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Root-theoretic Young diagrams and Schubert
calculus II

Dominic Searles

We continue the study of root-theoretic Young diagrams (RYDs)
from [Searles-Yong ’13]. We provide an RYD formula for the GLn

Belkale-Kumar product, after [Knutson-Purbhoo ’11], and we give
a translation of the indexing set of [Buch-Kresch-Tamvakis ’09] for
Schubert varieties of non-maximal isotropic Grassmannians into
RYDs. We then use this translation to prove that the RYD for-
mulas of [Searles-Yong ’13] for Schubert calculus of the classical
(co)adjoint varieties agree with the Pieri rules of [Buch-Kresch-
Tamvakis ’09]. This is needed in the proofs of the (co)adjoint for-
mulas.
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1. Introduction

1.1. Overview

In [21], A. Yong and the author study root-theoretic Young diagrams (RYDs),
which are one of several natural choices of indexing set for the Schubert
subvarieties of generalized flag varieties. The thesis of that paper and the
present one is that RYDs are useful for studying general patterns in Schubert
combinatorics in a uniform manner. The main evidence introduced in [21] is
rules for Schubert calculus of the classical (co)adjoint varieties in terms of
RYDs, and a relation between planarity of the root poset for a (co)adjoint
variety and polytopalness of the nonzero Schubert structure constants for
its cohomology ring.

The problem of finding a nonnegative, integral combinatorial rule for
the Schubert structure constants of the cohomology ring of a generalized
flag variety is longstanding. Much progress has been made on this problem,
see, e.g., the survey [8]. One of the more recent areas of progress is in the
study of the Belkale-Kumar product, introduced by P. Belkale and S. Kumar
in [2]. The structure constants of the Belkale-Kumar product in the case of
GLn are described by a beautiful formula of A. Knutson-K. Purbhoo [9] in
terms of puzzles. In this paper, we use a factorization formula of [9] to derive
a new formula in terms of RYDs for the Belkale-Kumar product.

We find that the RYD formula manifests in a simple way the prod-
uct/factorization structure of the Belkale-Kumar coefficients in terms of
Schubert structure constants of Grassmannians. In particular, RYDs allow us
to visually reduce computation of these coefficients to a collection of indepen-
dent calculations using the jeu de taquin algorithm of M.-P. Schützenberger
[20]. The RYD description also provides a concrete context to explain in
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what sense the Belkale-Kumar product is “easier” than the cup product.

Specifically, the RYDs naturally consist of a number of regions. In the rule

for the Belkale-Kumar coefficients there is no interaction between these re-

gions and they can be treated independently of each other. This is not

true for the Schubert structure constants, e.g., Example 1.4 exhibits con-

cretely how the Belkale-Kumar case differs from the general problem. With

O. Pechenik [11], we also use RYDs to introduce a new product, a special

case of which is the Belkale-Kumar product. This yields a new, short proof

that the Belkale-Kumar product is well-defined.

We would like to study, compare and understand disparate models and

problems in Schubert calculus through the common lens of RYDs. Towards

this end, we consider also the family of non-maximal isotropic Grassman-

nians. A. Buch-A. Kresch-H. Tamvakis [6] define an indexing set for the

Schubert varieties of non-maximal isotropic Grassmannians, and use this

indexing set to give particularly nice Pieri rules for the Schubert calculus of

these spaces. The Schubert calculus formulas of [21] for (co)adjoint varieties

of classical Lie type were discovered using the RYD model to index Schubert

varieties. The proof of these formulas requires Pieri rules for (co)adjoint va-

rieties, the most interesting of which belong to the family of non-maximal

isotropic Grassmannians. Therefore, we provide a reformulation of the in-

dexing set of [6] in terms of RYDs.

In these (co)adjoint cases, we use this reformulation to prove the restric-

tion to the Pieri cases of the formulas of [21, Theorem 4.1] and [21, Theorem

5.3] agrees with the Pieri rule of [6]. In tandem with the proofs of associa-

tivity of the (co)adjoint formulas given in [21], this completes the proofs of

the (co)adjoint formulas.

1.2. The Belkale-Kumar product for GLn/P

The Belkale-Kumar product is a certain deformation of the usual cup prod-

uct for H�(G/P ). Our first result is an RYD formula for this product in the

case G = GLn, after [9]. RYDs are in fact defined for any generalized flag

variety G/P , where G is a complex reductive Lie group and P is a parabolic

subgroup of G; see [21] for further details.

Fix a set k = {k1, . . . , kd−1} of integers satisfying 0 < k1 < . . . < kd−1 <

n. Let Flk := Flk1,...,kd−1;Cn denote the (d − 1)-step flag variety in Cn,

where the d − 1 nested subspaces of Cn have dimensions k1, . . . , kd−1. The

Schubert varieties of Flk are indexed by the set Sk
n of elements of the

symmetric group Sn that have descents only in positions k1, . . . , kd−1.
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For Flk, the RYDs of [21] are the inversion sets of the elements of Sk
n

in the poset ΩGLn
of positive roots of GLn. Let Yk be the set of RYDs

for Flk.

Let Ii denote the interval [ki−1+1, ki] for 1 ≤ i ≤ d, where we set k0 = 0

and kd = n. Let (a, b) ∈ ΩGLn
index the root ea − eb under the standard

embedding of the type An−1 root system into Rn. For each pair i, j with

1 ≤ i < j ≤ d, we define an associated region Λij
k := Ii × Ij of ΩGLn

. We

will show in the following section (Claim 2.5) that each RYD λ ∈ Yk consists

of a lower order ideal in each of these
(
d
2

)
regions.

Example 1.1. Let Flk = Fl1,3,5;C7. We have 5371624, 3462715 ∈ Sk
7 . Below,

their RYDs are shown as a subset (black) of the poset ΩGL7
. The thicker black

lines show the regions Λij
k .
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Let Cν
λ,μ(Flk) denote the Schubert structure constants for the co-

homology ring H�(Flk), i.e.,

σλ · σμ =
∑
ν

Cν
λ,μ(Flk)σν .

For an RYD λ ∈ Yk, let λij denote the restriction of λ to the region

Λij
k . Define a triple (λ, μ, ν) ∈ (Yk)

3 to be Levi-movable if Cν
λ,μ(Flk) �= 0

and |λij | + |μij | = |νij | for all regions Λij
k . This is essentially identical to

the inversion set definition of Levi-movability in the GLn case from [9]. It

follows from Theorem 1.2 below that, for GLn, our definition is equivalent

to the geometric definition of Levi-movability of [2]. Define

bνλ,μ(Flk) =

{
Cν
λ,μ(Flk) if (λ, μ, ν) is Levi-movable

0 otherwise.

Then the Belkale-Kumar product �0 on H�(Flk) is defined by
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σλ �0 σμ =
∑
ν

bνλ,μ(Flk)σν .

For further details regarding the Belkale-Kumar product, see [2]. We also
learned much of the background from [19].

Our formula uses the jeu de taquin introduced in [20]. The following
setup in terms of root posets is similar to that employed in [23]. Given a
subset S of Λij

k , define a partial labelling TS of Λij
k by bijectively assigning

each root in S a number from {1, . . . , |S|}, subject to the condition that a
root α receives a smaller number than a root α′ whenever α ≺ α′. Roots
in Λij

k that have no label will be called unlabelled. Let λ, μ, ν ∈ Yk. Let
ν/λ denote the set-theoretic difference of ν and λ, and call ν/λ a skew
RYD.

Starting with a given labelling Tνij/λij
, choose an unlabelled root α of Λij

k

which is maximal subject to the condition that some labelled root is above it.
Among the labelled roots covering α, choose the root α′ having the smallest
label. Move its label to α, leaving α′ unlabelled. Then find the labelled root
covering α′ with smallest label, and move its label to α′. Continue in this
manner until a label is moved from a root that has no labelled root above
it. Then, choose an unlabelled root of Λij

k , maximal such that some labelled
root is above it and perform the same process. Repeat until there is no
unlabelled root below a labelled root. Let jdt(Tνij/λij

) denote the resulting

partial labelling of Λij
k . See Example 1.3 below for an example of jeu de

taquin.

Fix a choice of labelling Tμij
. Let e

νij

λij ,μij
denote the number of labellings

Tνij/λij
such that jdt(Tνij/λij

) = Tμij
. Then the Belkale-Kumar coefficient

bνλ,μ(Flk) is computed by taking the skew RYD ν/λ, performing the jeu de
taquin algorithm independently on each region of ΩGLn

, and multiplying the
resulting numbers e

νij

λij ,μij
. In other words:

Theorem 1.2.

bνλ,μ(Flk) =
∏

regions Λij
k

e
νij

λij ,μij
.

We prove this in Section 2.

Example 1.3. Let n = 7 and k = {3, 6}. Then Flk = Fl3,6;C7, and 1362475,
1462573, 3572461 ∈ Sk

7 . Let (respectively) λ, μ, ν be the corresponding RYDs.
Below is a choice of labellings {Tμij

} corresponding to the RYD μ, and
the two labellings {Tνij/λij

} corresponding to the skew RYD ν/λ such that

jdt(Tνij/λij
) = Tμij

in each region Λij
k .
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By the jeu de taquin algorithm, eν12

λ12,μ12
= 2, eν13

λ13,μ13
= 1, eν23

λ23,μ23
= 1, so

bνλ,μ(Fl3,6;C7) = 2 · 1 · 1 = 2.

In contrast, for general Schubert structure constants not covered by

Theorem 1.2 the regions are not independent. For example, let n = 5 and

k = {2, 4}.

Example 1.4. σ12453 · σ34125 = σ35142 + σ34251 + σ45123 ∈ H�(Fl2,4;C5).

Pictorially:
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The RYDs for 12453 and 34125 use no roots from Λ13
k , but the RYDs

for 35142, 34251 and 45123 all use roots from this region. In particular, by

Theorem 1.2 this immediately implies σ12453 �0 σ34125 = 0.

Example 1.5. For purposes of comparison, we compute the example of [9,

Figure 2] in terms of RYDs. Let n = 5 and k = {2, 4}; we use Theorem 1.2 to
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compute the structure constant bνλ,μ(Fl2,4;C5) = b3524134152,13254(Fl2,4;C5). Below

is the only possible set of labellings {Tμij
} corresponding to the RYD μ, and

the only possible set of labellings {Tνij/λij
} corresponding to the skew RYD

ν/λ.
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Since jdt(Tνij/λij
) = Tμij

in each region Λij
k , we have bνλ,μ(Fl2,4;C5) = 1.

The Belkale-Kumar product has recently been utilized to obtain results

concerning eigencones ([14], [16], [3], [17]). In [18], the Belkale-Kumar prod-

uct is generalized to the branching Schubert calculus setting. Fulton’s con-

jecture, proved in [10] (also geometrically in [1] and [15]) has also been

generalized by [4] using the Belkale-Kumar product.

1.3. Nonmaximal isotropic Grassmannians

Fix a positive integer k < n. A (nonmaximal) isotropic Grassmannian

is the set of k-dimensional isotropic subspaces of a vector space with a

non-degenerate symmetric or skew-symmetric bilinear form. Specifically,

they are the odd orthogonal Grassmannian OG(k, 2n + 1), the Lagrangian

Grassmannian LG(k, 2n), and the even orthogonal Grassmannian

OG(k, 2n).

The Schubert varieties of OG(k, 2n+1) and LG(k, 2n) are both indexed

by a set denoted WOG(k,2n+1), and the Schubert varieties of OG(k, 2n) are

indexed by a set WOG(k,2n). The elements of these sets are certain signed

permutations corresponding to Weyl group cosets, and are described explic-

itly in Section 3.

For OG(k, 2n + 1)/LG(k, 2n) (respectively, OG(k, 2n)), the RYDs of

[21] are the inversion sets of the elements of WOG(k,2n+1) (respectively,

WOG(k,2n)) in the type Bn root poset ΩSO2n+1
(respectively, the type Dn

root poset ΩSO2n
). Let YOG(k,2n+1) (respectively, YOG(k,2n)) denote the set

of RYDs associated to WOG(k,2n+1) (respectively, WOG(k,2n)).

Example 1.6. Below are two RYDs shown inside ΩSO11
. The first is an

element of YOG(3,11), the second an element of YOG(4,11).
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Example 1.7. Below are two RYDs shown inside ΩSO12
. The first is an

element of YOG(3,12), and also shown is a “double-tailed diamond” from
its base region (see the explanation below). The second is an element of
YOG(4,12).
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We now explain the diagrams shown in Examples 1.6 and 1.7 above.
Let {β1, . . . , βn} denote the roots of the standard embedding of the type Bn

(respectively, Dn) root system into Rn.

Let Λk denote the subposet of ΩSO2n+1
(respectively, ΩSO2n

) consisting
of all roots above the kth simple root βk. In Examples 1.6 and 1.7, Λk is the
set of roots above the thicker black lines.

Every RYD in YOG(k,2n+1) (respectively, YOG(k,2n)) is contained in this
subposet Λk (see Lemma 3.6). We divide Λk into a base region and a top
region. In Examples 1.6 and 1.7, the thicker black lines show Λk and its
division into these two regions. In each type, the top region is a “staircase”
(k − 1, k − 2, . . . , 0). In types Bn/Cn the base region is a k × (2n+ 1− 2k)
“rectangle”, while in type Dn the base region consists of k “double-tailed
diamonds” (following the nomenclature of [23]) each having 2n− 2k roots.
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It is straightforward to show that every RYD λ consists of a lower order
ideal in each region. Then an RYD λ for a nonmaximal isotropic Grassman-
nian has a natural visual interpretation as a pair of partitions (λ(1)|λ(2)),
corresponding to the base and top regions. This allows us to write the RYDs
in a compact way. Pairs of partitions are used in other indexing sets for
Schubert varieties for these spaces, see, e.g., [12], [13], [22], [8], [7], but the
pairs of partitions used in these indexing sets differ from those arising from
RYDs.

We now describe the pair of partitions (λ(1)|λ(2)) associated to an RYD
λ. In each type, λ(2) is a strict partition in (k − 1, k − 2, . . . , 0). In types
Bn/Cn, λ

(1) is a partition in k× (2n+1−2k). In type Dn, λ
(1) is a partition

in k × (2n − 2k), and also if λ
(1)
i = n − k for some 1 ≤ i ≤ k we assign a ↑

(respectively, ↓) if λ uses the root above βn−1 (respectively, βn) in the ith
double-tailed diamond.

Example 1.8. In the partition pair notation, the RYDs of Example 1.6 are
respectively ((4, 1, 1)|(2, 0, 0)) and ((3, 2, 1, 0)|(2, 1, 0, 0)), and the RYDs of
Example 1.7 are respectively ((4, 3, 3)|(2, 1, 0))↑ and ((4, 3, 3, 1)|(3, 1, 0, 0)).

We now follow [6] in indexing Schubert varieties by (n− k)-strict parti-
tions. An (n− k)-strict partition is defined to be a partition γ such that
γi > γi+1 whenever γi > n− k. The Schubert varieties of OG(k, 2n+1) and
LG(k, 2n) are indexed by the set P (n−k, n) of all (n−k)-strict partitions in
a k× (2n−k) rectangle. The Schubert varieties of OG(k, 2n) are indexed by
the set P̃ (n− k, n) of all pairs γ̃ = (γ; type(γ)), where γ is an (n− k)-strict
partition in a k × (2n− 1− k) rectangle, and also type(γ) = 0 if no part of
γ has size n− k and type(γ) ∈ {1, 2} otherwise.

We obtain the following translations between RYDs and the indexing
sets of [6]:

Proposition 1.9. There is a bijection fk : YOG(k,2n+1) → P (n − k, n) for
each 1 ≤ k < n, via

fk(λ) = (λ
(1)
i + λ

(2)
i )1≤i≤k.

The Schubert variety indexed by λ is equal to the Schubert variety indexed
by fk(λ).

Example 1.10. The RYDs shown in Example 1.6 correspond respectively
to (6, 1, 1) ∈ P (2, 5) and (5, 3, 1) ∈ P (1, 5).

Proposition 1.11. There is a bijection Fk : YOG(k,2n) → P̃ (n − k, n) for
each 1 ≤ k < n, via



168 Dominic Searles

Fk(λ) =

⎧⎪⎪⎨
⎪⎪⎩
((λ

(1)
i + λ

(2)
i )1≤i≤k; 1) if λ is assigned ↑

((λ
(1)
i + λ

(2)
i )1≤i≤k; 2) if λ is assigned ↓

((λ
(1)
i + λ

(2)
i )1≤i≤k; 0) otherwise

The Schubert variety indexed by λ is equal to the Schubert variety indexed
by Fk(λ).

Example 1.12. The RYDs shown in Example 1.7 correspond respectively
to ((6, 4, 3); 1) ∈ P (3, 6) and ((7, 4, 3, 1); 0) ∈ P (2, 6).

We prove Propositions 1.9 and 1.11 in Section 3.
Propositions 1.9 and 1.11 are used to prove agreement of [21, Theorem

4.1] and [21, Theorem 5.3] with the Pieri rules of [6]. Specifically, let � denote
the product on RYDs of [21, Theorem 4.1] or [21, Theorem 5.3], and let Ψ
denote the linear map determined by sending an RYD λ to its corresponding
Schubert class σλ.

Theorem 1.13. Suppose λ is an RYD indexing a Pieri class. Then

(I) If λ, μ ∈ YOG(2,2n+1), then Ψ(λ � μ) = σf2(λ) · σf2(μ) ∈ H�(LG(2, 2n))
(II) If λ, μ ∈ YOG(2,2n), then Ψ(λ � μ) = σF2(λ) · σF2(μ) ∈ H�(OG(2, 2n)).

We prove Theorem 1.13(I) in Section 4 and Theorem 1.13(II) in Sec-
tion 5.

Theorem 1.13 is needed for the proofs of the Schubert calculus for-
mulas of [21] for the (co)adjoint varieties OG(2, 2n + 1), LG(2, 2n) and
OG(2, 2n). As discussed in [21], the correctness of the Schubert calculus rule
for LG(2, 2n) implies the correctness of the rule for the adjoint OG(2, 2n+1),
so we do not need to prove this case separately.

2. RYDs for GLn/P and proof of Theorem 1.2

In this section, we characterize the subsets S of the poset ΩGLn
of positive

roots of GLn that are RYDs for the flag variety Flk (for a fixed choice of
k = {k1, . . . , kd−1}). In particular, this shows the RYDs are lower order
ideals in each region Λij

k = [ki−1 + 1, ki] × [kj−1 + 1, kj ] of ΩGLn
. We then

prove an RYD rule for the Belkale-Kumar product for GLn/P (Theorem 1.2
from the introduction).

Call S ⊂ ΩGLn
a k-diagram if the roots in S form a lower order ideal

in each region Λij
k , and also S satisfies a hook condition: a root α must be

in S (respectively, must not be in S) if more than half of the roots in ΩGLn

diagonally south-east and south-west of α are in S (respectively, not in S).
(If exactly half of these roots are in S, no condition is imposed on α.)
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Let Ŷk denote the set of all k-diagrams. We are not aware of any reference
for the following proposition, which we establish via several claims that we
prove below.

Proposition 2.1. The set of RYDs associated to Flk is the same as the set
of k-diagrams, i.e., Yk = Ŷk.

Proof. Our proof strategy is to establish two maps (Claims 2.2, 2.3) that
compose to give an injection from the set of k-diagrams to the RYDs for
Flk (specifically, to the indexing set Sk

n of the RYDs for Flk). We then show
(Claim 2.5) that every RYD for Flk is in fact a k-diagram.

Let C denote the set of all nonnegative integer vectors c = (c1, . . . , cn−1)
satisfying cj ≤ n − j. Let Ck ⊂ C denote the set of c ∈ C such that for
1 ≤ j < n, cj > cj+1 only if j and j + 1 are not in the same interval
Ii = [ki−1 + 1, ki] (we set cn = 0). For any permutation w ∈ Sn, its code is
defined to be the vector cw ∈ C such that (cw)i is the number of positions j
satisfying i < j and w(i) > w(j). For example, if n = 7 and k = {1, 3, 5, 6}
then w = 5361742 ∈ Sk

7 has code cw = (4, 2, 3, 0, 2, 1) ∈ Ck. The following is
clear:

Claim 2.2. The map that takes w ∈ Sk
n to its code cw is a bijection Sk

n → Ck.

Given S ⊂ ΩGLn
, define a nonnegative integer vector hS = (h1, . . . hn−1)

by letting hj be the number of roots of the form (j, b) = ej − eb in S.

Claim 2.3. The map that takes a k-diagram θ to hθ is an injection Ŷk → Ck.

Proof. By definition, hj ≤ n − j. The condition that the roots in θ form a
lower order ideal in each region forces hj > hj+1 only if j and j + 1 are not
in the same interval Ii. So hθ ∈ Ck.

To show injectivity, we will show that given c ∈ C, there is a unique
S ⊂ ΩGLn

satisfying both hS = c and the hook condition. We construct S
by coloring a root of ΩGLn

black if it is in S, and white if it is not in S. If
cn−1 = 0 then we must color the root (n − 1, n) white, and if cn−1 = 1 we
must color it black. Now proceed inductively. Fix j < n− 1 and suppose all
roots of the form (a, b) with a > j have been colored white or black. Use the
following procedure to color roots of the form (j, b) black one-by-one until hj
such roots have been colored black, at which point terminate the procedure
and color all remaining such roots white:

If there exists a root of the form (j, b) such that exactly half of the roots
diagonally south-east and south-west of it are colored black, then color the
highest such root black. Otherwise, color the lowest root of the form (j, b)
black.
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It is clear that each coloring of a root in the above procedure is forced
by the hook condition. Therefore, since the elements of Ŷk satisfy the hook
condition, the map Ŷk → Ck is injective.

Example 2.4. Suppose c = (4, 2, 3, 0, 2, 1). Then the unique S satisfying
hS = c and the hook condition is shown below, with the roots in S labelled
according to the order in which they were colored black by the procedure of
Claim 2.3.
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Claim 2.5. Every RYD associated to Flk is a k-diagram, i.e., Yk ⊆ Ŷk.

Proof. Let λ ∈ Yk and let w be the element of Sk
n corresponding to λ.

Consider a region Λij
k of ΩGLn

. Let a, a′ ∈ Ii and b, b′ ∈ Ij , and suppose
(a′, b′) 
 (a, b) in ΩGLn

. Then by definition, a ≤ a′ and b′ ≤ b. If also
w(a) > w(b), then since w is increasing on Ii and Ij , we have w(a′) > w(b′).

Thus the restriction λij of λ to Λij
k is a lower order ideal in Λij

k . It remains
to show λ satisfies the hook condition. Consider any root (a, b) ∈ ΩGLn

.
The hook associated to (a, b) is all roots (a, l) for a < l < b and all roots
(j, b) for a < j < b. If more than half of these are inverted by w, then there
exists an m with a < m < b such that w(a) > w(m) and w(m) > w(b),
hence w must invert (a, b). Similarly, if fewer than half of the roots in the
hook are inverted, then w cannot invert (a, b). Thus λ satisfies the hook
condition.

Composing the injection from Claim 2.3 with the bijection of Claim 2.2
yields an injection Ŷk → Sk

n. By definition Yk is in bijection with Sk
n, thus

we have an injection Ŷk → Yk. By Claim 2.5, Yk ⊆ Ŷk, so Yk = Ŷk, proving
Proposition 2.1.

We now prove Theorem 1.2 from the introduction, namely, the Belkale-
Kumar structure constant bνλ,μ(Flk) is computed by taking the skew RYD
ν/λ, performing the jeu de taquin algorithm independently on each region
Λk
ij of ΩGLn

, and multiplying the resulting numbers e
νij

λij ,μij
, i.e.,

bνλ,μ(Flk) =
∏

regions Λij
k

e
νij

λij ,μij
.
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Proof of Theorem 1.2. Our strategy is to show that Theorem 1.2 agrees with

a factorization formula (Theorem 2.6 of [9]) for the Belkale-Kumar structure

constants for GLn/P .

Let ri = |Ii| = ki − ki−1. We now follow [9] in describing a different

indexing set for the Schubert varieties of Flk and its relation to Sk
n. Let

Gk
n denote the set of n-letter words τ from the alphabet {1, . . . , d}, such

that the letter i is used ri times in τ . Then the Schubert varieties of Flk
are indexed by the elements of Gk

n. Define a map f : Gk
n → Sk

n by letting

f(τ) be the permutation, in one-line notation, obtained by writing down the

positions of the ones in order, then the positions of the twos in order, etc. For

example, if k = {3, 5, 6} and τ = 2431121 ∈ Gk
7 then f(τ) = 4571632 ∈ Sk

7 .

This is a bijection, and the Schubert variety of Flk indexed by τ is equal

to the Schubert variety indexed by f(τ). Given i, j with 1 ≤ i < j ≤
d, let Dij(τ) be the word obtained by deleting all letters of τ that are

not i or j. Then Dij(τ) indexes a Schubert variety in the Grassmannian

Grri(C
ri+rj ).

Theorem 2.6. [9, Theorem 3] Let τ, π, ρ ∈ Gk
n. Then

bρτ,π(Flk) =
∏

1≤i<j≤d

C
Dij(ρ)
Dij(τ),Dij(π)

(Grri(C
ri+rj )).

Now let w ∈ Sk
n. Define D′

ij(w) to be the permutation on {1, . . . , ri +
rj} whose entries are in the same relative order as the entries of the word

obtained by deleting all entries of w except those in Ii or Ij . For example,

let n = 7, k = {2, 5}, and w = 2614537 ∈ Sk
7 . Then D′

13(w) = 1324, since

deleting all entries of w except those in I1 or I3 yields 2637, which is in the

same relative order as 1324. This process is the same as in [19, Definition

1], where it is noted this is also the flattening function of [5].

By definition, D′
ij(w) ∈ S

{ri}
ri+rj . Thus D

′
ij(w) indexes a Schubert variety

in the Grassmannian Grri(C
ri+rj ), and the RYD corresponding to D′

ij(w)

has only a single region inside ΩGLri+rj
. We will denote this region Λri,ri+rj .

Note that Λri,ri+rj is the subposet of ΩGLri+rj
consisting of all roots above

the rith simple root eri − eri+1.

Example 2.7. Let n = 7 and k = {2, 5}. Then r1 = 2, r2 = 3 and r3 = 2.

Let w = 2614537 ∈ Sk
7 and λ the corresponding RYD. Below are λ and the

RYDs for, respectively, D′
12(w) = 25134 ∈ S

{2}
5 , D′

13(w) = 1324 ∈ S
{2}
4 and

D′
23(w) = 13425 ∈ S

{3}
5 .
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The following is clear from the definitions:

Lemma 2.8. Let τ ∈ Gk
n. Then D′

ij(f(τ)) = f(Dij(τ)).

Let λ, μ, ν ∈ Yk, respectively corresponding to permutations u, v, w ∈
Sk
n. By Theorem 2.6 and Lemma 2.8, we have

bνλ,μ(Flk) = bwu,v(Flk) =
∏

1≤i<j≤d

C
D′

ij(w)

D′
ij(u),D

′
ij(v)

(Grri(C
ri+rj )).

Straightforwardly, Λij
k ⊂ ΩGLn

is isomorphic (as a poset) to Λri,ri+rj , and

the roots in Λij
k inverted by w correspond to the roots of Λri,ri+rj inverted by

D′
ij(w) (as depicted in Example 2.7). Jeu de taquin is known to compute the

Schubert structure constants for Grassmannians (see, e.g., [23] for this root-

theoretic setting). Therefore, we have C
D′

ij(w)

D′
ij(u),D

′
ij(v)

(Grri(C
ri+rj )) = e

νij

λij ,μij
,

proving Theorem 1.2.

3. Proof of Propositions 1.9 and 1.11

3.1. Proof of Proposition 1.9

We recall Proposition 1.9 from the introduction states there is a bijection
fk : YOG(k,2n+1) → P (n− k, n) for each 1 ≤ k < n, via

fk(λ) = (λ
(1)
i + λ

(2)
i )1≤i≤k,

and the Schubert variety indexed by λ is equal to the Schubert variety
indexed by fk(λ).
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Here YOG(k,2n+1) is the set of RYDs for bothOG(k, 2n+1) and LG(k, 2n),
and P (n−k, n) is the set of (n−k)-strict partitions in a k×(2n−k) rectangle.

Our proof strategy is as follows. We use a bijection given in [6] between a
combinatorial indexing set of [12] for Schubert varieties and the (n−k)-strict
partitions of [6] to write down a bijection between WOG(k,2n+1) and P (n−
k, n), such that w ∈ WOG(k,2n+1) and its image in P (n−k, n) index the same
Schubert variety (Corollary 3.4). We identify certain subsets of Λk we call
WOG(k,2n+1)-diagrams; every RYD is a WOG(k,2n+1)-diagram (Lemma 3.6).
We show the map fk is an injection from the set of WOG(k,2n+1)-diagrams
to P (n− k, n) (Lemma 3.7). With the bijection of Corollary 3.4, this shows
the RYDs are exactly the WOG(k,2n+1)-diagrams and that fk is a bijection
(Corollary 3.8). Given w ∈ WOG(k,2n+1), we describe the RYD associated
to w (Lemma 3.9). We use this description, along with the description of
the (n − k)-strict partition associated to w from Corollary 3.4, to show
an RYD λ and its image fk(λ) ∈ P (n − k, n) index the same Schubert
variety.

Fix k < n. We follow [12]. The set WOG(k,2n+1) consists of all signed
permutations of the form

(y1, y2, . . . , yk−r, zr, zr−1, . . . z1, v1, v2, . . . vn−k)

where bars denote negative entries, y1 < y2 < . . . < yk−r, zr > zr−1 > . . . >
z1, v1 < v2 < . . . < vn−k and 0 ≤ r ≤ k.

Define a PR shape to be a pair of strict partitions α = (αt, αb) sat-
isfying αt ⊆ (n − k) × n, αb ⊆ k × n and αt

n−k ≥ l(αb) + 1. Let PR(k, n)

denote the set of PR shapes. Then [12] indexes the elements of WOG(k,2n+1)

by PR shapes as follows:

Lemma 3.1. [12, Lemma 1.2] WOG(k,2n+1) is in bijection with PR(k, n)
via

αb
j = n+ 1− zj , 1 ≤ j ≤ r

αt
s = n+ 1− vs + |{q : zq < vs}|, 1 ≤ s ≤ n− k.

Claim 3.2. Let α ∈ PR(k, n). Then α̃t := αt − (n− k, n− k − 1, . . . , 1) is
a partition in (n− k)× k.

Proof. We have αt
s = n+1−vs+|{q : zq < vs}| ≥ n+1−vs ≥ n+1−(s+k) =

n− k− (s− 1), so α̃t
s ≥ 0. (The second inequality holds since v1, . . . , vn−k is

a strictly increasing sequence and vn−k ≤ n, implying vs ≤ s+ k.) Since αt

is strict, αt
s ≤ n− (s−1). Hence α̃t

s ≤ n− (s−1)− (n−k− (s−1)) = k.
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Given w ∈ WOG(k,2n+1), let Y = {1, . . . , k − r}, Z = {k − r + 1, . . . , k}
and V = {k + 1, . . . , n}. Note that if k + 1 − i ∈ Z then the (k + 1 − i)th
entry of w is zi, while if k + 1 − i ∈ Y then the (k + 1 − i)th entry of w is
yk+1−i.

Claim 3.3. For 1 ≤ i ≤ k, the length of the ith column of (the Ferrers
diagram of) α̃t is n−k if k+1−i ∈ Z, and |{l : yk+1−i > vl}| if k+1−i ∈ Y .

Proof. By definition, the length of the sth row of α̃t is k + s − vs + |{q :
zq < vs}| = k− |{t : yt < vs}|. Then if k+1− i ∈ Z, the ith column has the
maximal possible length n− k since k− |{t : yt < vs}| is never smaller than
k − |Y |. Now suppose k + 1 − i ∈ Y . Then the length of the ith column is
equal to the largest s such that yk+1−i > vs, i.e., |{l : yk+1−i > vl}|.

Let (α̃t)′ denote the conjugate partition of α̃t. The bijection PR(k, n) →
P (n− k, n) is given by α �→ (α̃t)′ + αb. (See [6, page 46].)

Corollary 3.4. For w ∈ WOG(k,2n+1), define an (n − k)-strict partition γ
by

γi =

{
(n− k) + (n+ 1− zi) if k + 1− i ∈ Z

|{l : yk+1−i > vl}| if k + 1− i ∈ Y .

for each 1 ≤ i ≤ k. This gives a bijection between WOG(k,2n+1) and P (n −
k, n), and γ indexes the same Schubert variety as w.

Proof. Compose the bijection WOG(k,2n+1) → PR(k, n) of Lemma 3.1 with
the bijection PR(k, n) → P (n− k, n), using Claim 3.3.

Example 3.5. Let w = (2, 3, 7, 8, 4, 1, 5, 6) ∈ WOG(5,17). The corresponding
PR shape is α = ((8, 5, 4), (5, 1)) ∈ PR(5, 8). Then α̃t = (5, 3, 3) and (α̃t)′ =
(3, 3, 3, 1, 1). The corresponding γ ∈ P (3, 8) is γ = (8, 4, 3, 1, 1).

In the standard embedding of the Bn root system into Rn, denote the
root ea − eb by (a, b,−), ea + eb by (a, b,+), and ea by (a). Then the base
region of Λk consists of all (a, b,±) with a ≥ k > b and all (a) with a ≥ k,
while the top region consists of all (a, b,+) with a > b ≥ k. Let w(a) denote
the number in position a of w, ignoring whether that entry is barred. Call a
subset S ⊂ Λk a WOG(k,2n+1)-diagram if the roots in S form a lower order
ideal in each region, and also satisfy a support condition: A root (a, b,+)
in the top region must be in S if S uses more than 2n + 1 − 2k roots in
the ath and bth rows combined, similarly, (a, b,+) must not be in S if S
uses fewer than 2n+1− 2k roots in the ath and bth rows combined, and no
condition is imposed on (a, b,+) if S uses exactly 2n+1−2k roots in the ath
and bth rows combined (compare this to the hook condition of the previous
section). Let ŶOG(k,2n+1) denote the set of all WOG(k,2n+1)-diagrams.
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Lemma 3.6. Every RYD is a WOG(k,2n+1)-diagram, i.e., YOG(k,2n+1) ⊆
ŶOG(k,2n+1).

Proof. The fact that RYDs are contained in Λk follows from the definition
of WOG(k,2n+1). This set is the set of minimal length coset representatives of
W/WP , where W is the Weyl group of G (generated by the reflections asso-
ciated to the simple roots {β1, . . . , βn} of G) and WP ⊂ W is generated by
the reflections associated to {β1, . . . , βk−1, βk+1, . . . , βn}. A minimal length
coset representative w does not invert any simple root other than βk, and
since every root outside Λk is a positive combination of simple roots outside
Λk, w does not invert any root outside Λk.

That the inversion set of w is a lower order ideal in each region and satis-
fies the support condition may be proved by a straightforward computation
of the inversion sets.

Lemma 3.7. The map fk : λ �→ (λ
(1)
i + λ

(2)
i )1≤i≤k of Proposition 1.9 is an

injection ŶOG(k,2n+1) → P (n− k, n).

Proof. Let λ ∈ ŶOG(k,2n+1). We first show fk(λ) ∈ P (n − k, n). It is clear

from the definition of a WOG(k,2n+1)-diagram that fk(λ) is a partition in

k×(2n−k). To see that it is (n−k)-strict, suppose for some i that λ
(1)
i +λ

(2)
i >

n − k and λ
(1)
i+1 + λ

(2)
i+1 > n − k. By the support condition, this implies

λ
(1)
i > n−k and λ

(1)
i+1 > n−k. Then the support condition also implies that

λ
(2)
i > 0, since the root (i, i+1,+) must be in λ. Then since λ(2) is strict, we

have λ
(2)
i > λ

(2)
i+1. Thus λ

(1)
i +λ

(2)
i > λ

(1)
i+1+λ

(2)
i+1, and so fk(λ) ∈ P (n−k, n).

Now suppose for a contradiction that fk is not injective, i.e., there exist

λ, μ ∈ ŶOG(k,2n+1) such that λ �= μ but λ
(1)
i +λ

(2)
i = μ

(1)
i +μ

(2)
i for all 1 ≤ i ≤

k. Let j be largest such that λ
(1)
j �= μ

(1)
j (such a j must exist), and assume

without loss of generality that λ
(1)
j > μ

(1)
j . Then by the support condition,

every root in the top region of the form (a, j,+) which is in μ is also in λ. So

λ
(2)
j ≥ μ

(2)
j , contradicting the assumption that λ

(1)
j + λ

(2)
j = μ

(1)
j + μ

(2)
j .

Corollary 3.8. The set of RYDs is equal to the set of WOG(k,2n+1)-diagrams,
i.e, YOG(k,2n+1) = ŶOG(k,2n+1). Furthermore, fk : YOG(k,2n+1) → P (n−k, n)
is a bijection.

Proof. Lemma 3.7 gives an injection ŶOG(k,2n+1) → P (n−k, n). Since Corol-

lary 3.4 establishes a bijection P (n − k, n) → WOG(k,2n+1), and by defi-
nition WOG(k,2n+1) is in bijection with YOG(k,2n+1), we have an injection

ŶOG(k,2n+1) → YOG(k,2n+1). By Lemma 3.6, YOG(k,2n+1) ⊆ ŶOG(k,2n+1). So
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YOG(k,2n+1) = ŶOG(k,2n+1), and the injection fk : ŶOG(k,2n+1) → P (n−k, n)
is a bijection.

To finish the proof of Proposition 1.9, it remains to show λ ∈ YOG(k,2n+1)

indexes the same Schubert variety as fk(λ) ∈ P (n−k, n). To do this, we need
an explicit description of the RYD associated to a given w ∈ WOG(k,2n+1).

Lemma 3.9. Let w ∈ WOG(k,2n+1) and let λ ∈ YOG(k,2n+1) be the corre-
sponding RYD. Then the base region of λ is given by

λ
(1)
i =

{
n+ 1− k + |{l : zi < vl}| if k + 1− i ∈ Z

|{l : yk+1−i > vl}| if k + 1− i ∈ Y

for each 1 ≤ i ≤ k, and the top region of λ is given by

λ
(2)
i =

{
|{q : zi < zq}|+ |{t : zi < yt}| if k + 1− i ∈ Z

0 if k + 1− i ∈ Y .

for each 1 ≤ i ≤ k.

Proof. If k + 1− i ∈ Z, then all n− k roots of the form (k + 1− i, c,−), as
well as (k+1− i) in the base region are inverted by w. The roots of the form
(k + 1 − i, c,+) in the base region inverted by w are exactly those where

w(k+1− i) < w(c), so λ
(1)
i = n+1−k+ |{l : zi < vl}|. If k+1− i ∈ Y , then

neither (k+1−i) nor any root of the form (k+1−i, c,+) in the base region is
inverted by w. The roots in the base region of the form (k+1−i, c,−) inverted

by w are those where w(k + 1− i) > w(c), so λ
(1)
i = |{l : yk+1−i > vl}|.

If k+1−i ∈ Z, then the roots of the top region of the form (a, k+1−i,+)
inverted by w are those where a ∈ Z, or a ∈ Y and w(a) > w(k + 1 − i).

Thus λ
(2)
i = |{q : zi < zq}|+ |{t : zi < yt}|. If k + 1− i ∈ Y , then the roots

of the top region of the form (a, k + 1− i,+) have a ∈ Y also, and no such
roots can be inverted by w.

Example 3.10. Let w = (2, 3, 7, 8, 4, 1, 5, 6) ∈ WOG(5,17), as in Exam-
ple 3.5. The corresponding RYD is ((6, 4, 3, 1, 1)|(2, 0, 0, 0, 0)) ∈ YOG(5,17).

Let w ∈ WOG(k,2n+1). Let λ be the RYD indexing the same Schubert
variety as w by Lemma 3.9, and let γ be the element of P (n−k, n) indexing
the same Schubert variety as w by Corollary 3.4. First suppose k+1−i ∈ Z.

Then by Lemma 3.9, λ
(1)
i + λ

(2)
i = n + 1 − k + |{l : zi < vl}| + |{q : zi <

zq}| + |{t : zi < yt}|, which is equal to n + 1 − k + (n − zi), which is equal
to γi by Corollary 3.4. Now suppose k + 1 − i ∈ Y . Then by Lemma 3.9,
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λ
(1)
i + λ

(2)
i = |{l : yk+1−i > vl}|, which is equal to γi by Corollary 3.4. Thus

λ, fk(λ) index the same Schubert variety.

3.2. Proof of Proposition 1.11

We recall Proposition 1.11 from the introduction states there is a bijection
Fk : YOG(k,2n) → P̃ (n− k, n) for each 1 ≤ k < n, via

Fk(λ) =

⎧⎪⎪⎨
⎪⎪⎩
((λ

(1)
i + λ

(2)
i )1≤i≤k; 1) if λ is assigned ↑

((λ
(1)
i + λ

(2)
i )1≤i≤k; 2) if λ is assigned ↓

((λ
(1)
i + λ

(2)
i )1≤i≤k; 0) otherwise

and the Schubert variety indexed by λ is equal to the Schubert variety
indexed by Fk(λ).

Here YOG(k,2n) is the set of RYDs for OG(k, 2n), and P̃ (n− k, n) is the
set of (n− k)-strict partitions in a k × (2n− 1− k) rectangle.

Our proof strategy is basically identical to that for Proposition 1.9. We
use a bijection given in [6] between a combinatorial indexing set of [22] for
Schubert varieties and the (n − k)-strict partitions of [6] to write down a
bijection between WOG(k,2n) and P̃ (n− k, n), such that w ∈ WOG(k,2n) and
its image in P̃ (n − k, n) index the same Schubert variety (Corollary 3.12).
We identify certain subsets of Λk we call WOG(k,2n)-diagrams; every RYD
is a WOG(k,2n)-diagram (Lemma 3.14). We show the map Fk is an injection
from the set of WOG(k,2n)-diagrams to P̃ (n− k, n) (Lemma 3.15). With the
bijection of Corollary 3.12, this shows the RYDs are exactly the WOG(k,2n)-
diagrams and that Fk is a bijection (Corollary 3.16). Given w ∈ WOG(k,2n),
we describe the RYD associated to w (Lemma 3.17). We use this description,
along with the description of the (n−k)-strict partition associated to w from
Corollary 3.12, to show an RYD λ and its image Fk(λ) ∈ P̃ (n− k, n) index
the same Schubert variety.

Fix k < n. Using the same convention as in [13], the set WOG(k,2n)

consists of all signed permutations that have an even number of signed
entries, and are of the form

(y1, y2, . . . , yk−r, zr, zr−1, . . . z1, v1, v2, . . . vn−k−1, v̂n−k)

where 0 ≤ r ≤ k, bars denote negative entries, y1 < y2 < . . . < yk−r,
zr > zr−1 > . . . > z1, v1 < v2 < . . . < vn−k, and v̂n−k is either vn−k or vn−k,
depending on the parity of r. Call w a permutation of type 1 if v̂n−k = vn−k,
and type 2 if v̂n−k = vn−k.
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Given w ∈ WOG(k,2n), let Y = {1, . . . , k− r}, Z = {k− r+1, . . . , k} and
V = {k+1, . . . n}. Note that if k+1− i ∈ Z then the (k+1− i)th entry of
w is zi, while if k + 1− i ∈ Y then the (k + 1− i)th entry of w is yk+1−i.

We now follow [22]. Define a T-shape to be a pair of partitions α =
(αt, αb), where αb ⊂ k×(n−1) is strict, αt ⊂ (n−k)×k, and αt

n−k ≥ l(αb).
Let T (k, n) denote the set of all T-shapes.

The notation of [22] differs from ours, specifically, the fork of the Dn

Dynkin diagram consists of nodes 1 and 2 in [22] rather than n − 1 and
n. Translated into our notation, [22] defines a surjection h : WOG(k,2n) →
T (k, n) via:

αt
i = k − vi + i+ |{j : zj < vi}|

αb
i = n− zi

For w ∈ WOG(k,2n) such that vn−k = n, h is one-to-one. Otherwise h is
two-to-one, with

(y1, y2, . . . , yk−r, n, zr−1, . . . z1, v1, v2, . . . vn−k−1, v̂n−k) and

(y1, y2, . . . , yk−r, n, zr−1, . . . z1, v1, v2, . . . vn−k−1, v̂n−k)

mapping to the same T-shape. One of these permutations is of type 1, the
other type 2.

We want to work with a set of shapes that is in bijection with WOG(k,2n).
To this end, we define T ′(k, n) to be the set containing a single copy of each
α ∈ T (k, n) that satisfies |h−1(α)| = 1, and two copies of each α ∈ T (k, n)
that satisfies |h−1(α)| = 2, where one copy is declared to be of type 1 and the
other copy type 2. Here, the role of T ′(k, n) is the same as that of PR(k, n)
in the proof of Proposition 1.9. Define a map h′ : WOG(k,2n) → T ′(k, n) by
letting h′(w) = h(w) whenever h is one-to-one, and whenever h is two-to-one
let h′(w) be the T-shape h(w) of type 1 (respectively, type 2) if w is of type
1 (respectively, type 2). Then h′ is a bijection. Note that the definition of
type of a T-shape used here is not the same as that used by [22].

Claim 3.11. Let w ∈ WOG(k,2n) and let h(w) = α be the corresponding
T-shape. Then for 1 ≤ i ≤ k, the length of the ith column of αt is n − k if
k + 1− i ∈ Z, and |{l : yk+1−i > vl}| if k + 1− i ∈ Y .

Proof. Identical to the proof of Claim 3.3.

Given α ∈ T (k, n), let (αt)′ denote the conjugate partition of αt. The
bijection T ′(k, n) → P̃ (n− k, n) is given by α �→ (αt)′ +αb, where if α is of
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type 1 (respectively, 2), its image in P̃ (n−k, n) is of type 1 (respectively, 2).
(See [6, pp 46–47].)

Corollary 3.12. For w ∈ WOG(k,2n), define an (n−k)-strict partition γ by

γi =

{
(n− k) + (n− zi) if k + 1− i ∈ Z

|{l : yk+1−i > vl}| if k + 1− i ∈ Y .

for each 1 ≤ i ≤ k, and set γ̃ = (γ; 0) if γ has no part of size n−k, otherwise
γ̃ = (γ; 1) if w is of type 1 and γ̃ = (γ; 2) if w is of type 2.

This gives a bijection between WOG(k,2n) and P̃ (n−k, n), and γ̃ indexes
the same Schubert variety as w.

Proof. Using Claim 3.11, compose the bijection WOG(k,2n) → T ′(k, n) with
the bijection T ′(k, n) → P̃ (n−k, n). It is clear that γ has a part of size n−k
if and only if either zr = n or yk−r = n in w.

Example 3.13. Let w = (2, 4, 8, 6, 1, 3, 5, 7) ∈ WOG(5,16). The correspond-
ing T-shape is α = ((4, 3, 3), (7, 2, 0)) (type 2). Then (αt)′ = (3, 3, 3, 1, 0).
The corresponding γ̃ ∈ P̃ (3, 8) is γ̃ = ((10, 5, 3, 1, 0); 2).

In the standard embedding of the Dn root system into Rn, denote the
root ea − eb by (a, b,−) and ea + eb by (a, b,+). Call a subset S ⊂ Λk a
WOG(k,2n)-diagram if the roots in S form a lower order ideal in each region,
and also satisfy a support condition similar to that of type Bn/Cn: a root
(a, b,+) in the top region must be in S if S uses more than 2n − 2k roots
from the ath and bth double-tailed diamonds, similarly, (a, b,+) must not
be in S if S uses fewer than 2n−2k roots from the ath and bth double-tailed
diamonds, and no condition is imposed on (a, b,+) if S uses exactly 2n− 2k
roots from the ath and bth double-tailed diamonds. Let ŶOG(k,2n) denote

the set of all WOG(k,2n)-diagrams.

Lemma 3.14. Every RYD is a WOG(k,2n)-diagram, that is, YOG(k,2n) ⊆
ŶOG(k,2n).

Proof. Similar to the proof of Lemma 3.6.

Lemma 3.15. The map Fk : λ �→

⎧⎪⎪⎨
⎪⎪⎩
((λ

(1)
i + λ

(2)
i )1≤i≤k; 1) if λ assigned ↑

((λ
(1)
i + λ

(2)
i )1≤i≤k; 2) if λ assigned ↓

((λ
(1)
i + λ

(2)
i )1≤i≤k; 0) otherwise

of Proposition 1.11 is an injection ŶOG(k,2n) → P̃ (n− k, n).
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Proof. Let λ ∈ ŶOG(k,2n). It is clear from the definition of a WOG(k,2n)-
diagram that for γ̃ = Fk(λ), γ is a partition in k × (2n − 1 − k). First we

show γ is (n − k)-strict. Suppose for some i that λ
(1)
i + λ

(2)
i > n − k and

λ
(1)
i+1+λ

(2)
i+1 > n−k. By the support condition, this implies λ

(1)
i ≥ n−k and

λ
(1)
i+1 ≥ n− k. If the first inequality is strict then the support condition also

implies that λ
(2)
i > 0 since the root (i, i + 1,+) must be in λ, while if it is

an equality then we also have λ
(2)
i > 0 since λ

(1)
i + λ

(2)
i > n − k. Since λ(2)

is a strict partition, this implies λ
(2)
i > λ

(2)
i+1, whence λ

(1)
i + λ

(2)
i > λ

(1)
i+1 +

λ
(2)
i+1.

Next, to demonstrate that Fk is well-defined, we show that λ(1) has a
row of length n − k if and only if γ has a row of length n − k. Suppose

λ(1) has a row of length n − k, and let i be largest such that λ
(1)
i = n − k.

Then λ
(1)
l < n− k for all l > i, and thus by the support condition λ

(2)
i = 0.

So γi = n − k. Now suppose λ(1) has no row of length n − k, and consider

an arbitrary row λ
(1)
i of λ(1). If λ

(1)
i > n − k then clearly γi > n − k. If

λ
(1)
i < n − k then λ

(1)
l < n − k for all l > i, and then by the support

condition λ
(2)
i = 0. Hence γi = λ

(1)
i < n− k.

The argument that Fk is injective is then similar to that of Lemma 3.7.

Corollary 3.16. The set of RYDs is equal to the set of WOG(k,2n)-diagrams,
i.e, YOG(k,2n) = ŶOG(k,2n). Furthermore, Fk : YOG(k,2n) → P̃ (n − k, n) is a
bijection.

Proof. Identical to the proof of Corollary 3.8, using instead Lemmas 3.14,
3.15 and Corollary 3.12.

To finish the proof of Proposition 1.11, it remains to show that λ ∈
YOG(k,2n) indexes the same Schubert variety as Fk(λ) ∈ P̃ (n − k, n). To
do this, we need an explicit description of the RYD associated to a given
w ∈ WOG(k,2n).

Lemma 3.17. Let w ∈ WOG(k,2n) and let λ ∈ YOG(k,2n) be the correspond-
ing RYD. Then the base region of λ is given by

λ
(1)
i =

{
n− k + |{l : zi < vl}| if k + 1− i ∈ Z

|{l : yk+1−i > vl}| if k + 1− i ∈ Y ,

for each 1 ≤ i ≤ k, and the top region of λ is given by
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λ
(2)
i =

{
|{q : zi < zq}|+ |{t : zi < yt}| if k + 1− i ∈ Z

0 if k + 1− i ∈ Y

for each 1 ≤ i ≤ k. If λ
(1)
i = n − k for some i, then λ is assigned ↑ if w is

of type 1 and ↓ if w is of type 2.

Proof. (w is of type 1): If k+1− i ∈ Z, then all n− k roots (k+1− i, c,−)
in the base region are inverted by w. The roots of the form (k+1− i, c,+) in
the base region inverted by w are exactly those where w(k + 1− i) < w(c),

so λ
(1)
i = n − k + |{l : zi < vl}|. If k + 1 − i ∈ Y , then no roots of the

form (k + 1 − i, c,+) in the base region are inverted by w. The roots in
the base region of the form (k + 1 − i, c,−) inverted by w are those where

w(k + 1− i) > w(c), so λ
(1)
i = |{l : yk+1−i > vl}|.

If k+1−i ∈ Z, then the roots of the top region of the form (a, k+1−i,+)
inverted by w are those where either a ∈ Z, or a ∈ Y and w(a) > w(k+1−i).

Thus λ
(2)
i = |{q : zi < zq}|+ |{t : zi < yt}|. If k + 1− i ∈ Y , then the roots

of the top region of the form (a, k + 1− i,+) have a ∈ Y also, and no such
roots can be inverted by w.
(w is of type 2): If k + 1 − i ∈ Z, then all n − k − 1 roots (k + 1 − i, c,−)
for c < n in the base region are inverted by w, and also (k + 1 − i, n,+)
is inverted by w. The number of remaining roots of the ith double-tailed
diamond inverted by w is

|{l < n− k : zi < vl}|+
{
1 if zi < vn−k

0 if zi > vn−k

(the first summand is the number of (k + 1− i, c,+) for c < n inverted, the

second is whether (k+1− i, n,−) is inverted). Thus λ
(1)
i = n−k+ |{l : zi <

vl}|. If k+ 1− i ∈ Y , then no roots of the form (k+ 1− i, c,+) for c < n in
the base region are inverted by w, and also (k + 1− i, n,−) is not inverted
by w. Thus the number of roots of the ith double-tailed diamond inverted
by w is

|{l < n− k : yk+1−i > vl}|+
{
1 if yk+1−i > vn−k

0 if yk+1−i < vn−k

(the first summand is the number of (k + 1− i, c,−) for c < n inverted, the

second is whether (k+1−i, n,+) is inverted). Thus λ
(1)
i = |{l : yk+1−i > vl}|.

Since the last co-ordinate of any root of the top region is zero, it is

irrelevant whether the last entry of w is barred. Hence for λ
(2)
i , the statement

for the top region follows by the same argument as for type 1 permutations.
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Finally, if λ
(1)
i = n − k for some i, then λ uses either (k + 1 − i, n,−)

(above βn−1) or (k+1−i, n,+) (above βn) but not both. If λ uses the former
but not the latter then the last entry of w must be unbarred (i.e., w is of
type 1), and if it uses the latter but not the former then similarly w must

be of type 2. Thus λ is assigned ↑ (respectively, ↓) if and only if λ
(1)
i = n−k

for some i and w is of type 1 (respectively, type 2).

Example 3.18. Let w = (2, 4, 8, 6, 1, 3, 5, 7) ∈ WOG(5,16), as in Exam-
ple 3.13. The corresponding RYD is ((6, 4, 3, 1, 0)|(4, 1, 0, 0, 0))↓ ∈ YOG(5,16).

Let w ∈ WOG(k,2n). Let λ be the RYD indexing the same Schubert
variety as w by Lemma 3.17, and let γ̃ = (γ; type(γ)) be the element of
P̃ (n−k, n) indexing the same Schubert variety as w by Corollary 3.12. First

suppose k+1− i ∈ Z. Then by Lemma 3.17, λ
(1)
i + λ

(2)
i = n− k+ |{l : zi <

vl}|+ |{q : zi < zq}|+ |{t : zi < yt}|, which is equal to n−k+(n−zi), which
is equal to γi by Corollary 3.12. Now suppose k+1− i ∈ Y . By Lemma 3.17,

λ
(1)
i + λ

(2)
i = |{l : yk+1−i > vl}|, which is equal to γi by Corollary 3.12.

By the proof of Lemma 3.15, either λ(1), γ both have a row of length
n− k or both do not. If they do, then if w is of type 1, λ is assigned ↑ and γ
is of type 1, while if w is of type 2, λ is assigned ↓ and γ is of type 2. Thus
λ, Fk(λ) index the same Schubert variety.

4. Proof of Theorem 1.13(I)

We recall Theorem 1.13(I) from the introduction: Let λ, μ ∈ YOG(2,2n+1),
with λ indexing a Pieri class. Then Ψ(λ�μ) = σf2(λ) ·σf2(μ) ∈ H�(LG(2, 2n)).

Here Ψ is the linear map determined by sending an RYD λ to its cor-
responding Schubert class σλ, and f2 is the k = 2 version of the map fk
of Proposition 1.9, which takes an RYD λ to the (n − k)-strict partition

fk(λ) = (λ
(1)
i + λ

(2)
i )1≤i≤k.

Our proof strategy is as follows. We write down the Pieri rule of [6]
specialized to the LG(2, 2n) case. We prepare by proving several lemmas
regarding what (n − k)-strict partitions can appear (Lemmas 4.3, 4.4 and
4.5), and the coefficient an (n−k)-strict partition appears with (Lemmas 4.6
through 4.11) when applying the Pieri rule. We then write down the RYD
rule of [21] for LG(2, 2n), and we use Lemmas 4.3, 4.4 and 4.5 to show (in
almost all cases) that the (n − k)-strict partitions that appear in a given
Pieri expansion are exactly the images (under f2) of the RYDs appearing
in the corresponding expansion given by the rule of [21] (Lemma 4.14). In
Section 4.1 we handle the case not dealt with by Lemma 4.14, and we use
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Lemma 4.14 and Lemmas 4.6 through 4.11 to prove the coefficients of the
(n−k)-strict partitions and the RYDs also agree, completing the argument.

We follow [6, pg. 3–5]. The Schubert varieties of LG(2, 2n) are indexed by
the set P (n−2, n) of (n−2)-strict partitions inside a 2× (2n−2) rectangle.
The Pieri classes of [6] are those indexed by γ = (p, 0) ∈ P (n − 2, n).
Denote these classes by σp.

Fix an integer p ∈ [1, 2n − 2], and suppose γ, δ ∈ P (n − 2, n) with
|δ| = |γ| + p. Call a box of δ a δ-box, a box of γ a γ-box, a box of δ that
is not in γ a (δ \ γ)-box, and a box of γ that is not in δ a (γ \ δ)-box. We
say the box in row r and column c of γ is related to the box in row r′ and
column c′ if |c − (n − 1)| + r = |c′ − (n − 1)| + r′. Then there is a relation
γ → δ if δ can be obtained by removing a vertical strip from the first n− 2
columns of γ and adding a horizontal strip to the result, such that

(P1) Each γ-box in the first n − 2 columns having no δ-box below it is
related to at most one (δ \ γ)-box.

(P2) Any (γ \ δ)-box and the box above it must each be related to exactly
one (δ \ γ)-box, and these (δ \ γ)-boxes must all lie in the same row.

If γ → δ, let A be the set of (δ\γ)-boxes in columns n−1 through 2n−2 which
are not mentioned in (P1) or (P2). Define two boxes of A to be connected
if they share at least a vertex. Then define N(γ, δ) to be the number of
connected components of A that do not use a box of the (n− 1)th column.

Then the specialization of the Pieri rule of [6, Theorem 1.1] to the coad-
joint LG(2, 2n) is

Theorem 4.1 ([6]). (Pieri rule for LG(2,2n)) For any γ ∈ P (n− 2, n) and
integer p ∈ [1, 2n− 2],

σp · σγ =
∑
δ

2N(γ,δ)σδ

where the sum is over all δ ∈ P (n− 2, n) with γ → δ.

Let (r : c) denote the box in row r, column c of 2×(2n−2). Let L denote
the first n − 2 columns of 2 × (2n − 2) and R the latter n columns. Given
γ, δ ∈ P (n− 2, n) with |δ| = |γ|+ p, let D1 denote the set of (δ \ γ)-boxes in
row 1 of R, and D2 the set of (δ \ γ)-boxes in row 2 of R. Let D = D1 ∪D2.
By definition, both D1, D2 are connected and

Lemma 4.2. D1 =

{
{(1 : c) : γ1 + 1 ≤ c ≤ δ1} if γ1 > n− 2

{(1 : c) : n− 1 ≤ c ≤ δ1} if γ1 ≤ n− 2
and
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D2 =

{
{(2 : c) : γ2 + 1 ≤ c ≤ δ2} if γ2 > n− 2

{(2 : c) : n− 1 ≤ c ≤ δ2} if γ2 ≤ n− 2.

Let γ∗ denote the shape (γ1+p+1, γ2− 1). We gather some facts about

which pairs γ, δ satisfy γ → δ.

Lemma 4.3. If γ → δ and γ �⊆ δ, then δ = γ∗.

Proof. Boxes removed from γ must be a vertical strip, so at most one box

can be removed from either row of γ. For γ → δ to be satisfied we must

have |δ| = |γ| + p. So the only way both γ → δ and γ �⊆ δ can occur is if δ

is obtained by removing a single box from one row of γ, and adding p + 1

boxes to the other row of γ. (Removing a box from both rows of γ and then

adding p + 2 boxes to either row amounts to the same thing.) The claim

follows by noting (γ1−1, γ2+p+1) is either not a partition or has no boxes

in the last n columns, violating (P2).

Lemma 4.4. Suppose |γ| ≤ 2n−3 and p+ |γ| > 2n−3. If γ∗ ∈ P (n−2, n),

then γ → γ∗.

Proof. Let δ = γ∗. All D-boxes are in row 1, thus (P1) holds. The (γ \δ)-box
(2 : δ2+1) is related to (1 : 2n−2−δ2) and the box (1 : γ2) above (2 : δ2+1)

is related to (1 : 2n− 2− γ2). Since γ1 +1 ≤ 2n− 2− γ2 < 2n− 2− δ2 ≤ δ1,

we have (1 : 2n− 2− δ2) and (1 : 2n− 2− γ2) are different D-boxes. Hence

(P2) holds.

Lemma 4.5. If either |δ| ≤ 2n − 3 or |γ| > 2n − 3, then γ → δ ⇒ γ ⊆ δ.

In particular, δ is obtained from γ without removing any box of γ.

Proof. Assume for a contradiction that γ → δ but γ �⊆ δ. Then it follows

from Lemma 4.3 that δ = γ∗. Suppose |γ| > 2n − 3. Then the box (1 : γ2)

above the removed box is related to (1 : 2n−2−γ2), which is not in D since

γ1 + 1 > 2n − 2 − γ2. This violates (P2). Suppose |δ| ≤ 2n − 3. Then the

removed box (2 : δ2 + 1) is related to (1 : 2n − 2 − δ2), which is not in D

since δ1 < 2n− 2− δ2. This violates (P2).

Given γ → δ, we will say a box of D is killed if it is mentioned in (P1)

or (P2), i.e., if it is not in A. We will say a connected component D of D is

bisected if a box d of D is killed but there exist boxes of D in both earlier

and later columns than d, which are not killed. The following lemmas will

help us in computing N(γ, δ).

Lemma 4.6. If γ∗ ∈ P (n− 2, n) and γ → γ∗, then N(γ, δ) = 0.
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Proof. Let δ = γ∗. If γ1 ≥ n − 2, all boxes of R except (1 : n − 1) are
mentioned in (P1) or (P2), so N(γ, δ) = 0. Suppose γ1 < n − 2. Then
D2 = ∅, so D = D1. By (P1), (P2) it is clear the D1-boxes killed are the last
l boxes of D1 for some l > 0, hence D1 is not bisected. Thus A is a single
component containing (1 : n− 1), whence N(γ, δ) = 0.

Whenever γ → δ with γ ⊂ δ, define

S = {(1 : c) : δ2+1 ≤ c ≤ γ1}∩L and T = {(2 : c) : 1 ≤ c ≤ γ2)}∩L.

By definition, the boxes of S and T are the γ-boxes considered in (P1),
hence the only boxes capable of killing D-boxes.

Lemma 4.7. Let γ → δ with γ ⊂ δ. Suppose (1 : c) ∈ D1. If c = n− 1 then
(1 : c) is not killed, while if c �= n− 1 then

• (1 : c) is killed by S if and only if (1 : c) ∈ S′
1 = {(1 : c′) : 2n−2−γ1 ≤

c′ ≤ 2n− 3− δ2}
• (1 : c) is killed by T if and only if (1 : c) ∈ T ′

1 = {(1 : c′) : 2n−1−γ2 ≤
c′ ≤ 2n− 2}.

Suppose (2 : c) ∈ D2. If c = n− 1 then (2 : c) is not killed, while if c �= n− 1
then

• (2 : c) is never killed by S
• (2 : c) is killed by T if and only if (2 : c) ∈ T ′

2 = {(2 : c′) : 2n−2−γ2 ≤
c′ ≤ 2n− 3}.

Proof. Clearly (1 : n− 1), (2 : n− 2) can never be killed. The existence of a
D-box in row 2 implies δ2 > n−2 and thus S = ∅, so (2 : c) is never killed by
S and also (2 : n− 1) can never be killed. The remaining points also follow
from the definition of being related.

Corollary 4.8. Suppose γ → δ with γ ⊂ δ. Then if (1 : 2n − 2 − δ2) is a
D1-box, it is not killed.

Proof. Since 2n− 3− δ2 < 2n− 2− δ2 < 2n− 1− γ2, (1 : 2n− 2− δ2) is not
in S′

1 or T ′
1.

Lemma 4.9. A connected component of D is bisected if and only if all of
the following hold:

(i) |γ| ≤ 2n− 3 and |δ| > 2n− 3
(ii) γ ⊆ δ
(iii) γ1 < n− 1
(iv) δ2 < γ1.
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Proof. (⇒, by contrapositive) If (ii) does not hold, then by the proof of
Lemma 4.6 no component of D is bisected, so assume (ii) holds. Then for a
given component D of D, by Lemma 4.7 T kills the latest l boxes of D for
some l ≥ 0 and thus does not bisect D. So only S can bisect D. If (iv) does
not hold, then S = ∅ and D cannot be bisected. Suppose (iii) does not hold.
We may assume D2 = ∅, otherwise S = ∅ and we are done. Then D = D1,
and since 2n−2−γ1 ≤ γ1+1, we have D1 \S′

1 is connected. Finally, suppose
(i) does not hold. Then either |γ| > 2n− 3 or |δ| ≤ 2n− 3. We may assume
the latter three conditions hold. Then (iii) implies |γ| < 2n− 3, so we must
have |δ| ≤ 2n−3. Then D = D1. Since 2n−3−δ2 ≥ δ1, D1 \S′

1 is connected.

(⇐) Suppose all four conditions hold. Then by (iii) and (iv), δ2 < n− 2,
so D = D1. By (i) |δ| > 2n−3, so δ1 > n−1, and since by (iii) γ1 < n−1, we
have (1 : n−1) is a D1-box and is not killed. Next, (1 : 2n−2−δ2) is a D1-box
since by (i) 2n − 2 − δ2 ≤ δ1, and by Corollary 4.8 it is not killed. Finally,
since by (iv) δ2 < γ1 we have n−1 < 2n−2−γ1 ≤ 2n−3−δ2 < 2n−2−δ2.
In particular, S′

1 �= ∅, so a D1-box between (1 : n− 1) and (1 : 2n− 2− δ2)
is killed. Hence D1 is bisected.

Corollary 4.10. N(γ, δ) = 1 whenever a connected component of D is
bisected.

Proof. By the proof of Lemma 4.9, if a connected component of D is bisected
then D = D1, so D1 is bisected. It also follows from the proof that D1 \ (S′

1∪
T ′
1) = A has two connected components, one of which uses (1 : n− 1). Thus

N(γ, δ) = 1.

Lemma 4.11. If γ → δ with γ ⊂ δ, |γ| ≤ 2n− 3, |δ| > 2n− 3, γ1 ≥ n− 1
and also D1 is nonempty, then not all D1-boxes are killed.

Proof. Since δ1 > 2n − 3 − δ2, we have (1 : δ1) ∈ D1 \ S′
1. Since γ1 + 1 <

2n−1−γ2, we have (1 : γ1+1) ∈ D1\T ′
1. Thus if either S

′
1 or T

′
1 is empty, we

are done. Otherwise, (2n−2−δ2) is a D1-box since 2n−3−δ2 < 2n−2−δ2 <
2n− 1− γ2. By Corollary 4.8 it is not killed.

Now we consider the RYD model. In the coadjoint case k = 2, the base
region of Λk is a 2 × (2n − 3) rectangle and the top region is a single root.
From now on, we will use the notation of [21] for the RYDs. An RYD for
LG(2, 2n) will be denoted λ = 〈λ|•〉 or λ = 〈λ|◦〉 where λ = (λ1, λ2) is the
partition in 2× (2n− 3) corresponding to the roots used in the base region,
and •/◦ denotes whether λ uses the single root in the top region or not.

We will denote the set of RYDs for LG(2, 2n) by YLG(2,2n) (this set is

the same as YOG(2,2n+1) from the introduction). Let λ, μ ∈ YLG(2,2n), and
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let M = min{λ1 − λ2, μ1 − μ2}. We reprise the definition of the product �
on RYDs from [21, Theorem 4.1]:

Definition 4.12. [21] Define a commutative product � on Z[YLG(2,2n)]:

(A) If |〈λ|◦〉|+ |〈μ|◦〉| ≤ 2n− 3, then

〈λ|◦〉 � 〈μ|◦〉 =
∑

0≤k≤M

〈λ1 + μ1 − k, λ2 + μ2 + k|◦〉

(B) If |〈λ|◦〉|+ |〈μ|◦〉| > 2n− 3, then

〈λ|◦〉 � 〈μ|◦〉 =
∑

0≤k≤M

〈λ1 + μ1 − k, λ2 + μ2 + k − 1|•〉

+
∑

0≤k≤M

〈λ1 + μ1 − k − 1, λ2 + μ2 + k|•〉

(C)

〈λ|•〉 � 〈μ|◦〉 = 〈λ|◦〉 � 〈μ|•〉 =
∑

0≤k≤M

〈λ1 + μ1 − k, λ2 + μ2 + k|•〉

(D) 〈λ|•〉 � 〈μ|•〉 = 0.

Declare any α in the above expressions to be zero if (α1, α2) is not a partition
in 2× (2n− 3). Such α will be called illegal.

Using the notation of [21], the following specializes Proposition 1.9 to
the case k = 2. We write f instead of f2. Recall that in this new notation,
λ(1) is now called λ (with parts λ1 and λ2), and λ(2) is either empty or a
single box and is now denoted by, respectively, ◦ or •.
Proposition 4.13. The elements of YLG(2,2n) are in bijection with the ele-
ments of P (n− 2, n) via

f(λ) =

{
(λ1, λ2) if λ = 〈λ|◦〉
(λ1 + 1, λ2) if λ = 〈λ|•〉.

Let αp denote 〈p, 0|•/◦〉 ∈ YLG(2,2n). For λ ∈ YLG(2,2n) let γ denote f(λ).

Lemma 4.14. Suppose p �= 2n − 2. Then a (legal) shape μ appears in the
expansion αp � λ if and only if f(μ) appears in the expansion σp · σγ.
Proof. Let Δ = {δ ∈ P (n− 2, n) : γ ⊂ δ and |δ| = |γ|+ p}. There are three
cases:
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(p + |λ| ≤ 2n − 3:) By (A), the shapes in αp � λ are those created by
adding a horizontal strip of size p to λ. The image of the legal shapes under
f are Δ. Every element of Δ satisfies (P1) and (P2), so γ → δ for every
element δ of Δ. By Lemma 4.5, there are no other δ′ ∈ P (n−2, n) such that
γ → δ′.

(|λ| > 2n− 3:) By (C), the shapes in αp � λ are those created by adding
a horizontal strip of size p to λ. If p ≤ λ1 + 1 − λ2 the images of the legal
shapes are Δ, otherwise their images are Δ\{(γ2+p, γ1)}. If p ≤ λ1+1−λ2

every element of Δ satisfies (P1) and (P2), otherwise every element of Δ
satisfies (P1) and (P2) except for (γ2 + p, γ1) which fails (P1). Then we are
done by Lemma 4.5.

(|λ| ≤ 2n − 3 and p + |λ| > 2n − 3:) By (B), the shapes in αp � λ are
those created by adding a horizontal strip of size p to λ and then removing
a box from either the first or second row (to occupy the root of the top
region). The images of the legal shapes are Δ ∪ {γ∗}. Every element of Δ
satisfies (P1) and (P2), and also γ → γ∗ by Lemma 4.4. Then we are done
by Lemma 4.3.

4.1. Agreement of Definition 4.12 with Theorem 4.1

If p = 2n − 2, then αp = 〈2n − 3, 0|•〉 and straightforwardly αp � λ = 0
(and thus by Lemma 4.14 σp · σγ = 0) unless λ = 〈λ|◦〉 and λ2 = 0, i.e.,
λ = αq for some q < 2n − 2. Thus we may assume p < 2n − 2. Then by
Lemma 4.14 it suffices to show that for any (legal) c · μ appearing in αp � λ
we have c = 2N(γ,δ), where δ = f(μ). Since illegal terms do not contribute,
and f(μ) ∈ P (n − 2, n) if and only if μ is legal, we may assume the terms
whose coefficients we examine below are legal.
Case 1: (p + |λ| ≤ 2n − 3): By (A), the coefficient of each term in αp � λ
is 1. Thus we must show the image δ of any term has N(γ, δ) = 0. Since
|δ| ≤ 2n− 3, we have D = D1. If γ1 ≥ n− 1, then since 2n− 2− γ1 ≤ γ1 +1
and 2n−3−δ2 ≥ δ1, we have D1\S′

1 = ∅, so N(γ, δ) = 0. Suppose γ1 < n−1.
If D1 = ∅, then N(γ, δ) = 0. Otherwise, (1 : n − 1) ∈ D1 and is not killed,
whence N(γ, δ) = 0 follows since by Lemma 4.9, D1 is not bisected.
Case 2: (|λ| > 2n − 3): By (C), the coefficient of each term in αp � λ is
1. Thus we must show the image δ of any term has N(γ, δ) = 0. Since
2n− 1− γ1 ≤ γ1+1, we have D1 \T ′

1 = ∅, so only D2 can contribute to A. If
γ2 ≥ n− 2 then all boxes of R in row 2 except (2 : n− 1) are mentioned in
(P1), hence N(γ, δ) = 0. Suppose γ2 < n − 2. If D2 = ∅, then N(γ, δ) = 0.
Otherwise (2 : n − 1) ∈ D2 and is not killed, and then N(γ, δ) = 0 follows
since by Lemma 4.9, D2 is not bisected.
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Case 3: (|λ| ≤ 2n − 3, p + |λ| > 2n − 3): Let M = min{λ1 − λ2, p}. Then
by (B), we compute

αp � λ = 〈λ1 + p, λ2 − 1|•〉+ 2
∑

1≤j≤M

〈λ1 + p− j, λ2 − 1 + j|•〉

+ 〈λ1 + p−M − 1, λ2 +M |•〉.

First suppose δ = f(〈λ1+p, λ2−1|•〉) = γ∗. ThenN(γ, δ) = 0 by Lemmas 4.4
and 4.6.

Next, suppose δ is the image of a term in the summation. If γ1 < n −
1, then since δ2 < γ1 a component of D is bisected by Lemma 4.9. Thus
N(γ, δ) = 1 by Corollary 4.10. Therefore, suppose γ1 ≥ n−1. By Lemma 4.9
no component of D is bisected, and since δ2 < γ1 we have D1 is not connected
to D2. Since γ2 ≤ n− 2, if D2 �= ∅ then (2 : n− 1) ∈ D2 and is not killed, so
D2 does not contribute to N(γ, δ). Since γ1 ≥ n−1, we have (1 : n−1) /∈ D1,
and since D1 �= ∅, by Lemma 4.11 not every box of D1 is killed. Thus D1

contributes 1 to N(γ, δ), whence N(γ, δ) = 1.
Finally, suppose δ = f(〈λ1+ p−M − 1, λ2+M |•〉). Then either δ2 = γ1

or D1 = ∅. If δ2 = γ1 then D = D1 ∪D2 is connected, and since γ2 ≤ n− 2 it
uses (2 : n − 1). By Lemma 4.9 D is not bisected, hence N(γ, δ) = 0. Thus
suppose D1 = ∅. Then if also D2 = ∅, we have N(γ, δ) = 0. Otherwise, since
γ1 ≤ n − 2 we have (2 : n − 1) ∈ D2, and (2 : n − 1) is not killed. Then
N(γ, δ) = 0 follows since by Lemma 4.9, D2 is not bisected.

5. Proof of Theorem 1.13(II)

We recall Theorem 1.13(II) from the introduction: Let λ, μ ∈ YOG(2,2n), with
λ indexing a Pieri class. Then Ψ(λ � μ) = σF2(λ) · σF2(μ) ∈ H�(OG(2, 2n)).

Here Ψ is the linear map determined by sending an RYD λ to its corre-
sponding Schubert class σλ, and F2 is the k = 2 version of the map Fk of
Proposition 1.11, which takes an RYD λ to

Fk(λ) =

⎧⎪⎪⎨
⎪⎪⎩
((λ

(1)
i + λ

(2)
i )1≤i≤k; 1) if λ is assigned ↑

((λ
(1)
i + λ

(2)
i )1≤i≤k; 2) if λ is assigned ↓

((λ
(1)
i + λ

(2)
i )1≤i≤k; 0) otherwise

Our proof strategy is basically identical to that for Theorem 1.13(I).
We write down the Pieri rule of [6] specialized to the OG(2, 2n) case. We
prepare by proving several lemmas regarding what (n− k)-strict partitions
can appear (Lemmas 5.2, 5.3 and 5.4), and the coefficient an (n− k)-strict
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partition appears with (Lemmas 5.5 through 5.10) when applying the Pieri
rule. We then write down the RYD rule of [21] for OG(2, 2n), and we show
(in almost all cases) that the (n− k)-strict partitions that appear in a given
Pieri expansion are exactly the images (under F2) of the RYDs appearing in
the corresponding expansion given by the rule of [21], and the types of the
partitions agree with the charges of the RYDs (Lemma 5.14). In Sections
5.1, 5.2, 5.3 we handle the cases not dealt with by Lemma 5.14, and we use
Lemma 5.14 and Lemmas 5.5 through 5.10 to prove the coefficients of the
(n−k)-strict partitions and the RYDs also agree, completing the argument.

We now follow [6, pg. 31–33]. The Schubert varieties of OG(2, 2n) are
indexed by the set P̃ (n − 2, n) of all pairs γ̃ = (γ; type(γ)), where γ is an
element of the set P (n−2, n) of all (n−2)-strict partitions inside a 2×(2n−3)
rectangle, and also type(γ) = 0 if no part of γ has size n− 2 and type(γ) ∈
{1, 2} otherwise. The Pieri classes of [6] are those indexed by γ̃ with γ =
(p, 0). If p �= n− 2 then the class is denoted by σp. Otherwise if type(γ) = 1
(respectively, type(γ) = 2) the class is denoted σn−2 (respectively, σ′

n−2).
Fix an integer p ∈ [1, 2n − 3], and suppose γ, δ ∈ P (n − 2, n) with

|δ| = |γ|+ p. Then the relation γ → δ is defined as in the previous section,
except now the box in row r and column c of γ is related to the box in row
r′ and column c′ if |c− (2n− 3)/2|+ r = |c′ − (2n− 3)/2|+ r′.

Define A as in the previous section. Then define N ′(γ, δ) to be the num-
ber of connected components of A (respectively, one less than this number)
if p ≤ n− 2 (respectively, if p > n− 2).

Let g(γ, δ) be how many of the first n− 2 columns of δ have no (δ \ γ)-
boxes, and let h(γ̃, δ̃) = g(γ, δ) + max(type(γ), type(δ)). If p �= n − 2, set
εγ̃δ̃ = 1. If p = n−2 andN ′(γ, δ) > 0, set εγ̃δ̃ = ε′

γ̃δ̃
= 1

2 , while if N
′(γ, δ) = 0,

define

εγ̃δ̃ =

{
1 if h(γ̃, δ̃) is odd

0 otherwise
and ε′

γ̃δ̃
=

{
1 if h(γ̃, δ̃) is even

0 otherwise.

Then the specialization of the Pieri rule of [6, Theorem 3.1] to the adjoint
OG(2, 2n) is

Theorem 5.1 ([6]). (Pieri rule for OG(2,2n)) For any γ̃ ∈ P̃ (n−2, n) and
integer p ∈ [1, 2n− 3],

σp · σγ̃ =
∑
δ̃

εγ̃δ̃2
N ′(γ,δ)σδ̃

where the sum is over all δ̃ ∈ P̃ (n−2, n) with γ → δ and type(γ)+type(δ) �=
3. Furthermore, the product σ′

n−2 · σγ̃ is obtained by replacing εγ̃δ̃ with ε′
γ̃δ̃

throughout.
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Let (r : c) denote the box in row r, column c of 2×(2n−3). Let L denote
the first n−2 columns of 2× (2n−3) and R the latter n−1 columns. Given
γ, δ ∈ P (n − 2, n) with |δ| = |γ| + p, recall from the previous section the
definitions of D1, D2 and D. Let γ∗ denote the shape (γ1+p+1, γ2−1). The
following three lemmas are proved similarly to (respectively) Lemmas 4.3,
4.4 and 4.5.

Lemma 5.2. If γ → δ and γ �⊆ δ, then δ = γ∗.

Lemma 5.3. Suppose |γ| ≤ 2n−4 and p+ |γ| > 2n−4. If γ∗ ∈ P (n−2, n),
then γ → γ∗.

Lemma 5.4. If either |δ| ≤ 2n − 4 or |γ| > 2n − 4, then γ → δ ⇒ γ ⊆ δ.
In particular, δ is obtained from γ without removing any box of γ.

Given γ → δ, recall from the previous section the definition of when a
box of D is killed and when a connected component D is bisected. If also
γ ⊂ δ, recall the definitions of S and T .

Lemma 5.5. If γ∗ ∈ P (n−2, n) and γ → γ∗, then N ′(γ, δ) = 1 if γ1 < n−2
and p ≤ n− 2, and N ′(γ, δ) = 0 otherwise.

Proof. Let δ = γ∗. If γ1 ≥ n − 2, all boxes of R are mentioned in (P1) or
(P2), so N ′(γ, δ) = 0. Suppose γ1 < n − 2. Then D2 = ∅, so D = D1. Here
(1 : n−1) is a D1-box and is not killed. By (P1), (P2) it is clear the D1-boxes
killed are the last l boxes of D1 for some l > 0, hence D1 is not bisected.
Thus N ′(γ, δ) = 0 if p > n− 2, and N ′(γ, δ) = 1 if p ≤ n− 2.

Lemma 5.6. Let γ → δ with γ ⊂ δ. Suppose (1 : c) ∈ D1. Then

• (1 : c) is killed by S if and only if (1 : c) ∈ S′
1 = {(1 : c′) : 2n−3−γ1 ≤

c′ ≤ 2n− 4− δ2}
• (1 : c) is killed by T if and only if (1 : c) ∈ T ′

1 = {(1 : c′) : 2n−2−γ2 ≤
c′ ≤ 2n− 3}

Suppose (2 : c) ∈ D2. Then

• (2 : c) is never killed by S
• (2 : c) is killed by T if and only if (2 : c) ∈ T ′

2 = {(2 : c′) : 2n−3−γ2 ≤
c′ ≤ 2n− 4}

Proof. That (2 : c) is never killed by S follows since the existence of a D-box
in row 2 implies δ2 > n − 2 and thus S = ∅. The remaining points follow
from the definition of being related.

Corollary 5.7. Suppose γ → δ with γ ⊂ δ. Then if (1 : 2n − 3 − δ2) is a
D1-box, it is not killed.
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Proof. Since 2n− 4− δ2 < 2n− 3− δ2 < 2n− 2− γ2, (1 : 2n− 3− δ2) is not

in S′
1 or T ′

1.

Lemma 5.8. A connected component of D is bisected if and only if all of

the following hold:

(i) |γ| ≤ 2n− 4 and |δ| > 2n− 4

(ii) γ ⊆ δ

(iii) γ1 < n− 2

(iv) δ2 < γ1.

Proof. Similar to the proof of Lemma 4.9, using Corollary 5.7.

Corollary 5.9. If a connected component of D is bisected, then A has two

connected components.

Proof. Similarly to the proof of Lemma 4.9, if a connected component of D

is bisected then D = D1, so D1 is bisected. It also follows from the proof

that D1 \ (S′
1 ∪ T ′

1) = A has two connected components.

Lemma 5.10. If γ → δ with γ ⊂ δ, |γ| ≤ 2n− 4, |δ| > 2n− 4, γ1 ≥ n− 2

and also D1 is nonempty, then not all D1-boxes are killed.

Proof. Similar to the proof of Lemma 4.11.

As in the previous section, we will use the notation of [21] for RYDs for

OG(2, 2n) from now on. An RYD will be denoted λ = 〈λ|•〉 or λ = 〈λ|◦〉
where λ = (λ1, λ2) is the partition in 2 × (2n − 4) corresponding to the

roots used in the base region, and •/◦ denotes whether λ uses the single

root in the top region or not. If neither λ1 nor λ2 is equal to n− 2, then λ

is said to be neutral, otherwise λ is charged and is assigned a “charge”

denoted ch(λ), which is either ↑ or ↓ exactly as in the introduction. Let Π(λ)

denote 〈λ1, λ2|•/◦〉, i.e., ignoring any charge. Let λ, μ ∈ YOG(2,2n) and let

M = min{λ1 − λ2, μ1 − μ2}. We reprise the definition of the product � on

RYDs from [21]:

Definition 5.11. [21, Definition 5.1] For λ, μ ∈ YOG(2,2n), define an ex-

pression Π(λ) �Π(μ):

(A) If |〈λ|◦〉|+ |〈μ|◦〉| ≤ 2n− 4, then

Π(〈λ|◦〉) �Π(〈μ|◦〉) =
∑

0≤k≤M

〈λ1 + μ1 − k, λ2 + μ2 + k|◦〉
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(B) If |〈λ|◦〉|+ |〈μ|◦〉| > 2n− 4, then

Π(〈λ|◦〉) �Π(〈μ|◦〉) = 〈λ1 + μ1, λ2 + μ2 − 1|•〉+
2

∑
1≤k≤M

〈λ1+μ1−k, λ2+μ2+k−1|•〉+〈λ1+μ1−M−1, λ2+μ2+M |•〉

(C)

Π(〈λ|•〉) �Π(〈μ|◦〉) = Π(〈λ|◦〉) �Π(〈μ|•〉) =∑
0≤k≤M

〈λ1 + μ1 − k, λ2 + μ2 + k|•〉

(D) Π(〈λ|•〉) �Π(〈μ|•〉) = 0.

Declare any α in the above expressions to be zero if (α1, α2) is not a
partition in 2× (2n− 4). Such α will be called illegal.

If λ, μ are both charged, we say they match if ch(λ) = ch(μ), and are
opposite otherwise. The opposite charge to ch(λ) is denoted op(λ). Define:

ηλ,μ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if λ, μ are charged and match and n is even;

2 if λ, μ are charged and opposite and n is odd;

1 if λ or μ are not charged;

0 otherwise

If a κ appearing in Π(λ) � Π(μ) has κ1 = n − 2 or κ2 = n − 2, we say
κ is ambiguous. We say λ ∈ YOG(2,2n) is Pieri if Π(λ) = 〈j, 0|•/◦〉, and
non-Pieri otherwise.

Definition 5.12. [21, Definition 5.2] Let λ, μ ∈ YOG(2,2n). Define a com-
mutative product � on R = Z[YOG(2,2n)]:

If Π(λ) = Π(μ) = 〈n− 2, 0|◦〉, then

λ � μ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
0≤k≤n−2

2

〈2n− 4− 2k, 2k|◦〉 if n even, λ, μ match∑
0≤k≤n−4

2

〈2n− 5− 2k, 2k + 1|◦〉 if n even, λ, μ opposite∑
0≤k≤n−3

2

〈2n− 5− 2k, 2k + 1|◦〉 if n odd, λ, μ match∑
0≤k≤n−3

2

〈2n− 4− 2k, 2k|◦〉 if n odd, λ, μ opposite

where for the first and third cases above, the shape 〈n−2, n−2|◦〉 is assigned
ch(λ) = ch(μ).

Otherwise, compute Π(λ) �Π(μ) and

(i) First, replace any term κ that has κ1 = 2n− 4 by ηλ,μκ.

(ii) Next, replace each κ by 2fsh(κ)−fsh(λ)−fsh(μ)κ.
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(iii) Lastly, “disambiguate” using one in the following complete list of pos-
sibilities:

(iii.1) (if λ, μ are both non-Pieri) Replace any ambiguous κ by 1
2(κ

↑+κ↓).

(iii.2) (if one of λ, μ is neutral and Pieri) Since Π(λ)�Π(μ) = Π(μ)�Π(λ),
we may assume λ is Pieri. Then replace any ambiguous κ by
1
2(κ

↑ + κ↓) if μ is neutral, and by κch(μ) if μ is charged.

(iii.3) (if one of λ, μ is charged and Pieri, and the other is non-Pieri). As
above, we may assume λ is Pieri. In particular, Π(λ) = 〈n −
2, 0|◦〉.

(iii.3a) If μ = 〈μ|•〉 is neutral and |μ| = 2n − 4, then replace the

ambiguous term 〈2n − 4, n − 2|•〉 by 〈2n − 4, n − 2|•〉ch(λ) if

μ1 is even and by 〈2n− 4, n− 2|•〉op(λ) if μ1 is odd.

(iii.3b) Otherwise, replace any ambiguous κ by 1
2(κ

↑ + κ↓) if μ is

neutral, and by κch(μ) if μ is charged.

Recall that in the notation of [21], λ(1) is now called λ (with parts λ1

and λ2), and λ(2) is either empty or a single box and is now denoted by,
respectively, ◦ or •. Define

f(Π(λ)) =

{
(λ1, λ2) ∈ P (n− 2, n) if λ = 〈λ|◦〉
(λ1 + 1, λ2) ∈ P (n− 2, n) if λ = 〈λ|•〉.

Then the following specializes Proposition 1.11 to the case k = 2, where
we write F instead of F2:

Proposition 5.13. The elements of YOG(2,2n) are in bijection with the el-

ements of P̃ (n− 2, n) via

F (λ) =

⎧⎪⎨
⎪⎩
(f(Π(λ)); 0) if λ is neutral

(f(Π(λ)); 1) if λ is assigned ↑
(f(Π(λ)); 2) if λ is assigned ↓.

Let αp denote 〈p, 0|•/◦〉 ∈ YOG(2,2n). Throughout, given λ ∈ YOG(2,2n)

let γ denote f(Π(λ)) and γ̃ denote F (λ).

Lemma 5.14. Suppose p �= 2n − 3. Then a (legal) shape κ appears in the
expansion Π(αp) � Π(λ) if and only if γ → f(κ). If also p �= n − 2, then a
(legal) shape μ appears in the expansion αp � λ if and only if F (μ) appears
in the expansion σp · σγ̃.
Proof. The first claim is proved similarly to the proof of Lemma 4.14. Now
suppose p �= n−2. Then (i) has no effect on Π(αp)�Π(λ), and (ii) multiplies
every term by a nonzero coefficient. Then terms are disambiguated by (iii.2).
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Under F , (iii.2) translates exactly to the condition type(γ) + type(δ) �= 3.
So the charge assignments in αp �λ agree with the types appearing in σp ·σγ̃ .
This proves the second claim.

The following lemma from [21] will be used in the proof.

Lemma 5.15. If κ = 〈κ1, κ2|•/◦〉 appears in Π(λ) �Π(μ) then

κ1 ≥
{
max(λ1 + μ2, λ2 + μ1) if (A) or (C) computes Π(λ) �Π(μ)

max(λ1 + μ2, λ2 + μ1)− 1 if (B) computes Π(λ) �Π(μ)

5.1. Agreement of Definition 5.12 with Theorem 5.1 when
p > n − 2

Suppose p = 2n− 3. Then αp = 〈2n− 4, 0|•〉 and by Lemma 5.15 or by (D)
αp � λ = 0 unless λ = 〈λ|◦〉 and λ2 = 0, in which case αp � λ = 〈2n− 4, λ1|•〉
(assigned ch(λ) if λ1 = n − 2). Clearly the only δ with γ → δ is δ =
(2n− 3, λ1) = f(〈2n− 4, λ1|•〉). We have N ′(γ, δ) = 0 since D = D1 ∪ D2 is
connected. Finally, if λ1 = n−2 then only (δ; type(γ)) appears in σ2n−3 ·σγ̃ ,
since type(γ) + type(δ) �= 3.

Thus assume p < 2n − 3. By Lemma 5.14 and since εγ,δ = 1, it suffices

to show that for any (legal) c ·μ appearing in αp � λ, c = 2N
′(γ,δ), where δ̃ =

F (μ). As in the previous section, we may assume terms whose coefficients
we examine below are legal.

Case 1: (p+ |λ| ≤ 2n− 4): Then αp � λ =
∑

0≤j≤λ1−λ2
〈λ1 + p− j, λ2 + j|◦〉

(neutral). For the image δ̃ of any term, since |δ| ≤ 2n − 4 we have D2 = ∅
and so D = D1. By Lemma 5.8 D1 is not bisected, so N ′(γ, δ) = 0.

Case 2: (|λ| > 2n− 4): We may assume λ2 < n− 2, since otherwise Π(αp) �
Π(λ) = 0 by Lemma 5.15. Then αp � λ =

∑
0≤j≤λ1−λ2

〈λ1 + p − j, λ2 + j|•〉
(neutral). For the image δ̃ of any term, since γ1 > n−2 and 2n−2−γ2 ≤ γ1+1
we have D1 \T ′

1 = ∅. By Lemma 5.8 there is no bisection, thus N ′(γ, δ) = 0.

Case 3: (|λ| ≤ 2n− 4, p+ |λ| > 2n− 4): We need three subcases.

Subcase 3a: (λ1 < n− 2): We compute

αp�λ = 〈λ1+p, λ2−1|•〉+2
∑

1≤j≤λ1−λ2

〈λ1+p−j, λ2−1+j|•〉+〈λ2+p−1, λ1|•〉.

(All terms in the above expression are neutral.) If δ̃ = F (〈λ1+p, λ2−1|•〉) =
γ̃∗ then N ′(γ, δ) = 0 by Lemmas 5.3 and 5.5. For the image δ̃ of a term in
the summation, since δ2 < γ1 a component of D is bisected by Lemma 5.8.
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Thus N ′(γ, δ) = 1 by Corollary 5.9. If δ̃ = F (〈λ2 + p − 1, λ1|•〉), then
δ2 = γ1 < n− 2 so D = D1. Then N ′(γ, δ) = 0 by Lemma 5.8.

Subcase 3b: (λ1 > n− 2): Let M = min{λ1 − λ2, p}. We compute

Π(αp) �Π(λ) = 〈λ1 + p, λ2 − 1|•〉+ 2
∑

1≤j≤M

〈λ1 + p− j, λ2 − 1 + j|•〉

+ 〈λ1 + p−M − 1, λ2 +M |•〉.

The first term is illegal. Next, (ii) multiplies any term κ by 1
2 if κ2 < n− 2,

and by 1 otherwise. If a κ is ambiguous, by (iii.2) it splits.

Thus for the image δ of a term in the summation, we must N ′(γ, δ) = 0
if δ2 ≤ n − 2 and N ′(γ, δ) = 1 if δ2 > n − 2. Assume δ2 ≤ n − 2. Then
D = D1, and N ′(γ, δ) = 0 follows from Lemma 5.8. Now assume δ2 > n− 2.
Then D = D1 ∪ D2, where D1,D2 �= ∅ and D1 is not connected to D2. Then
N ′(γ, δ) = 1 by Lemma 5.8, Lemma 5.10 and the fact that (since γ2 < n−2),
(2 : n−1) ∈ D2\T ′

2. If δ = f(〈λ1+p−M−1, λ2+M |•〉), we have D = D1∪D2

is connected. Then N ′(γ, δ) = 0 by Lemma 5.8.

Subcase 3c: (λ1 = n− 2): We compute

αp � λ =
∑

1≤j≤n−2−λ2

〈n− 2 + p− j, λ2 − 1 + j|•〉+ 〈λ2 + p− 1, n− 2|•〉ch(λ).

For the image δ̃ of each term, since δ2 ≤ n − 2 we have D = D1. Then
N ′(γ, δ) = 0 by Lemma 5.8.

5.2. Agreement of Definition 5.12 with Theorem 5.1 when
p < n − 2

By Lemma 5.14 and since εγ,δ = 1, it suffices to show that for any c · μ
appearing in αp � λ, c = 2N

′(γ,δ), where δ̃ = F (μ).

Case 1: (p+ |λ| ≤ 2n− 4): There are two subcases.

Subcase 1a: (λ1 ≥ n−2): We compute αp�λ =
∑

0≤j≤p〈λ1+p−j, λ2+j|◦〉,
where any term with first entry n − 2 is assigned ch(λ). For the image δ̃
of any term, since |δ| ≤ 2n − 4 we have δ2 ≤ n − 2 and D = D1. Since
2n − 3 − γ1 ≤ γ1 + 1 and 2n − 4 − δ2 ≥ δ1, we have D1 \ S′

1 = ∅, so
N ′(γ, δ) = 0.

Subcase 1b: (λ1 < n− 2): Let M = min{λ1 − λ2, p}. We compute Π(αp) �
Π(λ) =

∑
0≤j≤M 〈λ1+p−j, λ2+j|◦〉. Now, (i) has no effect, and (ii) multiplies

a term κ by 1 if κ1 < n−2, and by 2 otherwise. If a κ is ambiguous, it splits
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by (iii.2). Thus if δ = f(κ), we must show N ′(γ, δ) = 0 if δ1 ≤ n − 2 and
N ′(γ, δ) = 1 if δ1 > n− 2. If δ1 ≤ n− 2 then D = ∅ so N ′(γ, δ) = 0. Suppose
δ1 > n − 2. Then since δ2 < n − 2, we have D = D1. Since δ1 > n − 2 and
γ1 < n − 2, we have (1 : n − 1) ∈ D1 and is not killed. Then N ′(γ, δ) = 1
follows from Lemma 5.8.

Case 2: (|λ| > 2n− 4): Let M = min{λ1 − λ2, p}. There are two subcases.

Subcase 2a: (λ2 ≥ n − 2): Here αp � λ =
∑

0≤j≤M 〈λ1 + p − j, λ2 + j|•〉,
where any charged term has charge ch(λ). For the image δ̃ of any term, since
γ2 ≥ n − 2 all boxes of R except (1 : n − 1) are mentioned in (P1). Since
(1 : n− 1) is not a D-box, we have N ′(γ, δ) = 0.

Subcase 2b: (λ2 < n−2): Here, Π(αp)�Π(λ) =
∑

0≤j≤M 〈λ1+p−j, λ2+j|•〉.
Then (ii) multiplies a term κ by 1 if κ2 < n− 2, and by 2 otherwise. If a κ
is ambiguous, by (iii.2) it splits. Therefore, if δ = f(κ), we must show that
N ′(γ, δ) = 0 if δ2 ≤ n − 2 and N ′(γ, δ) = 1 if δ2 > n − 2. For any δ, since
2n− 2− γ2 ≤ γ1 + 1 we have D1 \ T ′

1 = ∅. Thus if δ2 ≤ n− 2, then D2 = ∅,
so A = ∅ and N ′(γ, δ) = 0. If δ2 > n− 2 then (2 : n− 1) ∈ D2 is not killed.
Then N ′(γ, δ) = 1 by Lemma 5.8.

Case 3: (|λ| ≤ 2n − 4, p+ |λ| > 2n − 4): Let M = min{λ1 − λ2, p}. There
are three subcases.

Subcase 3a: (λ1 < n− 2): We compute

αp�λ = 2〈λ1+p, λ2−1|•〉+4
∑

1≤j≤λ1−λ2

〈λ1+p−j, λ2−1+j|•〉+2〈λ2+p−1, λ1|•〉.

(All terms in the above expansion are neutral.) If δ̃ = F (〈λ1+p, λ2−1|•〉) =
γ̃∗ then N ′(γ, δ) = 1 by Lemmas 5.3 and 5.5. For the image δ̃ of a term in the
summation, since δ2 < γ1 a component of D is bisected by Lemma 5.8. Thus
N ′(γ, δ) = 2 by Corollary 5.9. If δ̃ = F (〈λ2+p−1, λ1|•〉) then δ2 = γ1 < n−2
and δ1 > n−2, so D = D1 and (1 : n−1) ∈ D1 is not killed. ThenN ′(γ, δ) = 1
by Lemma 5.8.

Subcase 3b: (λ1 > n− 2): We compute

Π(αp) �Π(λ) = 〈λ1 + p, λ2 − 1|•〉+ 2
∑

1≤j≤M

〈λ1 + p− j, λ2 − 1 + j|•〉

+ 〈λ1 + p−M − 1, λ2 +M |•〉.

Then (ii) multiplies each term κ of Π(αp) �Π(λ) by 1 if κ2 < n− 2 and by 2
otherwise, after which (iii.2) splits any ambiguous κ. If δ = f(〈λ1 + p, λ2 −
1|•〉) = γ∗ then N ′(γ, δ) = 0 by Lemmas 5.3 and 5.5. If δ = f(〈λ1+p−M −
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1, λ2 +M |•〉) then either δ2 = γ1 or D1 = ∅. If δ2 = γ1, then N ′(γ, δ) = 1
follows by Lemma 5.8 and the fact that (2 : n − 1) ∈ D2 is not killed. If
D1 = ∅, then if δ2 ≤ n − 2 we have D2 = ∅ and so N ′(γ, δ) = 0, while if
δ2 > n − 2 then by Lemma 5.8 and the fact that (2 : n − 1) ∈ D2 is not
killed, we have N ′(γ, δ) = 1.

For the image δ of a term in the summation, we must show N ′(γ, δ) = 1
if δ2 ≤ n− 2 and N ′(γ, δ) = 2 if δ2 > n− 2. If δ2 ≤ n− 2 then D = D1 �= ∅,
whence N ′(γ, δ) = 1 by Lemma 5.8 and Lemma 5.10. If δ2 > n−2, then since
δ2 < γ1 we have D = D1 ∪D2, where D1,D2 �= ∅ and D1 is not connected to
D2. Then N ′(γ, δ) = 2 follows by Lemma 5.8, Lemma 5.10 and the fact that
(since γ2 < n− 2), (2 : n− 1) ∈ D2 \ T ′

2.
Subcase 3c: (λ1 = n− 2): We compute

αp � λ = 〈n− 2 + p, λ2 − 1|•〉+ 2
∑

1≤j≤n−2−λ2

〈n− 2 + p− j, λ2 − 1 + j|•〉

+ 2〈λ2 + p− 1, n− 2|•〉ch(λ).

If δ̃ = F (〈n−2+p, λ2−1|•〉) then N ′(γ, δ) = 0 by Lemmas 5.3 and 5.5. The
image δ̃ of any other term has δ2 ≤ n − 2 and δ1 > n − 2, so D = D1 �= ∅.
Then N ′(γ, δ) = 1 by Lemma 5.8 and Lemma 5.10.

5.3. Agreement of Definition 5.12 with Theorem 5.1 when
p = n − 2

It suffices to prove this for σn−2 = F (〈n − 2, 0|◦〉↑), since the proof for
σ′
n−2 = F (〈n− 2, 0|◦〉↓) is essentially identical.

Case 1: (Π(λ) = 〈n − 2, 0|◦〉): We compute σn−2 · σγ̃ . Straightforwardly,
γ → δ if and only if δ ∈ {(2n − 4 − j, j) : 0 ≤ j ≤ n − 2}. Then the
δ̃ that can appear in σn−2 · σγ̃ are (δ; 0) for all δ with with δ2 < n − 2,
and ((n − 2, n − 2); type(γ)) (since type(γ) + type(δ) �= 3). For all such
δ̃ every D-box is killed, so N ′(γ, δ) = 0. We have g(γ, δ) = n − 2 − δ2, so
h(γ, δ) = n − 2 − δ2 + type(γ). Thus if n is even and type(γ) = 1 or if
n is odd and type(γ) = 2, we have εγ̃,δ̃ = 1 for all δ̃ with δ2 even and

εγ̃,δ̃ = 0 for all δ̃ with δ2 odd. Likewise, if n is even and type(γ) = 2 or if n

is odd and type(γ) = 1, we have εγ̃,δ̃ = 1 for all δ̃ with δ2 odd and εγ̃,δ̃ = 0

for all δ̃ with δ2 even. This agrees with the definition (Definition 5.12) of

〈n− 2, 0|◦〉↑ � 〈n− 2, 0|◦〉ch(λ).
In the remaining cases, we use Lemma 5.14. We may assume λ2 �= 0, since

otherwise agreement follows by the previous case or previous subsections.
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Case 2: (n − 2 + |λ| ≤ 2n − 4 and Π(λ) �= 〈n − 2, 0|◦〉): We compute
〈n − 2, 0|◦〉↑ � λ =

∑
0≤j≤λ1−λ2

〈n − 2 + λ1 − j, λ2 + j|•〉 (neutral, since we

assume λ2 �= 0). Then the images δ̃ = (δ; 0) of the terms under F are exactly
the classes appearing in σn−2 · σγ̃ . For any such δ̃ we have γ1 < n − 2 and
δ1 > n − 2, so D = D1 �= ∅ and (1 : n − 1) ∈ D1 is not killed. Then by
Lemma 5.8 we have N ′(γ, δ) = 1, so εγ̃,δ̃ =

1
2 and δ̃ has coefficient 1.

Case 3: (|λ| > 2n − 4): If λ2 > n − 2, then 〈n − 2, 0|◦〉 � Π(λ) = 0 by
Lemma 5.15. Suppose λ2 = n−2. Then 〈n−2, 0|◦〉↑�λ = 1

2ηλ,μ〈2n−4, λ1|•〉,
assigned ch(λ) if λ1 = n − 2. Let δ = f(〈2n − 4, λ1|•〉) = (2n − 3, γ1 − 1).
Since γ2 = n− 2, T ′

2 = R \ (1 : n− 1). Then N ′(γ, δ) = 0 since (1 : n− 1) is
not a D-box. Now, g(γ, δ) = n− 2 so h(γ̃, δ̃) = n− 2+ type(γ). Thus if n is
even, εγ,δ = 1 if type(γ) = 1 and type(δ) ∈ {0, 1}, and εγ,δ = 0 otherwise.
If n is odd, εγ,δ = 1 if type(γ) = 2 and type(δ) ∈ {0, 2}, and εγ,δ = 0
otherwise. This agrees with the coefficient 1

2ηλ,μ of 〈2n− 4, λ1|•〉, and with

the charge ch(λ) assigned if λ1 = n− 2.

Now suppose λ2 < n − 2. Then 〈n − 2, 0|◦〉 � Π(λ) =
∑

0≤j≤M 〈n − 2 +
λ1 − j, λ2 + j|•〉. Here (i) has no effect, and since n− 2+ |λ| ≥ 3n− 6, every
(legal) term κ has κ2 ≥ n − 2, thus (ii) multiplies every term by 1. There
is an ambiguous term, namely 〈2n− 4, n− 2|•〉, if and only if |λ| = 2n− 3.
Should it exist, it is disambiguated by (iii.3a). For the image δ of any term
of 〈n− 2, 0|◦〉 �Π(λ), since 2n− 2− γ2 ≤ γ1 + 1 we have D1 \ T ′

1 = ∅. Then
if δ2 > n − 2, since γ2 < n − 2 we have (2 : n − 1) ∈ D2 is not killed. So
by Lemma 5.8, N ′(γ, δ) = 1. If δ = (2n − 3, n − 2) = f(〈2n − 4, n − 2|•〉)
then D2 = ∅, so N ′(γ, δ) = 0. Here g(γ, δ) = γ2, so h(γ̃, δ̃) = γ2 + type(δ).
Thus εγ̃,δ̃ = 1 if γ2 is even and type(δ) = 1 or if γ2 is odd and type(δ) = 2,
while εγ,δ = 0 otherwise. This agrees with the disambiguation (iii.3a) of
〈2n− 4, n− 2|•〉.
Case 4: (|λ| ≤ 2n− 4, n− 2 + |λ| > 2n− 4): There are three subcases.

Subcase 4a: (λ1 < n− 2): We compute 〈n− 2, 0|◦〉↑ � λ =

〈n−2+λ1, λ2−1|•〉+2
∑

1≤j≤λ1−λ2

〈n−2+λ1−j, λ2−1+j|•〉+〈n−2+λ2−1, λ1|•〉.

(All terms in the above expansion are neutral.) The images δ̃ = (δ; 0) of
the terms under F are exactly the classes appearing in σn−2 · σγ̃ . If δ̃ =
F (〈n − 2 + λ1, λ2 − 1|•〉) = γ̃∗ then N ′(γ, δ) = 1 by Lemmas 5.3 and 5.5,
hence εγ̃,δ̃ = 1

2 and δ̃ has coefficient 1. For the image δ̃ of a term in the
summation, since δ2 < γ1 a component of D is bisected by Lemma 5.8,
thus N ′(γ, δ) = 2 by Corollary 5.9. If δ̃ = F (〈n − 2 + λ2 − 1, λ1|•〉) then
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δ2 = γ1 < n−2, and since also δ1 > n−2, we have D = D1 and (1 : n−1) ∈ D1

is not killed. Then N ′(γ, δ) = 1 by Lemma 5.8.

Subcase 4b: (λ1 > n− 2): Let M = min{λ1 − λ2, n− 2}. We compute

〈n− 2, 0|◦〉 �Π(λ) = 〈n− 2 + λ1, λ2 − 1|•〉
+ 2

∑
1≤j≤M

〈n− 2+ λ1 − j, λ2 − 1+ j|•〉+ 〈n− 2+ λ1 −M − 1, λ2 +M |•〉.

The first term is illegal. Now, (i) has no effect. Next, since λ2 +M > n− 2,
(ii) multiplies the last term by 1, while for a term κ of the summation, (ii)
multiplies κ by 1

2 if κ2 < n − 2 and by 1 otherwise. Then (iii.3b) splits
the ambiguous term of the summation. For the image δ of any term κ,
if δ2 = n − 2 we have both (δ; 1) and (δ; 2) appearing in σn−2 · σγ̃ . This
agrees with the splitting. Thus it remains to show that N ′(γ, δ) = 1 for
δ = f(〈n − 2 + λ1 − M − 1, λ2 + M |•〉), while for all other δ we have
N ′(γ, δ) = 1 if δ2 ≤ n− 2 and N ′(γ, δ) = 2 if δ2 > n− 2.

Consider the image δ of a term in the summation. If δ2 ≤ n − 2 then
D = D1 �= ∅, whence N ′(γ, δ) = 1 by Lemma 5.8 and Lemma 5.10. If
δ2 > n − 2, then since for any such δ we have δ2 < γ1, D = D1 ∪ D2,
where D1,D2 �= ∅ and D1 is not connected to D2. Then N ′(γ, δ) = 2 follows
from Lemma 5.8, Lemma 5.10 and the fact that (since γ2 < n− 2) we have
(2 : n− 1) ∈ D2 \ T ′

1. If δ = f(〈n− 2 + λ1 −M − 1, λ2 +M |•〉) then either
δ2 = γ1 or D1 = ∅. In either case, D is a single connected component and
(2 : n− 1) ∈ D2 is not killed. Then N ′(γ, δ) = 1 follows from Lemma 5.8.

Subcase 4c: (λ1 = n− 2): We compute

〈n− 2, 0|◦〉↑ � λ =
1

2
η〈n−2,0|◦〉↑,λ〈2n− 4, λ2 − 1|•〉

+
∑

1≤j≤n−2−λ2

〈2n− 4− j, λ2 − 1 + j|•〉+ 〈n− 2 + λ2 − 1, n− 2|•〉ch(λ).

If δ = f(〈2n− 4, λ2 − 1|•〉) = γ∗ then N ′(γ, δ) = 0 by Lemmas 5.3 and 5.5.
Here g(γ, δ) = n− 2, so h(γ̃, δ̃) = n− 2+ type(γ). Then εγ,δ = 1 if n is even
and type(γ) = 1, or if n is odd and type(γ) = 2, while εγ,δ = 0 otherwise.
This agrees with the coefficient 1

2η〈n−2,0|◦〉↑,λ of 〈2n− 4, λ2 − 1|•〉.
The F -image δ̃ = (δ; 0) of a term in the summation has δ2 ≤ n − 2

and δ1 > n − 2, so D = D1 �= ∅. Then by Lemma 5.8 and Lemma 5.10,
N ′(γ, δ) = 1. Therefore εγ̃,δ̃ = 1

2 , and the coefficient of δ̃ is 1. For δ =
f(〈n−2+λ2−1, n−2|•〉), since δ2 < n−2 and δ1 > n−2 we have D = D1 �= ∅.
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Then by Lemma 5.8 and Lemma 5.10, N ′(γ, δ) = 1. Therefore εγ̃,δ̃ =
1
2 , and

the coefficient of δ̃ is 1. We have only δ̃ = (δ; type(γ)) appearing in σn−2 ·σγ̃ ,
since type(γ) + type(δ) �= 3. This agrees with the charge assignment ch(λ).
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