v, respectively. The graph G is Γ-connected if, for every p, there is a
(Γ, p)-flow.

A consequence of a principal result in [5] is that a 2-connected planar
graphG is Γ-colourable if and only if its dual is Γ-connected. This generalizes
the usual duality between colourings of a planar graph and flows in its dual.

Thomassen [12] proved that planar graphs with girth 5 are 3-list colour-
able. As we discuss in the next section, his proof adapts almost verbatim,
with only small changes in how the lists are manipulated, to prove that
girth 5 planar graphs are Γ-colourable, as long as Γ is an Abelian group
with at least three elements. Lai and Li [6] also prove this result, with a
minor strengthening.

Combined with the duality result of [5], the colourability result implies
that every 5-edge-connected planar graphG is Γ-connected for every Abelian
group Γ with at least three elements. In particular, a 5-edge-connected planar
graph G has a claw-decomposition if |E(G)| a multiple of 3. Lai [7] presented
a 4-edge-connected example that shows that 5-edge-connected cannot be
reduced to 4-edge-connected.

The main purpose of this work is to give a substantially simpler proof
of the dual form of the group colourability result. That is, we give a direct
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proof of the fact that every 5-edge-connected planar graph is Γ-connected,
as long as Γ has at least three elements. This implies the claw-decomposition
result mentioned in the preceding paragraph and it implies Tutte’s 3-flow
conjecture for planar graphs. This latter is the dual of Grötzsch’s Theorem;
a proof of the flow version can be found in Steinberg and Younger [10].

Our proof is found in Section 3. Some reflections on connections between
list-colourability and group-colourabilty, and their dual statements, are in
the next section. Our final Section 4 relates our theorem to nowhere-zero
3-flows and claw-decompositions in planar graphs.

2. List-colouring, group-colouring and group-connection

In this section, we provide some remarks and questions relating list-colouring
and group-colouring and comments on group-connectivity. We begin by re-
calling the following two theorems due to Thomassen.

Theorem 2.1 ([11]). Every simple planar graph is 5-list-colourable.

Theorem 2.2 ([12]). Every planar graph of girth at least 5 is 3-list-colour-
able.

Lai and Li [6] adapted the proof of Theorem 2.2 to show that if Γ is an
Abelian group with at least 3 elements, then G is Γ-colourable. Chuang, Lai,
Omidi, Wang, and Zakeri [3] did the same type of adaption to Theorem 2.1.
We point out below that virtually no adaption is required; the proofs in [11]
and [12] apply directly.

The original version of this paper only proved that 5-edge-connected
planar graphs are Z3-connected. At that time, we were unaware of [6, 3].
After learning of [6, 3], we recognized a few points that seem to be quite
general.

The arguments in [11, 12] have the character of describing an ordering
to colour the vertices such that, when a particular vertex is to be coloured, a
colour available for that vertex is not used on any of its coloured neighbours.
The mechanism is to use the sizes of the lists to guarantee such an available
colour.

Theorem 2.3. If Γ is a group with at least five elements, then every simple
planar graph is Γ-colourable. Dually, every 3-edge-connected planar graph is
Γ-connected.

Theorem 2.4. If Γ is a group with at least three elements, then every planar
graph with girth at least 5 is Γ-colourable. Dually, every 5-edge-connected
planar graph is Γ-connected.
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In fact, Theorems 2.1 and 2.2 generalize even further. The lists of size 5
or 3 can be chosen from an Abelian group of size at least 5 or 3 and there
is still a group-colouring. It is not necessary to allow all group elements at
each vertex, as long as there are enough of them.

We illustrate the essential idea using the last paragraph (page 181 in
[11]) of the proof of Theorem 2.3. The vertex vp in the boundary is deleted.
Two colours x, y in L(vp) \ {1} are chosen (1 being the colour of v1). In the
(Γ, w)-colouring context, we have a label w(v1vp) on the oriented edge v1vp
and a colour c(v1) for v1. We choose x, y as two colours in L(vp) such that
x �= c(v1) + w(v1vp) and y �= c(v1) + w(v1vp). This guarantees that we can,
at least with respect to v1, freely colour vp with either x or y.

The other choices to be made in this case are to remove two elements
of each L(ui) depending on x, y. We may assume vpui has this orientation,
and we delete x+w(vpui) and y+w(vpui) from L(ui). We are then assured
that the inductive colourings of the ui will permit the use of either x or y
at vp.

For Theorem 2.4, the case of a separating pentagon in the proof from
[12] also requires a modification of the edge-weights.

With respect to our proof in the next section, a similar phenomenon
occurs. We proved our result originally only thinking about Z3-connection.
The significant point in the proof is that, anytime you have two or more
unoriented and unlabelled edges at a vertex u, there is an orientation and
non-zero labelling for these edges so as to realize p(u).

This fact is true as long as the group Γ has at least two non-zero elements.
Therefore, it was a very simple matter to edit our argument to the form
presented here.

A very natural question is motivated by the well-known fact that the
number of nowhere-zero Γ-flows on G depends only on |Γ|. It was already
raised by Jaeger et al. [5], even for the smallest case Γ = Z4 and Ω = Z2×Z2.

Question 2.5 ([5]). Suppose G is a graph and Γ and Ω are finite Abelian
groups such that |Γ| = |Ω|. Is it true that if G is Γ-connected, then G is
Ω-connected?

It is our belief that many theorems about k-list colourings will generalize
to Γ-colourability for the reasons mentioned above.

We can easily show that the following variation of Brooks’ Theorem
holds.

Theorem 2.6. Let G be a connected, simple graph with maximum degree Δ
and let Γ be any group with at least Δ elements. Then either: G is Γ-colour-
able; or |Γ| = 2 and G is a cycle (possibly even); or G is K|Γ|+1.
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Proof. The proof of Brooks’ Theorem in [2] applies in much the same way.
One first uses induction to show that we may assume G is |Γ|-regular, so
|Γ| = Δ. The cases Δ ≤ 2 are trivial, so we assume Δ ≥ 3.

If G is 2-connected, then we use the extension of the Lovász proof [8],
described in detail in [2]: either G is complete or there exist vertices x, y, z
such that xz, yz are edges ofG, xy is not an edge, andG−{x, y} is connected.
The Γ-colouring is assured in this case by first colouring x and y so as to
both forbid the same colour at z. Then colour the vertices of G − {x, y}
starting with those furthest from z in G−{x, y} and finishing with z. For a
vertex of G− {x, y, z}, when it is coloured it has an uncoloured neighbour,
so fewer than Δ colours are forbidden. When z is coloured, the choices of the
colours at x and y imply that fewer than Δ colours are forbidden. Thus, in
all cases, some colour is always available to colour each vertex of G−{x, y},
yielding the desired Γ-colouring of G.

In the case G has a cut-vertex, let H and K be subgraphs of G, each
with at least one edge, such that G = H ∪K, and H ∩K consists of a single
vertex v. Since G is Δ-regular and connected, neither H nor K is Δ-regular
and, therefore, each has an appropriate Γ-colouring, say cH and cK .

If cH(v) �= cK(v), we adjust the colouring of cK by replacing each cK(w)
with cK(w) + (cH(v) − cK(v)). This is still a Γ-colouring of K and now
cH(v) = cK(v), so cH and cK combine to give the required Γ-colouring
of G.

We remark that graphs with multiple edges (but no loops) are interesting
in the context of group-colouring. The proof above shows that, if G is a
connected graph such that, for some weights w(e), G has no (Γ, w)-colouring,
where |Γ| = Δ, the simplification of G is either a cycle or complete, and G
is Δ-regular. Is there a non-trivial characterization of the triples (G,Γ, w)
(where |Γ| = Δ) such that G has no (Γ, w)-colouring?

3. Group-connection of 5-edge-connected planar graphs

In general, our graphs are loopless, but may have multiple edges. A cut
δ(A) in a graph G is non-peripheral if both |A| ≥ 2 and |V (G) \ A| ≥ 2.
For an orientationD ofG and subset A of V (G), we use δ+(A) for {e∈E(G) |
e points in to A in D} and δ−(A) for {e∈E(G) | e points out from A in D}.
Clearly, δ(A) = δ+(A) ∪ δ−(A).

For an Abelian group Γ, we set Γ∗ = Γ \ {0Γ}. For an orientation D of
G and labelling f : E(G) → Γ∗, for each v ∈ V (G), we set

F (v) =
∑

e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e) .
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Theorem 3.1. Let Γ be any Abelian group with at least three elements and
let G be a 3-edge-connected graph embedded in the plane with at most two
specified vertices d and t such that:

1. if d exists, then it has degree 3, 4, or 5, has its incident edges ori-
ented and labelled with elements in Γ∗, and is in the boundary of the
unbounded face;

2. if t exists, then it has degree 3 and is in the boundary of the unbounded
face;

3. there are at most two 3-cuts, which can only be δ({d}) and δ({t});
4. if d has degree 5, then t does not exist; and
5. every vertex not in the boundary of the unbounded face has five edge-

disjoint paths to the boundary of the unbounded face.

If every vertex v has a prescribed flow p(v) ∈ Γ such that
∑

v p(v) = 0Γ, and
F (d) = p(d), then the given orientation and flow extends to a (Γ, p)-flow.

In the proof, we refer to the subgraph of G consisting of those vertices
and edges incident with the unbounded face as the boundary . A vertex or
edge not in the boundary is interior .

Proof. The proof is by induction on the number of edges.
We start with an elementary observation that is used throughout the

remainder of this work. Suppose x is a vertex such that all edges incident
with x except e and f are oriented and labelled with elements of Γ∗. For
any orientations of e and f , and any choice of element of Γ∗ on e, there is
an element of Γ that may be assigned to f to realize p(x). Since there are at
least two choices from Γ∗ to assign to e, at least one of them will also give
a non-zero assignment to f .

We start with some prior reductions.

(PR1) A 2-cycle consisting of unoriented edges.
Contract the entire set of multiple edges, any two of which make
a 2-cycle. The result has a flow f by induction. Complete the
flow on G by orienting and placing flows on the contracted edges
to realize the prescription at one of their incident vertices. The
other incident vertex will automatically realize its prescription,
since there cannot be only one vertex not realizing its prescrip-
tion.
Henceforth, we assume G has no 2-cycle of unoriented edges.

(PR2) A cut-vertex.
If v is a cut-vertex, then the edge-connectivity implies v has
degree at least 6 and so is neither t nor d. Let H and K be
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non-trivial subgraphs, each with at least two vertices, so that
G = H ∪ K and H ∩ K is just v. If degH(v) ≥ 4, then the
induction applies directly to H. If degH(v) = 3, then H is just
v and one of d and t. (In fact, H is just v and d by (PR1)).
The prescription for v in both H and K is determined by the
remaining vertices in the appropriate subgraph. In all cases,
both H and K have (Γ, p)-flows, yielding the desired flow for G.
Henceforth, we assume G is 2-connected.

(PR3) A non-peripheral 4-cut δ(A).
Choose the labelling of A so that d, if it exists, is in A; con-
tract G − A to a vertex to get G1 and use induction to obtain
a (Γ, p)-flow on G1. Now contract G[A] in G to become the ver-
tex v in the graph G2. The edges incident with v inherit their
orientations and flow values from G1. Use induction to obtain
a (Γ, p)-flow on G2. The flows combine to yield the desired flow
on G.

(PR4) A non-peripheral 5-cut that does not separate d from t.
This is essentially the same as for a non-peripheral 4-cut.

(PR5) d has degree 5.
Let e be one of the boundary edges incident with d, with v its
other end.
Let G′ = G − e, let α in Γ∗ be the label of e, and set the
prescription p′ on G′ to be p except that the tail x of e satisfies
p′(x) = p(x) + α and the head y of e satisfies p′(y) = p(y)− α.
Note that v is the only possible degree 3 vertex in G′; all other
vertices have degree at least 4 and every interior vertex of G′

has (in G and therefore in G′) five edge-disjoint paths to the
boundary of G′.
Since every non-peripheral cut in G has size at least 4, clearly
every non-peripheral cut in G′ has size at least 3, so G′ is 3-
edge-connected. Moreover, if |δG′(A)| = 3, then e ∈ δG(A), so
that G has a non-peripheral 4-cut, handled by (PR3).
Henceforth we assume that, if d exists, then deg(d) ≤ 4.

(PR6) A non-peripheral 5-cut δ(A) such that δ(A)∩δ({t}) has precisely
one edge, which is in the boundary.
Suppose δ(A) is such a 5-cut in G such that d ∈ A. By (PR4),
we know t /∈ A. Suppose some edge incident with t is in δ(A).
First contract V \ A to orient G/(V \ A) by induction. Then
contract A to a, with the edges incident with a inheriting their
orientations from G/(V \ A). In G/A, a has degree 5 and t has
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degree 3. Orient the edges incident with t (two are not incident
with a) and assign elements from Γ∗ to them to achieve p(t),
delete t, and adjust the labels on the neighbours appropriately.
The vertex a now has degree 4 in (G/A) − t and at most one
vertex in (G/A)− t has degree 3. Since any non-peripheral cut
of size s in (G/A)− t yields a non-peripheral cut in G− t of size
s, there is a non-peripheral cut in G of size at most s+1. Since
s+ 1 ≥ 5, s ≥ 4, so the induction applies to (G/A)− t.

(PR7) An undirected chord of the cycle bounding the unbounded face
and incident with a vertex of degree 3 or 4.
Let uv be a chord with u having degree 3 or 4. Let H and K be
the two subgraphs of G so that G = H∪K and H∩K is just uv,
u, and v; the labelling is chosen so that d, if it exists, is in H. By
(PR1), K has some vertex other than u and v and, therefore, at
least two such vertices. Thus, (PR3) shows |δ(V (H))| ≥ 5.
Contract uv in H. The prescription at the vertex of contraction
is determined so as to make the sum of prescriptions in H/uv
add up to 0Γ. The induction yields an orientation of H/uv. To
apply the induction to K, we first orient and put non-zero flows
on the (2 or 3) edges of K incident with u to combine with
the orientations and flows on the edges of H incident with u to
realize p(u), then add one new edge directed from u to v, with
flow α ∈ Γ∗, and apply the induction to K + uv (with p′(u) =
p(u) + α and p′(v) selected to make the sum of prescriptions in
K + uv equal to 0Γ). The combination of (Γ, p)-flows yields the
desired flow on G.

We now consider all the various possibilities for the existence of d and t.

1. d does not exist.
If some boundary vertex has degree at most 4, then orient and label
its edges to achieve its prescription. Otherwise, orient a boundary edge
e with label α ∈ Γ∗, add α to the prescription of its tail, subtract α
from the prescription of its head, and delete e.
In the case e is deleted, no non-peripheral 3-cut is introduced, as such
a 3-cut δG−e(A) implies δG(A) is a non-peripheral 4-cut in G, allowing
the reduction (PR3). Thus Conditions 1–4 are evidently satisfied in
G− e. Any vertex v not in the boundary of the infinite face of G− e is
not in the boundary of the infinite face of G and, therefore, there are
five edge-disjoint paths from v to the boundary of the infinite face of G.
These paths are also five edge-disjoint paths from v to the boundary
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of the infinite face of G− e, yielding 5. There is a (Γ, p)-flow on G− e
and, therefore, including the orientation and labelling of e, on G.
Henceforth, we assume d exists. In our future reductions, the verifica-
tions of Conditions 1–5 all follow the same routine. Only when non-
peripheral 3-cuts may be introduced is there something significant to
check; we consider this possibility when relevant below.

2. d and t are adjacent.
Orient and label the two edges at t other than dt to realize p(t) and
contract dt to become d (with a new prescription) in the new graph.
The induction completes the orientation of G.

3. d has degree 4 and t does not exist.
Delete one of the boundary edges e incident with d, and adjust the
prescriptions on the ends of e.

4. d has degree 3 and t does not exist.
Delete d and appropriately change the prescriptions at its neighbours
(for example, if e is incident with d and points in to u with label α,
then p(u) changes to p(u)− α). The only possible degree 3 vertices in
G−d are the neighbours of d incident with the unbounded face. If both
have degree 3, then appropriately orient the edges incident with one
of the two. This oriented vertex becomes d while the other becomes t.
In this case, G−d has no non-peripheral 3-cut, since d may be reintro-
duced so as to increase the size of the cut to at most 4 in G, yielding
reduction (PR3).

Henceforth, we may assume d and t both exist. By hypothesis, d has
degree either 3 or 4. The boundary neighbours of t are u and v, while
its third neighbour is w.

5. At least one of u or v has degree 5 or more.
By (PR7), no edge incident with t is a chord of the cycle bounding the
unbounded face. Orient and label the three edges incident with t to
achieve p(t), delete t, and appropriately modify the prescriptions on
the neighbours of t. The resulting graph G − t has no non-peripheral
3-cut for the same reason as in 4.
Henceforth, we assume both u and v have degree 4 in G.
A principle method we adopt is to lift two edges incident with u; there
is an analogous lift at v. This means deleting the two edges ux and
uy and adding a new edge xy (even if one already exists), which we
call eu. In our context, the two edges at u will always be the boundary
edge ux that is not ut, and its interior neighbour uy. If du is an edge,
then we orient and label eu to be consistent at d with du.
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A (Γ, p)-flow of the resulting graph will yield a (Γ, p)-flow of G in

which the direction and label of eu are naturally transferred to give

directions and labels to ux and uy. These will not affect the net flow

F (u).

6. u is not adjacent to w.

As described just above, lift the two edges at u, orient and label the

remaining two edges incident with u to realize its prescription, and

orient and label the other two edges at t to realize p(t). Delete the four

oriented and labelled edges and adjust accordingly the prescriptions

on the remaining neighbours of u and t. Let G′ be the resulting graph.

The only 3-vertex in G′ other than d is v.

There are five edges joining G[{u, t}] to G− {u, t}. If δG′(A) is a non-

peripheral cut in G′, then either δG(A) or δG(A ∪ {u, t}) has size at

most two more than δG′(A). Since both these cuts in G have size at

least 5, |δG′(A)| ≥ 3.

Suppose that δG′(A) is a non-peripheral 3-cut in G′ such that d ∈ A.

If |δG(A ∪ {u, t})| = 5, then δG(A ∪ {u, t}) is a 5-cut that does not

separate d and t, allowing reduction (PR4). Thus, we may assume

|δG(A∪{u, t})| ≥ 6. Therefore, at least three of the five edges incident

with u and t, other than ut, have an end in V (G) \ (A ∪ {u, t}).
It follows that at most two of the five edges incident with u and t,

other than ut, have an end in A. Thus, |δG(A)| ≤ 5. Reduction (PR3)

allows us to assume |δG(A)| ≥ 5, in which case |δG(A)| = 5.

If t is incident with an edge of δG(A), then we have reduction (PR6).

Therefore, both edges incident with t but not with u have their ends

in V (G) \ (A ∪ {u, t}). In this case, |δ(A ∪ {u})| = 5 and t is incident

with an edge of δ(A ∪ {u}), again allowing reduction (PR6).

This leaves one final case.

7. Both u and v are adjacent to w.

Let e1 and e2 be the two edges incident with v but not incident with

either t or w and, for i = 1, 2, let vi be the other end of ei. Orient

and label e1 and e2 to realize p(v). Delete e1 and e2 and adjust the

prescriptions at v1 and v2 accordingly. The new prescription at v is 0Γ.

Choose the labelling of e1 and e2 so that e1 and v1 are in the boundary.

Let Gv be obtained from G − {e1, e2} by contracting the subgraph

induced by {t, u, v, w} to a single vertex x. Note that degGv
(x) =

(degG(u)−2)+(degG(w)−3) ≥ 4. Thus, v1 is the only possible degree

3 vertex in Gv other than d.
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The prescription at x is the one required to make the sum of all pre-
scriptions in Gv be 0Γ.
If δGv

(A) is any non-peripheral cut in Gv, labelled so that x /∈ A,
then δG(A)| ⊆ δGv

(A)∪ {e1, e2}. By reduction (PR3), we may assume
|δG(A)| ≥ 5, so |δGv

(A)| ≥ 3.
Suppose δGv

(A) is a non-peripheral 3-cut in Gv, labelled so that x /∈ A.
Then |δG(A)| = 5 and e1, e2 ∈ δG(A).
Evidently, deg(v) = 4 and vt, vw /∈ δG(A), so |δG(A ∪ {v})| = 5.
Since u, t, w /∈ A, δG(A ∪ {v}) is non-peripheral. But tv ∈ δG(A ∪
{v}), yielding reduction (PR6). Thus, we may assume Gv has no non-
peripheral 3-cuts. In this case, the induction showsGv has a (Γ, p)-flow.
The flows on the edges in Gv are transferred to G. The orientations
and labels on e1 and e2 are known. Orient and label the edges uw and
ut to satisfy p(u) and then orient and label tw and tv to satisfy p(t).
Finally, orient and label vw so that tv and vw make a directed path
of length 2 with the same labels. Observe that w is the only vertex
for which it is possible that F (w) is not equal to p(w). However, there
cannot be only one mismatch, so we have a (Γ, p)-flow on G.

4. 3-flows and claw-decompositions in planar graphs

In this section, we give the simple applications of Theorem 3.1 to 3-flows
and claw-decompositions. The first is the dual of Grötzsch’s Theorem.

Theorem 4.1. Every planar graph without 1- or 3-cut has a balanced mod-3
orientation, or, equivalently, a nowhere-zero 3-flow.

Proof. It is easy and standard to use the induction to eliminate any 0- or
2-cut. Now, in addition to no 1- or 3-cut, we add the condition that there
is an oriented vertex d of degree 4 or 5 whose incident edges are already
oriented so that the in- and out-degrees at d are the same modulo 3. The
induction now easily applies if there is a non-peripheral 4- or 5-cut.

Next we lift a degree 4 vertex, if there is one, into two edges and apply
induction. In the remaining case, Theorem 3.1 applies with all prescriptions
0Z3

; the resulting orientation is a nowhere-zero Z3-flow. In a standard way
(see, for example, [14]), this implies there is a nowhere-zero 3-flow.

In the context of a graph G with multiple edges but not loops, a claw is
three edges incident with a common vertex and a claw-decomposition of G
is a partition of E(G) into claws.

Theorem 4.2. Every 5-edge-connected planar graph G for which |E(G)| is
a multiple of 3 has a claw-decomposition.
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Proof. Apply Theorem 3.1 with Γ = Z3 and, for each vertex v of G, set
p(v) to be, modulo 3, the degree d(v). Let f be the resulting nowhere-zero
Z3-flow. For each edge e of G with f(e) = 2, reverse the orientation and
replace the label 2 with 1. The result is a new Z3-flow f ′ such that, for every
edge e, f ′(e) = 1.

In f ′, the number in(v) of edges pointing in to v in f ′ less the number
out(v) of edges pointing out is congruent to d(v) (mod 3). We also trivially
have in(v) + out(v) = d(v). From these two congruences, we conclude that
in(v) ≡ d(v) (mod 3) and out(v) ≡ 0 (mod 3). Thus, the out-going arcs can
be divided into claws.

In particular, if a planar triangulation is 5-edge-connected, then it has
a claw decomposition. More generally, we have the following.

Corollary 4.3. If G is a simple triangulation of the plane other than K4,
then G has a claw decomposition.

Proof. We may assume the triangulation is not 5-edge-connected. If it is not
4-edge-connected, then it has a vertex v of degree 3. If it is 4-edge-connected,
not 5-edge-connected, and not K4, then it has a vertex v of degree 4. In both
cases we delete v. In order to apply the induction when deg(v) = 4, we may
add one of the two edges in the face of length 4 to get a smaller simple
triangulation. In either case, if the smaller triangulation is not K4, then we
apply the induction.

In both cases, if the smaller triangulation is K4, then the original trian-
gulation is K5 − e, which has a claw decomposition, with each claw having
a degree 4 vertex as its centre.
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