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Counting and packing Hamilton �-cycles in dense
hypergraphs
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†

A k-uniform hypergraph H contains a Hamilton �-cycle, if there is
a cyclic ordering of the vertices ofH such that the edges of the cycle
are segments of length k in this ordering and any two consecutive
edges fi, fi+1 share exactly � vertices. We consider problems about
packing and counting Hamilton �-cycles in hypergraphs of large
minimum degree. Given a hypergraph H, for a d-subset A ⊆ V (H),
we denote by dH(A) the number of distinct edges f ∈ E(H) for
which A ⊆ f , and set δd(H) to be the minimum dH(A) over all
A ⊆ V (H) of size d. We show that if a k-uniform hypergraph on n
vertices H satisfies δk−1(H) ≥ αn for some α > 1/2, then for every
� < k/2 H contains (1−o(1))n ·n! ·( α

�!(k−2�)! )
n

k−� Hamilton �-cycles.

The exponent above is easily seen to be optimal. In addition, we
show that if δk−1(H) ≥ αn for α > 1/2, then H contains f(α)n
edge-disjoint Hamilton �-cycles for an explicit function f(α) > 0.
For the case where every (k−1)-tuple X ⊂ V (H) satisfies dH(X) ∈
(α ± o(1))n, we show that H contains edge-disjoint Hamilton �-
cycles which cover all but o(|E(H)|) edges of H. As a tool we prove
the following result which might be of independent interest: For a
bipartite graph G with both parts of size n, with minimum degree
at least δn, where δ > 1/2, and for p = ω(logn/n) the following
holds. If G contains an r-factor for r = Θ(n), then by retaining
edges of G with probability p independently at random, w.h.p the
resulting graph contains a (1− o(1))rp-factor.

1. Introduction

Hamiltonicity is definitely one of the most studied properties of graphs in
the last few decades, and many deep and interesting results have been ob-
tained about it. In his seminal paper [6], Dirac proved that every graph on n
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vertices, n ≥ 3, with minimum degree at least n/2 is Hamiltonian. The com-
plete bipartite graph Km,m+1 shows that this theorem is best possible, i.e.,
the minimum degree condition cannot be improved. Moreover, this extremal
example hints that the addition of one more edge creates many Hamilton
cycles. It thus is natural to ask the following questions:

(1) How many edge-disjoint Hamilton cycles does a Dirac graph (that is, a
graph G on n vertices with minimum degree δ(G) ≥ n/2) have?

(2) How many distinct Hamilton cycles does a Dirac graph have?

These questions have been examined by various researchers and many
results are known. Among them are Christofides, Kühn and Osthus [2],
Cuckler and Kahn [5], Kühn, Lapinskas and Osthus [15], Nash-Williams
[21, 22, 23], Sárközy, Selkow and Szemerédi [27], and the authors of this
paper [7]. In particular, it is worth mentioning very recent remarkable results
due to Csaba, Kühn, Lo, Osthus and Treglown [4] who settled the long
standing conjectures made by Nash-Williams [21, 22, 23]. They showed that
every d-regular Dirac graph contains �d2� edge-disjoint Hamilton cycles, and
that every graph G on n vertices with minimum degree δ ≥ n/2 contains
at least regeven(n, δ)/2 edge-disjoint Hamilton cycles, where regeven(n, δ)
denotes the largest degree of an even-regular spanning subgraph one can
guarantee in a graph on n vertices with minimum degree δ. These results
are clearly optimal.

Note that if a graph G contains r edge-disjoint Hamilton cycles, then in
particular G contains a 2r-factor, that is, a spanning 2r-regular subgraph.
Therefore, the following question is also related to the two mentioned above:

(3) Given a graph G with minimum degree δ(G), what is the maximal r for
which G contains an r-factor?

As in Dirac’s Theorem, the complete bipartite graph Km,m+1 with un-
balanced parts demonstrates that for δ(G) < n/2 one can not expect to
obtain even a 1-factor. The question about finding the maximal r := r(δ, n)
such that any graph G on n vertices with minimum degree δ must contain
an r-factor has also been investigated by various researchers. Among them
are Katerinis [11] and Hartke, Martin and Seacrest [9]. The former showed
that any Dirac graph contains an r-factor for r ≥ n+5

4 (he also gave an ex-
ample of a Dirac graph G on n vertices that does not contain an n+6

4 -factor),
and the latter generalized the result to graphs with minimum degree δ, with
δ ≥ n/2.

In this paper we investigate analogous questions in hypergraphs. First
we need to define the notion of a Hamilton cycle in a hypergraph. For two
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positive integers 0 ≤ � < k, a (k, �)-cycle is a k-uniform hypergraph whose
vertices can be ordered cyclically such that the edges are segments of that
order and such that every two consecutive edges share exactly � vertices. In
case that 0 ≤ � ≤ k/2, we refer to (k, �)-cycles as loose cycles. Now, let H
be a k-uniform hypergraph and let 0 ≤ � < k. We say that H contains a
Hamilton �-cycle if H contains a (k, �)-cycle using all the vertices of H. Note
that in the case � = 0 a Hamilton �-cycle corresponds to a perfect matching.

Analogously to graphs, the connection between the degrees in hyper-
graphs and the appearance of Hamilton �-cycles is well studied, and many
results have been derived. Of course, an obvious necessary condition for a
k-uniform hypergraph on n vertices to contain a Hamilton �-cycle is for
(k − �) to divide n. Before we proceed to describe the previous work and
to state our results, let us introduce some notation. Given a hypergraph H,
for a d-subset A ∈

(V (H)
d

)
, we denote by dH(A) the number of distinct edges

f ∈ E(H) for which A ⊆ f , and set

δd(H) = min dH(A), and Δd(H) = max dH(A),

where the minumum and the maximum are taken over all subsets A ⊆ V (H)
of size exactly d. In a similar way, for two subsets X,Y ⊆ V (H), we denote
by dH(X,Y ) the size of the neighborhood of X in Y . That is, dH(X,Y ) :=
|{Z ⊆ Y : X ∪ Z ∈ E(H)}|. For a fixed set Y and an integer d < k, we set

δd(Y ) = min dH(X,Y ), and Δd(Y ) = max dH(X,Y ),

where the minimum and maximum are taken over all subsets X ⊆ V (H) of
size d.

Katona and Kierstead were the first to obtain a Dirac-type result for
hypergraphs. They proved in [12] that if δk−1(H) ≥ (1− 1

2k )n+Ok(1), then
H contains a Hamilton (k − 1)-cycle. They also gave an example for a hy-
pergraph H with δk−1(H) = �n−k+3

2 � which does not contain a Hamilton
(k − 1)-cycle, and implicitly conjectured that this is the correct bound. For
k = 3, this conjecture has been confirmed by Rödl, Ruciński and Szemerédi
in [26]. For k ≥ 4, it is proved in [25] that δk−1(H) ≈ n

2 is asymptotically the
correct bound for the existence of a Hamilton (k−1)-cycle in H. A construc-
tion of Markström and Ruciński from [19] demonstrates that δk−1(H) ≈ n

2 is
necessary for having a perfect matching in H, and since whenever (k− �)|k,
a Hamilton �-cycle contains a perfect matching, one obtains that indeed
δk−1(H) ≈ n

2 is the correct (asymptotic) bound for enforcing the existence
of a Hamilton �-cycle for each such �. For values of � for which (k − �) | k,
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Kühn, Mycroft and Osthus showed in [16] that δk−1(H) ≈ n
� k

k−�
�(k−�)

is the

correct asymptotic bound for enforcing the existence of a Hamilton �-cycle.
There are many other important and interesting results regarding the con-
nection between the minimum degree of a hypergraph and the existence of
Hamilton �-cycles which we did not mention, and for a more complete list
we refer the reader to the excellent survey of Rödl and Ruciński [24].

Now we are ready to state our main results. As far as we know, this
paper is the first attempt to deal with Questions (1)–(3) in the hypergraph
setting. In our first theorem we show that a dense k-uniform hypergraph
contains the “correct” number of loose Hamilton cycles. That is, we show
that given a k-uniform hypergraph H on n vertices with δk−1(H) ≥ αn,
the number of Hamilton �-cycles in H is at least (up to a sub-exponential
factor) the expected number of Hamilton �-cycles in a random k-uniform
hypergraph with edge probability p = α (that is, a hypergraph obtained by
choosing every k-subset of [n] with probability p, independently at random).
The expected number of such cycles is

(n− 1)! · k − �

2
·
(

α

�!(k − 2�)!

) n

k−�

.

Indeed, first enumerate the vertices and define the edges of the (k, �)-cycle
accordingly. Then, in each of the n

k−� edges, divide by the number of ways
to order the first � vertices and the next k − 2� vertices. Finally, divide by
2n
k−� , which is the number of different ways to obtain the same cycle.

Theorem 1.1. Let � and k be integers satisfying 0 ≤ � < k/2, and let
1/2 < α ≤ 1. Then, for a sufficiently large integer n the following holds.
Suppose that

(i) (k − �)|n, and
(ii) H is a k-uniform hypergraph on n vertices, and
(iii) δk−1(H) ≥ αn.

Then, the number of Hamilton �-cycles in H is at least

(1− o(1))n · n! ·
(

α

�!(k − 2�)!

) n

k−�

.

This is an extension to hypergraphs of the result obtained by Cuckler and
Kahn [5] for the case of graphs. We remark that their bound is more accurate
and is phrased in terms of certain entropy function over edge weighting of
the graph. We will use their result in our proof.
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Since in a k-uniform hypergraph H on n vertices, a Hamilton �-cycle
contains n

k−� edges, one cannot hope to find more than |E(H)|/ n
k−� edge-

disjoint such cycles. In the following theorem we show that indeed, up to a
multiplicative factor, any dense k-uniform hypergraphH contains the correct
number of edge-disjoint loose Hamilton cycles.

Theorem 1.2. Let k and � be integers satisfying 0 ≤ � < k/2, and let
1/2 < α′ < α ≤ 1. Then for all sufficiently large n the following holds.
Suppose that

(i) (k − �)|n, and
(ii) H is a k-uniform hypergraph on n vertices, and
(iii) δk−1(H) ≥ αn.

Then H contains at least

(1− o(1)) · f(α
′)|E(H)|

n
k−�

edge-disjoint Hamilton �-cycles, where f(x) = x+
√
2x−1
2 .

We remark that we prove Theorem 1.2 by translating the problem into
a problem of graphs. One of the ingredients of our proof is the ability to
find a spanning and regular subgraph of a dense bipartite graph. In order
to achieve this goal we use a result of Csaba [3] (which is tight for bipartite
graphs), and this is where the function f in Theorem 1.2 comes from.

In the special case where the difference between Δk−1(H) and δk−1(H)
is small, we obtain the following asymptotically optimal result.

Theorem 1.3. Let k and � be integers satisfying 0 ≤ � < k/2, and let
1/2 < α ≤ 1 be a constant. For every δ > 0 there exists ε > 0 such that the
following holds. For all sufficiently large n, if:

(i) (k − �)|n, and
(ii) H is a k-uniform hypergraph on n vertices, and
(iii) δk−1(H) ≥ αn, and
(iv) Δk−1(H) ≤ (α+ ε)n.

Then all but at most δ
(
n
k

)
edges of H can be packed into Hamilton �-cycles.

Note that Theorem 1.3 is more general than the main result of [8] in
the sense that we do not require any “pseudo-random” properties of the
hypergraph (except, of course, the assumption that the degrees are large).
On the other hand, Theorem 1.3 works only for hypergraphs which are very
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dense, but it is known (see e.g. [16]) that below the densities we consider,
there are constructions of hypergraphs without Hamilton cycles.

In the proofs of Theorems 1.2 and 1.3 we use (as a tool) the following
theorem which is also of independent interest and is related to the concept
of robustness of graph properties (see for example [14]). Before discussing
and stating the theorem, let us introduce the following notation. Let G be
a graph. Given a positive constant 0 < p ≤ 1, we say that a graph G′ is
distributed according to Gp, or G

′ ∼ Gp for brevity, if G′ is a subgraph of G
obtained by retaining every edge of G with probability p, independently at
random. In the following theorem we show that, given a bipartite graph G
with both parts of size n and with δ(G) ≥ αn, where α > 1/2, if G contains
an r-factor for r = Θ(n), then for p = ω( lognn ), a random subgraph G′ ∼ Gp

typically contains a (1 − o(1))rp-factor. The proof of the theorem appears
in Section 2.3.

Theorem 1.4. Let 1/2 < α ≤ 1, ε > 0 and 0 < ρ ≤ α be positive constants.
Then for sufficiently large integer n, the following holds. Suppose that:

(i) G is a bipartite graph with parts A and B, both of size n, and
(ii) δ(G) ≥ αn, and
(iii) G contains a ρn-factor.

Then, for p = ω( lnn
n ), with probability 1 − n−ω(1) a graph G′ ∼ Gp has a

k-factor for k = (1− ε)ρnp.

Remark 1.5. We remark that the proof of Theorem 1.4 is still valid even
if we choose each edge e ∈ E(G) with probability pe ≥ p. This follows from
the monotonicity of the random model Gp.

Let H be a k-uniform hypergraph on n vertices with δk−1(H) ≥ αn for
some α > 1/2. Assume further that k | n. Now, by applying Theorem 1.2
with � = 0 to H one can obtain that H contains an r-factor for every

r ≤ (1−o(1))f(α)|E(H)|
n

k

. In the following proposition, by slightly extending a

known construction, we show that there are hypergraphs H with δk−1(H) ≥
n/2−O(1) which do not contain r-factors for many values of r.

Proposition 1.6. Let k ≤ n be positive integers. Then there exists a k-
uniform hypergraph H on n vertices with δk−1(H) ≥ n/2−k−1, which does
not contain an r-factor for any odd integer r.

2. Tools

In this section we introduce the main tools to be used in the proofs of our
results.
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2.1. Probabilistic tools

We need to employ standard bounds on large deviations of random variables.
We mostly use the following well-known bound on the lower and the upper
tails of the Binomial distribution due to Chernoff (see [1], [10]).

Lemma 2.1. Let X ∼ Bin(n, p) and let μ = E(X). Then

• Pr[X < (1− a)μ] < e−a2μ/2 for every a > 0;
• Pr[X > (1 + a)μ] < e−a2μ/3 for every 0 < a < 3/2.

Remark: The conclusions of Lemma 2.1 remain the same when X has
the hypergeometric distribution (see [10], Theorem 2.10).
The following is a trivial yet useful bound.

Lemma 2.2. Let X ∼ Bin(n, p) and k ∈ N. Then the following holds:

Pr(X ≥ k) ≤ (
enp

k
)k.

Proof. Pr(X ≥ k) ≤
(
n
k

)
pk ≤ ( enpk )k.

We also make an extensive use of the following inequality, whose proof
can be found at [20], Section 3.2.

Theorem 2.3. Let Sn denote the set of permutations of [n] and let f :
Sn → R be such that |f(π) − f(π′)| ≤ u whenever π′ is obtained from π by
transposing two elements. Then if π is chosen randomly from Sn then

Pr [|f(π)− E(f)| ≥ t] ≤ 2 exp

(
− 2t2

nu2

)
.

2.2. Factors in graphs

In the proofs of our main results we translate the problem from hypergraphs
to graphs by introducing some auxiliary graphs and then by trying to find
large factors in each such graph. For this goal we will make use of the
following theorem due to Csaba [3].

Theorem 2.4. Let G = (A∪B,E) be a bipartite graph with parts of size n
and with minimum degree δ(G) ≥ n/2. Then G contains a �ρn�-factor for

ρ = δ+
√
2δ−1
2 , where δ := δ(G)/n.

In case the graph is almost regular, a better bound can be obtained as
stated in the following theorem:
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Theorem 2.5. For every α > 1/2 there exist ε0 > 0 and an integer n0 =
n(α) such that for every n ≥ n0 and ε ≤ ε0 the following holds. Suppose
that:

(i) G is a bipartite graph with two parts A and B of size n, and
(ii) dG(v) ∈ (α± ε)n for every v ∈ V (G).

Then, for every r ≤ (α− 10
√
ε)n, G contains an r-factor.

Sketch. Before we sketch the proof, note that there exists a standard bijec-
tion between bipartite graphs with parts of size n and digraphs (self loops
are allowed!) on n vertices. For showing it, assume that G = (A ∪ B,E) is
a bipartite graph with |A| = |B| = n, and define a digraph D = (A,E′)
as follows (we may assume that A = B): the arc ab ∈ E′ if and only if
the corresponding edge appears in G. For the other direction, assume that
D = (V,E) is a digraph. Define G = (A ∪ B,E′) as follows: the parts A
and B are two copies of V . An edge ab ∈ E′ if and only if the arc ab ∈ E.
Now, note that by deleting at most one edge adjacent to each vertex one
can delete all loops and the proof of Theorem 2.5 follows immediately by
combining Lemmas 13.2 and 5.2 of [17].

In addition, we make use of the following theorem due to Cuckler and
Kahn, which provides a good lower bound on the number of perfect match-
ings in a bipartite graph with respect to the minimum degree (see [5], p.3).

Theorem 2.6. Let G be a bipartite graph with both parts of size m, and
let δ(G) = δm ≥ m/2 be its minimum degree. Then the number of perfect
matchings in G is at least

δm ·m! (1− o(1))m .

2.3. Factors in random subgraphs of dense graphs

In this subsection we prove Theorem 1.4. In the proof we make use of the
following condition for having a k-factor in a bipartite graph due to Gale
and Ryser [13] (a proof can also be found at [18], Problem 7.16).

Proposition 2.7. A bipartite graph G = (A∪B,E) with |A| = |B| contains
an r-factor if and only if for all X ⊆ A and Y ⊆ B the following holds:

r|X| ≤ eG(X,Y ) + r(|B| − |Y |).

Now we are ready to prove Theorem 1.4.
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Proof. Let G be a graph as described in the theorem. We wish to show that

a graph G′ ∼ Gp is w.h.p such that

(∗) k|X| ≤ eGp
(X,Y ) + k(n− |Y |),

for all X ⊆ A and Y ⊆ B, where k = (1−ε)ρnp (and then by Proposition 2.7

we are done). We distinguish between several cases and consider each of them

separately:

Case 1: |X|+ |Y | ≤ n. In this case, since n− |Y | ≥ |X|, it follows that
(∗) is trivial.

Case 2: |X| + |Y | > n (that is, |Y | ≥ n − |X| + 1) and |X| ≤ f(n),

where f(n) = n/ ln lnn. Here, since |Y | > n− |X| = (1− o(1))n, δ(G) = αn

and α > 1/2, it follows that eG(X,Y ) ≥ (1 − o(1))αn|X|. Using the fact

that eGp
(X,Y ) is binomially distributed, applying Chernoff and the union

bound we obtain that

Pr(∃ such X,Y with eGp
(X,Y ) ≤ (1− ε/2)eG(X,Y )p)

≤
f(n)∑
x=1

n∑
y=n−x+1

(
n

x

)(
n

y

)
e−Θ(npx)

=

f(n)∑
x=1

(
n

x

)⎛
⎝ n∑

y=n−x+1

(
n

y

)⎞⎠ e−Θ(npx)

≤
f(n)∑
x=1

x

(
n

x

)(
n

x− 1

)
e−Θ(npx)

=

f(n)∑
x=1

x2

n− x+ 1

(
n

x

)2

e−Θ(npx)

≤ (f(n))2 ·
f(n)∑
x=1

(
n

x

)2

e−Θ(npx),

which is (recall that np = ω(lnn)) at most

(f(n))2 ·
f(n)∑
x=1

(
e2n2

x2
e−ω(lnn)

)x

= n−ω(1).

Hence, since (1 − ε)ρ < (1 − 2ε/3)α, it follows that with probability
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1− n−ω(1) we have

eGp
(X,Y ) + (1− ε)ρnp(n− |Y |) ≥ eGp

(X,Y )

≥ (1− 2ε/3)αnp|X| ≥ (1− ε)ρnp|X|,

for each such X and Y , and (∗) holds.
Case 3: |X|+ |Y | > n and |X| > f(n). Let

ηG(x, y) = min{eG(X,Y ) : X ⊆ A, Y ⊆ B, |X| = x, and |Y | = y}.

Note that by our assumptions we only consider x and y for which x ≥
f(n) and x+ y ≥ n+ 1.

Clearly, eG(X,Y ) ≥ x(αn + y − n) and eG(X,Y ) ≥ y(αn + x − n) for
arbitrary sets X ⊆ A and Y ⊆ B of sizes x and y, respectively. Therefore
we have that

ηG(x, y) ≥ max{x(αn+ y − n), y(αn+ x− n)}.

Assume first that x ≤ y (and therefore, the maximum in the right hand
side of the above inequality is x(αn+y−n)). Since ηG(x, y) ≥ x(αn+y−n),
it follows that for each such X and Y we have that eG(X,Y ) ≥ x(αn+y−n).
Applying Chernoff and the union bound, using the fact that αn + y − n =
Θ(n) (here we use that α− 1/2 ≥ c > 0 for some constant c) we obtain that

Pr
(
∃ such X,Y with eGp

(X,Y ) ≤ (1− ε)eG(X,Y )p) ≤ 4n ·
n∑

x=f(n)

e−Θ(xnp)

= e−ω(n).

By symmetry, the above estimate is valid for y ≤ x as well.
Now, recall that G contains a ρn-factor and hence by Proposition 2.7

satisfies ρnx ≤ eG(X,Y ) + ρn(n − y) for all X ⊆ A and Y ⊆ B. Multiply
both sides by (1− ε)p. Since if X and Y satisfy the assumptions of Case 3,
we have with probability 1−n−ω(1) that eGp

(X,Y ) ≥ (1−ε)eG(X,Y )p, and
it follows that

(1− ε)ρnp|X| ≤ (1− ε)eG(X,Y )p+ (1− ε)ρnp(n− |Y |)
≤ eGp

(X,Y ) + (1− ε)ρnp(n− |Y |)

holds for each X ⊆ A and Y ⊆ B covered by Case 3. Therefore, by Proposi-
tion 2.7 we conclude that with probability 1− n−ω(1) the random subgraph
Gp contains a (1− ε)ρnp-factor as desired.
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2.4. Properties of random partitions of vertices

In this subsection we introduce several lemmas about properties of random
partitions of vertices of dense hypergraphs. The following lemma shows that
the vertex set of a dense k-uniform hypergraph can be partitioned in such a
way that the proportion of the degrees to each part remains about the same
as in the hypergraph.

Lemma 2.8. Let k be a positive integer and let δ > 0 and ε > 0 be real num-
bers. Then, for every c > 0 and a sufficiently large integer n, the following
holds. Suppose that

(i) H is a k-uniform hypergraph with n vertices, and
(ii) δk−1(H) ≥ δn+ εn, and
(iii) m1, . . . ,mt are integers such that mi ≥ cn for 1 ≤ i ≤ t, and m1 +

· · ·+mt = n, and
(iv) V (H) = V1 ∪ · · · ∪ Vt is a partition of V (H), chosen uniformly at

random among all partitions into t parts, with part Vi of size exactly
mi for every 1 ≤ i ≤ t.

Then, with probability 1− e−Θ(n) the following holds:

δk−1(Vi) ≥ (δ + 2ε/3)mi for every 1 ≤ i ≤ t.

Proof. Let V (H) = V1∪ · · · ∪Vt be a random partition of V (H) into t parts,
each of size exactly mi, and set

ai = (δ + 2ε/3)mi.

Now, note that for each X ∈
(V (H)
k−1

)
and for each 1 ≤ i ≤ t, the parame-

ter dH(X,Vi) has a hypergeometric distribution with mean μ ≥ (δ + ε)mi.
Therefore, by Lemma 2.1 it follows that

Pr [dH(X,Vi) < ai] ≤ e−Θ(mi) = e−Θ(n).

Applying the union bound we obtain that

Pr

[
∃X ∈

(
V (H)

k − 1

)
and 1 ≤ i ≤ t such that dH(X,Vi) < ai

]

≤ Θ(nk−1)e−Θ(n) = e−Θ(n).

This completes the proof.
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Let H be a k-uniform hypergraph on n vertices and let 0 ≤ � ≤ k/2 be
an integer. Assume in addition that n is divisible by k− � and that our goal
is to find Hamilton �-cycles in H. We distinguish between two cases and for
each case, in a similar way as in [8], we define an auxiliary graph that will
serve us throughout the paper.

(1) Case 1 ≤ � < k/2. Let V (H) = A ∪ B be a partition of V (H) for
which |A| = � · n

k−� . Let MA = (F0, . . . , Fm−1) be a sequence of m := n
k−�

disjoint �-subsets of A and let MB be a (non-ordered) collection of |B|
k−2� =

(n− � · n
k−�)/(k− 2�) = m disjoint (k− 2�)-subsets of B. Note that MA can

be considered as a spanning (2�, �)-cycle of A and MB as a perfect matching
of the complete (k− 2�)-uniform hypergraph on the vertex set B. Define an
auxiliary bipartite graph GH := G(MA,MB,H) = (S ∪ T,E), with both
parts of size |S| = |T | = m, as follows:

(i) S := {FiFi+1 : 0 ≤ i ≤ m− 1} (we refer to m as 0), and
(ii) T := MB, and
(iii) for s ∈ S and t ∈ T , st ∈ E if and only if t ∪ Fi ∪ Fi+1 ∈ E(H), where

i is the unique integer for which s = FiFi+1.

A moment’s thought now reveals that there is an injection between per-
fect matchings of GH and Hamilton �-cycles of H. This fact is used exten-
sively throughout the paper.

(2) Case � = 0 (note that a Hamilton 0-cycle is a perfect matching). Here
we take a partition V (H) = A ∪ B into two sets A and B such that |A| =
�k/2�·n

k . Let MA be a collection of n
k disjoint subsets of A, each of size exactly

�k/2�, and let MB be a collection of n
k disjoint subsets of B, each of size

exactly �k/2�. Define an auxiliary bipartite graph GH := G(MA,MB,H) =
(S ∪ T,E), with parts S and T as follows:

(i) S = MA and T = MB, and
(ii) for s ∈ S and t ∈ T , st ∈ E if and only if s ∪ t ∈ E(H).

Note that in this case every perfect matching in GH corresponds to a
perfect matching (a Hamilton (k, 0)-cycle) of H.

The following lemma shows that by picking V (H) = A ∪ B, MA and
MB at random, the auxiliary graph GH typically possesses some desirable
properties.

Lemma 2.9. Let � and k be integers for which 0 ≤ � < k/2. Let δ > 0 and
ε > 0 be real numbers. Then, for sufficiently large integers n the following
holds. Suppose that

(i) (k − �)|n, and
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(ii) H is a k-uniform hypergraph on n vertices, and
(iii) δk−1(H) ≥ δn+ εn.

Then, for a random uniform choice of A, B, MA and MB as described
above, with probability 1 − e−Θ(n) we get that δ(GH) ≥ (δ + ε/2)m, where
m = |MA|.
Proof. First, consider the case where 1 ≤ � < k/2. Let V (H) = A ∪ B
be a typical partition as obtained by Lemma 2.8 with m1 = �

k−� · n and
m2 = n − m1. The conclusion of Lemma 2.9 for this case is an immediate
consequence of the following two claims:

Claim 2.10. With probability 1 − e−Θ(n) a random collection MB as de-
scribed above is such that

| {Y ∈ MB : X ∪ Y ∈ E(H)} | ≥ (δ + ε/2)|MB|

holds for each X ∈
(V (H)

2�

)
. In particular, dGH(s) ≥ (δ + ε/2)m for every

s ∈ S.

Proof. We pick MB as follows: Let {v0, . . . , v|B|−1} be a random enumera-
tion of the elements of B and define

MB := {{vj , . . . , vj+k−2�−1} : j = (k − 2�)i, 0 ≤ i ≤ m− 1} .

Now, for a subset X ∈
(V (H)

2�

)
, define dB(X) = |{Y ∈ MB : X∪Y ∈ E(H)}|.

We wish to show that

Pr

[
∃X ∈

(
V (H)

2�

)
such that dB(X) < (δ + ε/2)m

]
= e−Θ(n).

Indeed, fix X ∈
(V (H)

2�

)
, and for each 0 ≤ i ≤ m − 1, let Yi be the

indicator random variable for the event “X ∪ {vj , . . . , vj+k−2�−1} ∈ E(H)”,
where j = (k − 2�) · i. Starting the enumeration of the elements of B from
the jth place and using the fact that

dH (X ∪ {vj , . . . , vj+k−2�−2}, B) ≥ (δ + 2ε/3)|B|,

we obtain that E(Yi) ≥ δ + 2ε/3, for every 0 ≤ i ≤ m− 1. Hence,

E(dB(X)) =

m−1∑
i=0

E(Yi) ≥ (δ + 2ε/3)m.
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Now, given an enumeration of B = {v0, . . . , v|B|−1}, by switching be-

tween two elements vi and vj , dB(X) can change by at most 2. Therefore,

using Theorem 2.3 it follows that

Pr [dB(X) < (δ + ε/2)|MB|] ≤ Pr [dB(X) < E(dB(X))− εm/6]

≤ 2 exp

(
−ε2m2

|B|72

)
= e−Θ(n).

Applying the union bound we obtain that

Pr

[
∃X ∈

(
V (H)

2�

)
such that dB(X) < (δ + ε/2)|MB|

]
≤ Θ(n2�)e−Θ(n)

= e−Θ(n)

as desired.

Claim 2.11. With probability 1−e−Θ(n), a random (enumerated) collection

MA = {F0, . . . , Fm−1} as described above is such that

| {i : 0 ≤ i ≤ m− 1 and X ∪ Fi ∪ Fi+1 ∈ E(H)} | ≥ (δ + ε/2)m

holds for each X ∈
(V (H)
k−2�

)
. In particular, dGH(t) ≥ (δ + ε/2)m for every

t ∈ T .

Proof. We pick MA as follows: Let {u0, . . . , u|A|−1} be a random enumera-

tion of the elements of A, and for each 0 ≤ i ≤ m− 1, define

Fi = {u�·i, . . . , u�·(i+1)−1}

and set

MA = {F0, . . . , Fm−1}.

Now, for a subset X ∈
(V (H)
k−2�

)
, define

dA(X) = | {i : 0 ≤ i ≤ m− 1 and X ∪ Fi ∪ Fi+1 ∈ E(H)} |,

we wish to show that

Pr

[
∃X ∈

(
V (H)

k − 2�

)
such that dA(X) < (δ + ε/2)m

]
= e−Θ(n).
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Indeed, fix X ∈
(V (H)
k−2�

)
, and for each 0 ≤ i ≤ m − 1, let Xi be the

indicator random variable for the event “X ∪Fi∪Fi+1 ∈ E(H)”. From here,
the proof is similar to the proof of Claim 2.10 so we omit the details (the
only difference is that here, switching two elements can change dA(X) by at
most 4 and not 2, which does not cause any problem).

Next, consider the case where � = 0. In this case, let V (H) = A ∪ B be

a typical partition as obtained by Lemma 2.8 with t = 2 and m1 = �k/2�n
k .

Now, randomly define MA and MB as described above. Finally, Claim 2.10
shows that with high probability we obtain δ(GH) ≥ (δ+ ε/2)m as desired.

This completes the proof.

Remark 2.12. If we change Condition (iii) of Lemma 2.9 to (δ − ε)n ≤
δk−1(H) ≤ Δk−1(H) ≤ (δ + ε)n, then the same proof (more or less line by
line) shows that dGH(v) ∈ (δ ± 2ε)m for every v ∈ V (GH). We will make
use of this fact in the proof of Theorem 1.3.

3. Proofs of the main results

3.1. Proof of Theorem 1.1

In this subsection we prove Theorem 1.1.

Proof. In order to prove Theorem 1.1 we show that for every ε > 0, the
number of Hamilton �-cycles in H is at least

(1− o(1))n · n! ·
(

α− ε/2

�!(k − 2�)!

) n

k−�

.

Let ε > 0 be a positive constant. Denote δ = α − ε and observe that
δk−1(H) ≥ (δ + ε)n. First, consider the case where 1 ≤ � < k/2. Assume
that V (H) = A ∪ B is a partition of V (H) into two sets A and B with
|A| = � · n

k−� , equipped with MA and MB as described in Subsection 2.4.
By applying Lemma 2.9 to H, it follows that a (1 − o(1))-fraction of these
partitions are such that δ(GH) ≥ (δ + ε/2)m (where m = n

k−� and GH is
the auxiliary graph as defined in Subsection 2.4). Now, using Theorem 2.6
we obtain that the number of perfect matchings in each such GH is at least

(1− o(1))n (δ + ε/2)m ·m! = (1− o(1))n(δ + ε/2)
n

k−�

(
n

k − �

)
!.

Next, note that each perfect matching of GH corresponds to a Hamilton
�-cycle. Moreover, note that given two such partitions A∪B and A′ ∪B′ of
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V (H), if A �= A′, then clearly the obtained Hamilton �-cycles coming from
these partitions are distinct. In case A = A′, note that as long as MA and
MA′ do not define the same cyclic ordering for the same sets F0, . . . , Fm−1

(for a fixed MA there are at most 2m such M′
A), the Hamilton �-cycles

obtained from such distinct structures are all distinct. All in all, combining
the above mentioned, each Hamilton �-cycle is being counted at most 2m
times and we obtain that the number of Hamilton �-cycles in H is at least

1

2m
· (1− o(1))n · n! ·

(
δ + ε/2

�!(k − 2�)!

) n

k−�

= (1− o(1))n · n! ·
(

α− ε/2

�!(k − 2�)!

) n

k−�

.

Indeed, we need to multiply the above estimate by the number of auxil-
iary graphs GH. For this, take a permutation of V (H), define A to be its first
� · n

k−� vertices, MA to be the first n
k−� consecutive (and disjoint) �-tuples,

and MB to be the last n
k−� consecutive (k− 2�)-tuples. Then, divide by the

ordering inside the tuples and the ordering between the tuples in MB.

Next, for the case where � = 0 the proof is more or less the same. Here,

the partitions we consider are of the form (A,B) where |A| = �k/2�·n
k , and

MA in the definition of the auxiliary graph GH is just a collection of sets,
not enumerated. In addition, every perfect matching can be obtained by(

k
�k/2�

)n

k partitions (from each edge, choose �k/2� elements to be in A). All
in all, there are at least

n!

(�k/2�!�k/2�!)
n

k

· ((1− o(1))(δ + ε/2))
n

k (n/k)!(
k

�k/2�
)n

k (n/k)!(n/k)!

=
n!

(k!)
n

k (n/k)!
· ((1− o(1))(δ + ε/2))

n

k

= (1− o(1))n · n! ·
(
α− ε/2

k!

)n

k

perfect matchings in H. This completes the proof of Theorem 1.1.

3.2. Proofs of Theorems 1.2 and 1.3

In this subsection we prove Theorems 1.2 and 1.3. We start with Theo-
rem 1.2.



Counting and packing Hamilton �-cycles in dense hypergraphs 151

Proof. The proof is rather similar to the proof of the main results in [8].
The main difference is that here we use Theorem 1.4 in order to find many
edge-disjoint perfect matchings in random subgraphs of a graph which is
not necessarily the complete bipartite graph. Let ε = α− α′, and note that
δk−1(H) ≥ (α′ + ε)n. We distinguish between two cases:

Case I: 1 ≤ � < k/2. In this case the general scheme goes as follows:

First, choose r := |E(H)|·( (k−�) lnn
n )2 random partitions of V (H), {(Ai, Bi) :

1 ≤ i ≤ r}, such that |Ai| = � · n
k−� for each i, equipped with MAi

and MBi
as described in Section 2.4. For each such partition (Ai, Bi), de-

note the corresponding auxiliary graph GH by G(i), and use the notation
MAi

= {Fi,0, . . . , Fi,m−1}, where m = n
k−� . Note that by Lemma 2.9 we

have that w.h.p δ(G(i)) ≥ (α′ + ε/2)m for every 1 ≤ i ≤ r.
Second, for each edge f ∈ E(H), we say that i is a candidate for f if there

exist j and B ∈ MBi
such that f = Fi,j∪B∪Fi,j+1. For each edge f ∈ E(H)

let ψ(f) denote the number of candidates it has. Each f ∈ E(H) with
ψ(f) > 0 picks one candidate i at random among the ψ(f) candidates. For
each 1 ≤ i ≤ r, consider the subhypergraph Hi obtained from the partition
(Ai, Bi) together with the edges that chose i, and denote the corresponding
auxiliary subgraph of G(i) by Hi. Observe that the hypergraphs Hi are edge-
disjoint.

Finally, we wish to show that w.h.p every auxiliary graph Hi contains

(1 − o(1))f(α
′)m

ln2 n
edge-disjoint perfect matchings, where f(α′) = α′+

√
2α′−1
2 .

We then conclude that every subhypergraph Hi contains (1 − o(1))f(α
′)m

ln2 n
edge-disjoint Hamilton �-cycles for each i, and therefore H contains at least

(1− o(1))r · f(α
′)m

ln2 n
= (1− o(1))

|E(H)| · f(α′)
n

k−�

edge-disjoint Hamilton �-cycles as required. To this end we need the following
claim:

Claim 3.1. With high probability the following holds: every Hi contains at

least (1− o(1))f(α
′)n

ln2 n
edge-disjoint perfect matchings.

Proof. Let f ∈ E(H) be an edge and recall that the random variable ψ(f)
counts the number of partitions (Ai, Bi) which are candidates for f . Observe
that for every edge f and index i, the ith partition is a candidate for f with
the same probability

q ≤ |MAi
| · |MBi

|
|E(H)| =

m2

|E(H)| .
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(Indeed, the partition (Ai, Bi) is a candidate for at most |MAi
|·|MBi

| =
m2 edges, among all the |E(H)| = Θ(nk) edges of the hypergraph. Due to
symmetry this bound is obtained.)

Therefore, since ψ(f) ∼ Bin(r, q), applying Chernoff and the union
bound we obtain that w.h.p ψ(f) ≤ (1 + o(1))r · q ≤ (1 + o(1)) ln2 n for
each f ∈ E(H). Hence, we conclude that the edges of G(i) remain in Hi

with probability p ≥ 1−o(1)
ln2 n

. Now, combining Theorem 2.4, Remark 1.5,
and applying the union bound we conclude that w.h.p. every Hi contains

a (1 − o(1))f(α
′)m

ln2 n
-factor. In order to complete the proof, recall that Hi is

bipartite and thus each such factor can be decomposed to (1 − o(1))f(α
′)m

ln2 n
edge-disjoint perfect matchings.

Case II: � = 0. The proof for this case is similar to the previous case so
we omit it. The only difference is that here we use a slightly different auxil-
iary graph, so for this case we need to take r = |E(H)| · (k lnn

n )2 partitions

(Ai, Bi) with |Ai| = �k/2�·n
k . All the other calculations remain the same.

This completes the proof of Theorem 1.2.

Now we prove Theorem 1.3.

Proof. The proof of Theorem 1.3 is quite similar to the previous proof, so we
might omit details. Let δ > 0 be a constant, let ε > 0 be a sufficiently small
constant (to be determined later), and let H be a k-uniform hypergraph
which satisfies the assumptions of the theorem. Throughout the proof we
use similar notation as in the proof of Theorem 1.2.

First, let (A,B) be a random partition of V (H) into two sets with |A| =
� · n

k−� , equipped with MA and MB as described in Section 2.4. Using

Remark 2.12 we conclude that with probability 1 − e−Θ(n) we have (α −
ε)m ≤ δ(GH) ≤ Δ(GH) ≤ (α + 2ε)m. Conditioning on that, similarly to
the calculation in Claim 3.1, we conclude that for such a partition (A,B)
and an edge f ∈ E(H), the probability that (A,B) is a candidate for f is
bounded between

|MA| · (α− ε)m

|E(H)| =
(α− ε)m2

|E(H)|
and

|MA| · (α+ 2ε)m

|E(H)| =
(α+ 2ε)m2

|E(H)| .

Second, let q = (α−ε)m2

|E(H)| (clearly, q is a lower bound for that probability),

and choose r := |E(H)| · (k−�
n )2 · 1

q random partitions of V (H), {(Ai, Bi) :
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1 ≤ i ≤ r}, such that |Ai| = � · n
k−� for each i, equipped with MAi

and MBi

as described in Section 2.4 (and in the proof of Theorem 1.2).

Third, since ψ(f) is binomially distributed with probability q ≤ qf ≤
(1 + 7ε)q, by Chernoff’s inequality and the union bound we obtain that
ψ(f) ∈ (1± 8ε)rq holds for each f ∈ E(H).

Next, using the fact that all the G(i)’s are almost regular (all the degrees
lie in the interval (α ± 2ε)m), combining Theorem 2.5 with Theorem 1.4,
using the fact that ε is sufficiently small, we obtain that with probability 1−
n−ω(1) each Hi contains at least (1−o(1))(α−20

√
2ε)mrq edge-disjoint perfect

matchings. Therefore, for each i, by taking all the edge-disjoint Hamilton
�-cycles in Hi, there is at most a 40

√
2ε-fraction of edges in Hi which are

unused. All in all, there is at most 40
√
2ε-fraction of edges in H which are

not covered by any of the Hamilton �-cycles. Finally, by taking ε to be small
enough such that 40

√
2ε ≤ δ we complete the proof.

3.3. Proof of Proposition 1.6

Proof. Let k ≤ n be positive integers. Define a k-uniform hypergraph H on
n vertices as follows: Let V (H) = [n], and partition V (H) = A ∪ B into
two sets A and B such that n/2 − 1 ≤ |A| ≤ n/2 + 1 is an odd integer.

Let E(H) consist of all the k-tuples f ∈
([n]
k

)
for which |A ∩ f | is even, and

observe that δk−1(H) ≥ n/2 − k. Now, let r be an odd integer and assume
towards a contradiction that H contains an r-factor H′ ⊆ H. Let H′′ be the
multi-hypergraph on the vertex set A which consists of the (multi-)set of
edges {A ∩ f : f ∈ E(H′)}. Since all the edges of H′′ are of even size, the
size of A is odd, and since all the vertex degrees are r (which is odd), we
derive a contradiction.

4. Concluding remarks and open problems

To the best of our knowledge, this paper is the first to deal with problems of
counting and packing in general dense hypergraphs. Here we have obtained
some preliminary results, which suggest many interesting and challenging
problems for further study.

In Theorem 1.1 we showed that, for every � < k/2, the number of Hamil-
ton �-cycles in k-uniform hypergraphs with large minimum degree is lower
bounded (up to sub-exponential factor) with the expected number of such
cycles in a random hypergraph with the same density. It would be interesting
to generalize it to every � < k.
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In Theorems 1.2 and 1.3 we dealt with the question of packing Hamilton

�-cycles into dense k-uniform hypergraph. We showed that for � < k/2, if

δk−1(H) ≥ αn, for some α > 1/2, then one can find f(α)|E(H)|
n

k−�

edge-disjoint

Hamilton �-cycles. It is natural to try to obtain the best possible f(α), and

to try to generalize our results for every � ≤ k − 1.

As was mentioned in the introduction, Kühn, Mycroft and Osthus showed

in [16] that δk−1 ≈ n
� k

k−�
�(k−�)

is the correct asymptotic bound for the ex-

istence of a Hamilton �-cycle. Note that for certain choices of k and � (for

example, k = 3 and � = 1), this bound is much smaller than the bound of n/2

that we considered. It would be nice to extend our results to hypergraphs

with minimum degrees starting at n
� k

k−�
�(k−�)

, for every � < k.

Acknowledgements

A major part of this work was carried out when Benny Sudakov was visiting

Tel Aviv University, Israel. He would like to thank the School of Mathe-

matical Sciences of Tel Aviv University for hospitality and for creating a

stimulating research environment.

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, third ed., Wiley,

New York, 2008. MR2437651
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