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The Prouhet-Tarry-Escott problem and generalized
Thue-Morse sequences
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Robert Richman, and Catalin Zara

We present new methods of generating Prouhet-Tarry-Escott par-
titions of arbitrarily large regularity. One of these methods gener-
alizes the construction of the Thue-Morse sequence to finite alpha-
bets with more than two letters. We show how one can use such
partitions to (theoretically!) pour the same volume of coffee from
an urn into a finite number of cups so that each cup gets almost
the same amount of caffeine.

1. Introduction

Mathematicians have studied the eponymous objects in our title for more
than a century and a half. We’ve stumbled on some generalizations with
interesting consequences and new open questions.

Our contribution to the ongoing story began with a query from Richman
asking about how he might generalize his solution [Ric01] to the problem
of pouring two cups of coffee of equal strength from a carafe in which the
concentration increases with depth to three or more cups.

To fill two cups with four pours use the word ABBA: pour the first and
last quarters into cup A and the second and third quarters into B. For eight
pours the magic word is ABBA BAAB. Continuing recursively by appending
to each sequence of length n its complement (in the obvious sense) you find
the optimal partitions for pourings using 2k subdivisions. Collecting all the
solutions into the infinite word

AB BA BAAB BAABABBA . . .

produces the Thue-Morse sequence.
Richman’s argument showing (for example) that the word ABBA BAAB

solves the two cup problem using eighths depends essentially on

1 + 4 + 6 + 7 = 2 + 3 + 5 + 8
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and

12 + 42 + 62 + 72 = 22 + 32 + 52 + 82.

These equations say that the partition {{1, 4, 6, 7}, {2, 3, 5, 8}} whose
blocks are the positions of A and B in the magic word solves an instance of
the Prouhet-Tarry-Escott problem — finding partitions of a set of integers
such that each block has the same sum of powers for several powers.

It’s this connection we will generalize.

2. Words and partitions

We set the stage with some formal definitions.

Definition 2.1. Let S be a non empty set of integers and r � −1 an integer.
A partition P = {S1, . . . , Sb} of S is r-regular if∑

x∈S1

xk =
∑
x∈S2

xk = · · · =
∑
x∈Sb

xk

for all k = 0, 1, . . . , r. We write PTE(S, b, r) for the set of all such partitions.
A partition P has maximal regularity r if it is r-regular but not (r + 1)-
regular.

Remark 2.2. Every partition is (−1)-regular, so PTE(S, b,−1) is the set
of partitions of S into b blocks. Some of the blocks may be empty.

Remark 2.3. This definition and much of what follows makes sense over
any ring, not just Z.

If P = {S1, . . . , Sb} is an r-regular partition of S with r � 0 then its
blocks have the same number of elements, and therefore b divides m = #S.
Clearly

∅ = PTE(S, b,m/b) ⊆ · · · ⊆ PTE(S, b, 1) ⊆ PTE(S, b, 0).

Lemma 2.4. (Affine invariance) Let n �= 0 and a be integers. Define
f : Z → Z by f(x) = a+ nx. If P = {S1, . . . , Sb} partitions S then

a+ nP := f(P ) = {f(S1), . . . , f(Sb)}

partitions a+ nS, and

P ∈ PTE(S, b, r) ⇐⇒ a+ nP ∈ PTE(a+ nS, b, r) .

Proof. An easy induction on the powers less than or equal to r.
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In other words, regularity is invariant under affine transformations.
We are interested in the Prouhet-Tarry-Escott problem when S is a set

of consecutive integers. Affine invariance implies that we need consider just
S = [m] = {1, . . . ,m}; we will write PTE(m, b, r) for PTE([m], b, r). In that
case, b-block partitions have natural string representations over an alphabet
A with b letters a1, . . . , ab.

Definition 2.5. The string representation of a partition P = (S1, . . . , Sb)
of S = [m] is the m-letter word a1a2 . . . am where ai is the tth letter of the
alphabet when i ∈ St.

Conversely, given an m-letter word w on a b-letter alphabet we can
construct the partition Pw of [m] using the equivalence relation that defines
two indices as equivalent when w has the same letter in those two places.

For the letters in reasonably small alphabets we will use A, B, C, . . . rather
than subscripts ai or integers. We may also occasionally leave blanks between
the letters to emphasize features of interest. These have no semantic signif-
icance. In what follows we will freely interchange partitions of [m] and the
corresponding words. Some arguments are better in one language, some in
the other. Permuting the letters of the alphabet corresponds to permuting
the order in which we write the blocks of the partition. Since that order is
essentially irrelevant, we will usually impose a particular lexicographic order
on the alphabet, and use letters in that order as necessary starting at the
beginning of a word.

In some studies of the Thue-Morse sequence and its generalizations it’s
convenient to use the alphabet {0, 1, . . . ,m− 1}. If you number the blocks
of the partition with those digits rather than those in [m] then the m-letter
words that encode the partitions can be viewed as integers written in basem.

3. A new class of solutions

In this section we generalize the recursive construction of the Thue-Morse
sequence in order to generate a new family of solutions to our Prouhet-
Tarry-Escott problems.

Definition 3.1. A Latin square on a b-letter alphabet is a b×b square matrix
of letters such that each letter occurs exactly once in each row and each
column. When we fix an order on the alphabet, a Latin square is normalized
when its first column is in alphabetical order.

A Latin square can always be normalized by permuting its rows. In the
literature “normalized” sometimes means the columns are permuted as well
so that the first row is in alphabetical order. We do not require that.
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Example 3.2. There is only one normalized Latin square on a 2-letter

alphabet,

L0 =

[
A B

B A

]
.

There are two normalized Latin squares on a 3-letter alphabet:

L1 =

⎡
⎣A B C

B C A

C A B

⎤
⎦ and L2 =

⎡
⎣A C B

B A C

C B A

⎤
⎦ .

The columns of a normalized Latin square L of size b correspond to a

sequence of permutations (π1 = id, π2, . . . , πb) such that for each row x of L

the sequence (π1(x) = x, π2(x), . . . , πb(x)) is a permutation of the alphabet.

We will often use that list of permutations to represent L:

L = (id, π2, . . . , πb).

Now we use normalized Latin squares to capture the essence of the re-

cursive construction of the Thue-Morse sequence.

Definition 3.3. If w = a1a2 . . . am is an m−letter word and π is a permu-

tation of the alphabet, then π(w) is the m-letter word

π(w) = π(a1)π(a2) . . . π(am) .

When L = (id, π2, . . . , πb) is a normalized Latin square we write L(w) for

the concatenated mb-letter word

L(w) = wπ2(w) · · ·πb(w) .

If P is the partition corresponding to word w then we write L(P ) for the

partition corresponding the word L(w).

Example 3.4. With the notations of Example 3.2,

(3.1) L0(ABBA BAAB) = ABBABAAB BAABABBA

and

(3.2) L2(AB) = ABCABC.
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The motivation for Definition 3.3 is the fact that using a Latin square this
way increases the regularity of a partition. See [AS99], [Leh47] for references
to Prouhet’s construction, based on a Latin square action on a cycle of
maximal length.

The partition corresponding to the word AB on the alphabet {A, B, C}
is just (−1)-regular; Equation (3.2) shows that it extends to word ABCABC,
which corresponds to a 0-regular partition.

The example in Equation (3.1) is more interesting. The word on the left
encodes a 2-regular partition. The one on the right corresponds to

{{1, 4, 6, 7, 10, 11, 13, 16}, {2, 3, 5, 8, 9, 12, 14, 15}} ,

which is 3-regular. Here’s the last step in the proof, assuming we’ve already
showed that it’s 2-regular. Let X be the sum of the cubes in the first block:

X = 13 + 43 + 63 + 73 + 103 + 113 + 133 + 163

= 13 + 43 + 63 + 73 + (2 + 8)3 + (3 + 8)3 + (5 + 8)3 + (8 + 8)3

= 13 + 43 + 63 + 73

+ 23 + 3(22 × 8) + 3(2× 82) + 83

+ 33 + 3(32 × 8) + 3(3× 82) + 83

+ 53 + 3(52 × 8) + 3(5× 82) + 83

+ 83 + 3(82 × 8) + 3(8× 82) + 83

=

8∑
k=1

k3 + 24(22 + 32 + 52 + 82) + 192(2 + 3 + 5 + 8) + 4(83).

The same kind of computation shows that the sum Y of the cubes in the
second block is

Y =

8∑
k=1

k3 + 24(12 + 42 + 62 + 72) + 192(1 + 4 + 6 + 7) + 4(83).

Since the partition corresponding to ABBABAAB is 2-regular, X = Y .
The formal proof of the general theorem calls for some machinery that’s

a little more intricate than we like.

Definition 3.5. The encoding matrix of a Latin square L is the matrix
M = E(L) defined by

Mij = x ⇐⇒ Ljx = i ;
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Mij is the index of the column of L in which the entry i occurs on row j:

Lj,Mi,j
= i ⇐⇒ MLi,j ,i = j.

Example 3.6. If

L =

⎡
⎣A B C

B C A

C A B

⎤
⎦

then

M = E(L) =

⎡
⎣1 3 2
2 1 3
3 2 1

⎤
⎦ .

Theorem 3.7. Suppose P partitions [m] into b blocks and L is a normalized
Latin square of size b.

1. If P is r-regular, then L(P ) is (r + 1)-regular.
2. If the encoding matrix M = E(L) is invertible and L(P ) is (r + 1)-

regular then P is r-regular.
3. If E(L) is not invertible, then there exist partitions P such that L(P )

is 1-regular but P is not 0-regular.

Proof. Let w = w1w2 . . . wm be the word corresponding to P on the alphabet
A = {a1, a2, . . . , ab}. For j � 0 and x ∈ A let

S(j)
w,x =

∑
{tj | wt = x, 1 � t � m}.

Then P is r-regular if and only if for every j = 0, . . . , r, the sum S
(j)
w,x is the

same for all x ∈ A.
Then

S
(j)
L(w),x =

∑{
tj | L(w)t = x, 1 � t � bm

}
=

b−1∑
k=0

[∑{
(km+ t)j | L(w)km+t = x, 1 � t � m

}]

=

b−1∑
k=0

[∑{
(km+ t)j | πk+1(wt) = x, 1 � t � m

}]

=

b−1∑
k=0

[∑{
j∑

i=0

(
j

i

)
(km)j−iti | wt = π−1

k+1(x), 1 � t � m

}]
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=

j∑
i=0

b−1∑
k=0

(
j

i

)
(km)j−iS

(i)

w,π−1
k+1(x)

.

Setting x = as ∈ A,

π−1
k+1(as) = aq ⇐⇒ s = πk+1(q) ⇐⇒ Lq,k+1 = s ⇐⇒ k + 1 = Msq.

Hence

(3.3)

S
(j)
L(w),as

=

b∑
q=1

S(j)
w,aq

+ jm

b∑
q=1

(Msq − 1)S(j−1)
w,aq

+

j−2∑
i=0

b−1∑
k=0

(
j

i

)
(km)j−iS

(i)

w,π−1
k+1(as)

= X(m, j) + jm

b∑
q=1

MsqS
(j−1)
w,aq

+

j−2∑
i=0

b−1∑
k=0

(
j

i

)
(km)j−iS

(i)

w,π−1
k+1(as)

,

where

X(m, j) =

m∑
k=1

(kj − jmkj−1)

is independent of w and s.

If w is r-regular then for every i = 0, . . . , r, the sum S
(i)
w,y is independent

of y. Then for all j = 0, . . . , r + 1, the sum S
(j)
L(w),as

does not depend on as,

which means that L(w) has regularity r + 1.

To prove (2), suppose that L(w) is (r + 1)-regular and M is invertible.

Let Y
(j)
w be the column vector with entries S

(j)
w,x for x ∈ A and E the

column vector with b entries, all equal to 1. Then (3.3) implies

Y
(1)
L(w) −X(m, 1)E = mMY (0)

w .

If L(w) is 1-regular, then the left hand side is a multiple of E. Since E is an
eigenvector of M , if M is invertible, then the right hand side must also be
a multiple of E, which shows that w is 0-regular. Induction on r using the
same argument completes the proof of the second statement.
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For (3), suppose that M is not invertible. Then its columns are linearly
dependent, so we can find integers c1, . . . , cb such that

c1Col1(M) + · · ·+ cbColb(M) = 0 .

Since the entries ofM are strictly positive, there will be both strictly positive
and strictly negative values among c1, . . . , cb. Pick a positive integer h such
that all the values h+ c1, . . . , h+ cb are non-negative and consider any word
w with h+c1 letters a1, h+c2 letters a2, and so on. Then w is not 0-regular,
but L(w) is 1-regular.

For example, let L be the Latin square

(3.4) L =

⎡
⎢⎢⎣
A B C D

B A D C

C D A B

D C B A

⎤
⎥⎥⎦ 	

⎡
⎢⎢⎣
1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

⎤
⎥⎥⎦ ,

corresponding to the multiplication table for the Klein group Z2 × Z2. In
this example the matrix E(L) is the same as L and is not invertible. An
example of a linear relation among the columns of E(L) is

Col1 − Col2 − Col3 +Col4 = 0 ,

with coefficients (1,−1,−1, 1) and a positive translate (2, 0, 0, 2). Therefore
any word w with two A’s and two D’s generates a 1-regular L(w), even if w
is not 0-regular.

1. L(ADAD) is 1-regular, but ADAD is not 0-regular.
2. L(BCCBADDA) is 2-regular but BCCBADDA is only 0-regular.

When we first understood the first assertion of Theorem 3.7 we hoped
it would generate all the solutions to our particular Prouhet-Tarry-Escott
problems. The third assertion dashed those hopes, so we started to search for
other constructions. You can read about that in the next section. We close
this one with some observations providing examples where E(L) is singular
or invertible.

Notice that E has order three: E(E(E(L))) = L because

E(E(E(L)))i,j = x ⇔ E(E(L))j,x = i ⇔ E(L)x,i = j ⇔ Li,j = x .

This periodicity allows us to reduce the problem of finding Latin squares
for which E(L) is singular or invertible to finding Latin squares with those
properties.
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Theorem 3.8. For every positive integer n there exist invertible Latin
squares of size n.

Proof. Construct a Latin square Mn of size n by replacing k by k + 1 in
the usual addition table of the group Zn = {0, 1, . . . , n−1}. After reversing
the order of rows the corresponding matrix becomes a circulant matrix with
first row (n, 1, 2, . . . , n−1), and

| detMn| =
(n+ 1)nn−1

2
�= 0 ,

hence Mn is invertible.

For example, when n = 6 the Latin square M6 is

(3.5)

0 1 2 3 4 5

0 1 2 3 4 5 6
1 2 3 4 5 6 1
2 3 4 5 6 1 2
3 4 5 6 1 2 3
4 5 6 1 2 3 4
5 6 1 2 3 4 5

Theorem 3.9. Let n be a composite positive integer. Then there exist sin-
gular Latin squares L of size n.

Proof. Let a, b be integers such that n = ab and 1 < a � b. Consider the
addition table M of the group Za×Zb. Enumerate the elements so that (i, j)
is the (j+1+bi)th. Then

Col1 − Col2 − Colb+1 +Colb+2 = 0 ,

hence M is not invertible.

The Latin square (3.4) corresponds to a = b = 2. When a = 2, b = 3 we
obtain the singular normalized Latin square

(3.6)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

(0, 0) 1 2 3 4 5 6
(0, 1) 2 3 1 5 6 4
(0, 2) 3 1 2 6 4 5
(1, 0) 4 5 6 1 2 3
(1, 1) 5 6 4 2 3 1
(1, 2) 6 4 5 3 1 2



126 Ethan D. Bolker et al.

where Col1 +Col5 = Col2 +Col4.

Remark 3.10. Note that whether the addition table of a group is an invert-

ible matrix or not depends on the order in which the elements are listed. Even

though Z6 and Z2 × Z3 are isomorphic groups, the reordering of elements

that maps (3.5) to (3.6) does not correspond to a group isomorphism.

What happens when n is prime? There are no singular Latin squares of

sizes 2 and 3 and a computer search indicates that all Latin squares of size

5 are invertible, too. However, for n = 7, the Latin square

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7
2 7 6 5 4 3 1
3 6 7 2 1 4 5
4 5 2 1 6 7 3
5 1 4 7 3 2 6
6 4 1 3 7 5 2
7 3 5 6 2 1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is singular.

4. Changing the shapes of solutions

In this section we study regularity-preserving operations on words.

Theorem 4.1. Swap. Let v, w, x, y and z be words on a b-letter alphabet

such that v and w are (r − 1)-regular and the concatenation xvywz is r-

regular. Suppose either

• |v| = |w|, or
• y is (r − 1)-regular (possibly empty).

Then xwyvz is also r-regular.

Proof. Left to the reader.

Theorem 4.2. There are 1-regular words of length n on a two-letter alphabet

if and only if n = 4k. In that case every element of PTE(4k, 2, 1) can be

obtained from the word

w = AkB2kAk

by a sequence of swaps interchanging subwords AB and BA.
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Proof. Let v be a 1-regular word of length n on a two-letter alphabet. Then
n is even and since v is 1-regular, the block sums are equal, so

2(block sum) = Σ[n] =
n(n+ 1)

2
=

n

2
× odd .

Then n/2 must also be even.

Conversely, it is clear that w is a 1-regular word of length n = 4k.

If the 1-regular word v = ...BA...AB... contains a subword BA to the
left of an AB then Theorem 4.1 says v′ = ...AB...BA... is also 1-regular and
is strictly less that v in lexicographic order. We can repeat this procedure
only a finite number of times, until we reach a 1-regular word z with no
subwords BA to the left of an AB. Then z is of the form Ap−1BqAB2k−qA2k−p

for some 1 � p � 2k and 0 � q � 2k. A straightforward computation shows
that such a word is 1-regular if and only if q = 2k(p− k), hence q = 0, p = k
or q = 2k, p = k + 1. Both imply z = w. Reversing the sequence of swaps
changes w into v.

Swapping rearranges a word without changing either length or regularity.
Concatenation increases length, while preserving regularity:

Lemma 4.3. If words v and w correspond to r-regular partitions on a b-
letter alphabet then so does their concatenation vw.

Proof. Let m be the length of v and n the length of w. Lemma 2.4 shows
that shifting word w right by m gives an r-regular partition of the integers
between n+1 and n+m. The blocks of the partition corresponding to vw are
the unions of corresponding blocks of v and w. Since the component blocks
from each of v and w have the same sums of powers up to r, so do their
unions.

Splitting is the inverse of concatenation.

Definition 4.4. (k-split) Let w be an r-regular word on a b-letter alphabet
– that is, w ∈ PTE(m, b, r). A k-split of w is a list of k-regular words
(w1, w2, . . . , wt) such that w = w1w2 · · ·wt.

The words wi need not have the same length. Lemma 4.3 implies that if
w can be k-split, then it is k-regular.

Example 4.5. We can k-split the familiar 2-regular ABBABAAB several
ways — the blanks illustrate the subword boundaries:

ABBABAAB = ABBA BAAB = ABBA BA AB = AB BA BA AB.
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Theorem 4.1 implies that reordering the pieces of an (r− 1)-splitting of
a partition of regularity r does not alter the regularity below r.

Definition 4.6. Let (w1, w2, . . . , wt) be a list of words of the same length
on the same alphabet. The shuffle

w1 ∧ w2 ∧ . . . ∧ wt

of the list is the word w built by concatenating the words built by concating
the t first, second, . . . letters of the wi.

Example 4.7.

AB ∧ BC ∧ CA = ABC BCA

ABBA ∧ BAAB = ABBABAAB

ABBA ∧ ABBA = AABBBBAA

Theorem 4.8. (Shuffling) The shuffle of r-regular words is r-regular.

Proof. Each component appears in the shuffle as an affine shift.

Swapping, concatenation and shuffling are all methods of generating new
regular words from old. We have introduced these operations in hopes that
they will help find all the regular words from some known ones, by analogy
with Theorem 4.2. There may be interesting questions to ask and answer
about the algebra of these operations — the ways in which they associate,
commute and distribute.

5. Existence

Theorem 5.1. On a two-letter alphabet, there are 2-regular words of length
n ⇐⇒ n = 4k, with k � 2.

Proof. Suppose there are 2-regular words of length n. Theorem 4.2 implies
that n = 4k, since any 2-regular word is 1-regular. There are no 2-regular
words of length 4, hence k � 2.

Conversely, suppose n = 4k with k � 2. Then k can be written as a
sum of 2s and 3s, hence some concatenation of copies of the 2-regular words
ABBABAAB and ABABBBAAABAB generate a 2-regular 4k-letter word.

The 12-letter word ABABBBAAABAB is a mystery. A computation similar
to the one following Example 3.4 shows it is 2-regular:

X = 12 + 32 + 72 + 82 + 92 + 112
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= 12 + 32 + (1 + 6)2 + (2 + 6)2 + (3 + 6)2 + (2 + 9)2

= 12 + 32 + 12 + 2(1× 6) + 62 + 22 + 2(2× 6) + 62

= 32 + 2(3× 6) + 62 + 22 + 2(2× 9) + 92

= 2(12 + 22 + 32) + 6(2 + 4 + 6 + 6) + (3× 62 + 92)

while

Y = 2(12 + 22 + 32) + 6(1 + 2 + 3 + 3 + 9) + (3× 32 + 2× 92).

The word is 2-regular because these expressions are equal — term by
term. Why does that happen?

Theorem 5.2. Let r � 2 and n = k · 2r, with k � 2. Then there exist
r-regular words of length n over a two-letter alphabet.

Proof. Induction on r. The base case r = 2 is in Theorem 5.1. The induction
step follows from Theorem 3.7.

A computer search shows that PTE(2, 2, 0), PTE(4, 2, 1), PTE(8, 2, 2),
PTE(16, 2, 3) each contain just one word, the initial segment of the Thue-
Morse sequence of the corresponding length. Moreover, those are the minimal
lengths of words with the respective regularity.

Conjecture 5.3. Suppose r � 2. On a two-letter alphabet, there are r-
regular words of length n ⇐⇒ n = k · 2r, with k � 2. Moreover, PTE(2r+1,
2, r) contains just one word, the initial segment of the Thue-Morse sequence
of length 2r+1.

There are similar results for three-letter alphabets.

Theorem 5.4. On a three-letter alphabet:

1. There are 1-regular words of length n ⇐⇒ n = 3k, with k � 2.
2. There are 2-regular words of length n ⇐⇒ n = 9k, with k � 2.

Proof. Similar to the proof of the first part of Theorem 4.2.

A computer search shows that PTE(6, 3, 1) has one word (ABCCBA),
PTE(18, 3, 2) has nine words, and PTE(36, 3, 3) has 152. Those are the min-
imum lengths of words of regularity 1, 2, and 3 respectively. These numbers
show that:

1. There are 2-regular words of length 18 that do not come from a Latin
square construction starting with a 1-regular word of length 6.
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2. None of the 3-regular words of length 36 comes from a Latin square

construction starting with a word of length 12, since the Latin squares

of order 3 are invertible and there are no 2-regular words of length 12.

Theorem 5.5. Let r � 3 and n = 2 · k · 3r−1 with k � 2. Then there exists

r-regular words of length n over a three-letter alphabet.

Proof. Induction on r. For r = 3 there are 3-regular words of 36 = 18 ·2 and

54 = 18 · 3 letters, hence, by concatenation, of any length of the form 18k

with k � 2. The induction step follows from Theorem 3.7.

6. Resource allocation

How does all this help answer the question of three or more cups of coffee?

We model the concentration of coffee in a cylindrical cafetière as a function

f : [0, 1] → R. (In reality f will increase with depth, but we won’t need

that.) To fill b cups of coffee with m pours of equal size we want to choose

a partition {B1, . . . , Bb} of the set of subintervals

(6.1)

{[
0,

1

m

]
,

[
1

m
,
2

m

]
, . . . ,

[
m− 1

m
, 1

]}

such that the integrals

(6.2) cj =

∫
Bj

f(x)dx =
∑
I∈Bj

∫
I
f(x)dx

are as nearly equal as possible.

We will identify the intervals in (6.1) bym times their right endpoints, so

the partitions of that set of intervals are just the partitions of {1, 2, . . . ,m}
we have been studying.

Theorem 6.1. If B ∈ PTE(m, b, r) then the integrals in Equation (6.2) are

independent of j when f is a polynomial of degree at most r. Therefore B

is a perfect pouring.

Proof. Consider first a monomial f(x) = xn for n � r. Using the change of

variable y = mx we have

cj =
1

mn+1

∑
i∈Bj

∫ i

i−1
yndy =

1

(n+ 1)mn+1

∑
i∈Bj

(
in+1 − (i− 1)n+1

)
.



Prouhet-Tarry-Escott and Thue-Morse 131

But in+1−(i−1)n+1 is a polynomial of degree n in i and since B is r-regular
and n � r, the last sum is independent of j. Having proved the theorem for
monomials its truth follows easily for polynomials.

This argument may seem circular. It’s not: the theorem asserts the equal-
ity of integrals of sums of powers; the last part of the last paragraph uses
regularity to prove the equality of sums of sums of powers.

When f is not a polynomial we can use the first few terms of its Taylor
expansion to find pretty good pourings.

Theorem 6.2. Let f : [0, 1] → R be an (r+ 1)-times differentiable function
and suppose |f (r+1)(x)| � M for all 0 � x � 1. If B ∈ PTE(m, b, r) then

(6.3) |ci − cj | � M

2rb(r + 1)!
.

Proof. The Lagrange formula for the remainder of the Taylor expansion of
f about 1/2 says that

f(x) = a polynomial of degree r +R(x)

where the error term satisfies

|R(x)| =
∣∣∣f (r+1)(ξx)

(r + 1)!

(
x− 1

2

)r+1∣∣∣ � M

2r+1(r + 1)!

for some ξx between 0 and 1. Then

(6.4) ci − cj =

∫
Bi

f(x)dx−
∫
Bj

f(x)dx =

∫
Bi

R(x)dx−
∫
Bj

R(x)dx

because the polynomial parts of the expansion of f contribute the same
amount to the difference. Each of the two terms in (6.4) satisfies the in-
equality ∣∣∣∫

Bi

R(x)dx
∣∣∣ � M

2r+1b(r + 1)!

since Bi is the union of m/b intervals each of length 1/m. Then their differ-
ence satisfies (6.3).

Example 6.3. Suppose f(x) = e−ax, with a > 0. Then∣∣∣f (r)(x)
∣∣∣ = ∣∣∣(−a)re−ax

∣∣∣ � ar .
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Then the right side of (6.3) approaches 0 as r → ∞, so we have a strategy
for pouring as equitably as we wish by choosing a PTE solution with r large
enough.

The inequality in (6.3) provides a quantitative estimate of the error of a
particular pouring. Here is a more general qualitative assertion:

Theorem 6.4. Suppose f : [0, 1] → R is analytic. Then we can get a pouring
as close to equitable as we want by choosing a partition in PTE(m, b, r) for
r large enough.

Proof. The difference in remainders in Equation (6.4) can be made arbi-
trarily small since f is the uniform limit of the partial sums of its power
series.

In [LS12] the authors address resource allocations for two players and
remark that “It would be interesting to quantify the intuition that the Thue-
Morse order tends to produce a fair outcome.” Theorem 6.4 and Conjec-
ture 5.3 show that allocations tend to be more equitable as regularity in-
creases, and that the Thue-Morse sequence produces the highest regularity
for words of fixed lengths that are powers of 2.

In [Ric01] Richman showed that the Thue-Morse sequence provides the
most equitable pourings into two cups for a variety of density functions f .
Our analysis here does not extend his; all we show is that regular partitions
yield good pourings.

Should you ever actually use a regular partition for a pouring you can
take advantage of double letters in the word to save a few switches: ABBABAAB
requires just 5, not 7. But don’t get your hopes up. The Thue-Morse sequence
never contains xxx. That’s probably true for our generalizations, too. Nor
are you likely to find xxyyzz.1
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