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The adjoint representation of a classical Lie algebra
and the support of Kostant’s weight multiplicity

formula
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, Erik Insko, and Lauren Kelly Williams

Even though weight multiplicity formulas, such as Kostant’s for-
mula, exist their computational use is extremely cumbersome. In
fact, even in cases when the multiplicity is well understood, the
number of terms considered in Kostant’s formula is factorial in the
rank of the Lie algebra and the value of the partition function is
unknown. In this paper, we address the difficult question: What
are the contributing terms to the multiplicity of the zero-weight in
the adjoint representation of a finite-dimensional classical Lie al-
gebra? We describe and enumerate the cardinalities of these sets
(through linear homogeneous recurrence relations with constant
coefficients) for the classical Lie algebras so2r+1(C), sp2r(C), and
so2r(C). The slr+1(C) case was computed by the first author in [7].
In addition, we compute the cardinality of the set of contributing
terms for non-zero weight spaces in the adjoint representation. In
the so2r+1(C) case, the cardinality of one such non-zero weight is
enumerated by the Fibonacci numbers.
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1. Introduction

The following problem arises in representation theory of complex semisimple
Lie algebras: For a dominant weight λ, what is the multiplicity of the weight
μ in the irreducible representation with highest weight λ, which we denote
by L(λ)? This problem dates back to Hermann Weyl, [16], and it continues
to attract the attention of present day mathematicians.
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The first approaches addressing this question stemmed from formulas
such as the Weyl character formula. However in 1948 Kostant developed
his well-known formula for computing the multiplicity of a weight in an
irreducible highest weight representation, [11]. This formula consists of an
alternating sum over the Weyl group and involves the computation of a
partition function. Despite the availability of such a formula, using it for
computational purposes can be quite daunting.

In terms of computational complexity, we note that in [13], Narayanan
proved that the problem of computing Kostka numbers and Littlewood-
Richardson coefficients is #P -complete. This implies that “... unless P =
NP , which is widely disbelieved, there do not exist efficient algorithms that
compute these numbers.” Since the Kostka number Kλ,μ also can be inter-
preted as the multiplicity of the weight μ in the representation of slr+1(C)
with highest weight λ, it is clear that computing weight multiplicities, in
much generality, is a computationally complex problem. However, there are
cases when computing weight multiplicities can be done in polynomial time.
Take for example computing the set of all non-zero Kostka numbers for a
particular μ, [1].

This shows us that the existence of formulas, such as that of Kostant,
provide a means to compute weight multiplicities, yet the computation itself
is difficult and time-consuming. The complications that arise when using
Kostant’s formula are due to the fact the number of terms appearing in the
alternating sum is factorial in the rank of the Lie algebra and the value of the
partition function involved is very often unknown. In this paper, we focus
on addressing the issue of the support of the partition function and show
that even in cases when the multiplicity is well understood, the support is
not.

The depth of this approach is appreciated through the following question:

What is the multiplicity of the zero-weight in the adjoint representation of
a finite-dimensional classical Lie algebra?

Lie theory provides the answer almost instantly: the multiplicity of the zero-
weight is the rank of the Lie algebra. In this paper, we address the difficult
question:

What elements of the Weyl group contribute (non-trivially) to the
multiplicity of the zero-weight in the adjoint representation of a

finite-dimensional classical Lie algebra?

Clearly the benefit of such an approach greatly reduces the computa-
tional expense. Moreover, this method of computing weight multiplicities
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is of interest to both combinatorialists and geometers. In terms of combi-

natorics, the methods used to determine the cardinality of the support (as

we will show) lead to new integer sequences and recurrence relations. For

geometers, the act of finding the support of Kostant’s weight multiplicity is

related to finding the set of elements in the Weyl group (which are reflec-

tions about a hyperplane perpendicular to a simple root), which “move” a

weight to points on a lattice lying within a specified polytope.

In this paper we take a combinatorial approach and we let Ar(α̃, 0) de-

note the set of elements of the Weyl group which contribute non-trivially to

the multiplicity of the zero-weight in the adjoint representation of a classical

Lie algebra of rank r. We show that the cardinality of the contributing sets

satisfy linear homogeneous recurrence relations with constant coefficients.

To provide our main results we define the following recurrence relations:

• For r ≥ 2, let ar = ar−1 + ar−2, with a0 = 0 and a1 = 1

• For r ≥ 4, let br = br−1+ br−2+3br−3+ br−4, with b0 = b1 = 0, b2 = 2

and b3 = 3

• For r ≥ 4, let cr = cr−1+ cr−2+3cr−3+ cr−4, with c0 = 0, c1 = c2 = 1

and c3 = 2

• For r ≥ 8, let dr = dr−1 + dr−2 + 3dr−3 + dr−4, with d4 = 4, d5 = 7,

d6 = 14 and d7 = 34.

Theorem 1.1 (Cardinality of the supporting set). Let g be a classical Lie

algebra of rank r and let α̃ denote its highest root. Then

• If g = slr+1(C) and r ≥ 2, then |A(α̃, 0)| = ar.

• If g = so2r+1(C) and r ≥ 4, then |A(α̃, 0)| = br + br−1 + br−2.

• If g = sp2r(C) and r ≥ 4, then |A(α̃, 0)| = cr + cr−1.

• If g = so2r(C) and r ≥ 8, then |A(α̃, 0)| = 2dr + dr−1.

To illustrate the computational benefit of knowing the cardinality of

Ar(α̃, 0) we provide the first few terms in these sequences:1

1The sequence of integers for type A consists of the Fibonacci numbers. The
sequences of integers for types B, C, and D were added by the authors to The On-
Line Encyclopedia of Integer Sequences (OEIS) as A232163, A232165, and A234598,
respectively.

http://oeis.org/A232163
http://oeis.org/A232165
https://oeis.org/A234598
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Type Ar (r ≥ 2): 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, . . .

Type Br (r ≥ 2): 2, 5, 10, 22, 49, 106, 231, 506, 1104, 2409, 5262, 11489,
25082, 54766, . . .

Type Cr (r ≥ 2): 2, 3, 8, 18, 37, 82, 181, 392, 856, 1873, 4086, 8919, 19480,
42530, 92853, . . .

Type Dr (r ≥ 4): 9, 18, 35, 82, 180, 385, 846, 1853, 4034, 8810, 19249, 42014,
91727, 200298, . . .

Observe that in the type A case the number of elements of the Weyl
group is given by r!, in Lie type B and C the order of W is 2r(r!), and in
type D the order is 2r−1(r!). It is clear that the cardinality of A(α̃, 0) is
extremely small when compared to the order of the Weyl group and thus
greatly reduces the computations. As an example consider the Lie algebra
C8, whose Weyl group order is 110100480, yet only 181 of these elements
actually contribute to the multiplicity formula!

In the same spirit, we address the multiplicity of other non-zero weights
in the adjoint representation. However, it is fundamental in Lie theory that
the non-zero weight spaces of the adjoint representation of g are the roots
and have multiplicity 1. In Section 7, we compute the cardinality of the
set of contributing terms for specific non-zero weight spaces in the adjoint
representation. In the type B case, we show that the number of contributing
terms to one such non-zero weight is enumerated by the Fibonacci numbers.

Our approach in this paper proves that while the number of terms ap-
pearing in Kostant’s formula grows factorially with the rank of the Lie al-
gebra, in these cases, the number of terms that contribute non-trivially to
the multiplicity formula only grow exponentially. Moreover, the results in
this paper are inspired by the following theorem of Kostant, [11]: If g is a
simple Lie algebra of rank r with highest root α̃, then mq(α̃, 0) =

∑r
i=1 q

ei ,
where mq denotes the q-analog of Kostant’s weight multiplicity formula (as
defined in [12]) and e1, e2, . . . , er are the exponents of the Lie algebra.

Knowing which elements of the Weyl group contribute non-trivially to
the multiplicity of the zero-weight in the adjoint representation will provide
a stepping stone for further work on providing a purely combinatorial proof
of the result of Kostant’s regarding the exponents of the classical Lie algebras
of type B, C, and2 D. This will be the focus of future work.

Sections 2 and 3 provide the necessary background and some general
results which facilitate the proof of Theorem 1.1. In Sections 4-6, we describe
the elements of Ar(α̃, 0) for the classical Lie algebras so2r+1(C), sp2r(C),

2The type A case was fully considered in [7].
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and so2r(C), which we refer to as the Lie algebras of type B, C, and D,
respectively. The Lie algebra slr+1(C) (type A) was considered by the first
author in [7].

2. Background

Throughout this article we let G be a simple linear algebraic group over C,
T a maximal algebraic torus in G of dimension r, and B, T ⊆ B ⊆ G, a
choice of Borel subgroup. Then let g, h, and b denote the Lie algebras of G,
T , and B respectively. We let Φ be the set of roots corresponding to (g, h),
and let Φ+ ⊆ Φ be the set of positive roots with respect to b. Let Δ ⊆ Φ+

be the set of simple roots. Denote the set of integral and dominant integral
weights by P (g) and P+(g), respectively. Let W = NormG(T )/T denote
the Weyl group corresponding to G and T , and for any w ∈ W , we let �(w)
denote the length of w.

A finite-dimensional complex irreducible representation of g is equivalent
to a highest weight representation with dominant integral highest weight λ,
which we denote by L(λ). To find the multiplicity of a weight μ in L(λ), we
use Kostant’s weight multiplicity formula, [10]:

m(λ, μ) =
∑
σ∈W

(−1)�(σ)℘(σ(λ+ ρ)− (μ+ ρ)),(1)

where ℘ denotes Kostant’s partition function and ρ = 1
2

∑
α∈Φ+ α. Recall

that Kostant’s partition function is the nonnegative integer valued func-
tion, ℘, defined on h∗, by ℘(ξ) = number of ways ξ may be written as a
nonnegative integral sum of positive roots, for ξ ∈ h∗.

With the aim of describing the contributing terms of (1) we introduce.

Definition 2.1. For λ, μ dominant integral weights of g define the Weyl
alternation set to be

A(λ, μ) = {σ ∈ W : ℘(σ(λ+ ρ)− (μ+ ρ)) > 0}.

Therefore, σ ∈ A(λ, μ) if and only if σ(λ+ρ)−(μ+ρ) can be written as a
nonnegative integral combination of positive roots. Moreover, in the simple
Lie algebra cases, the positive roots are made up of certain nonnegative
integral sums of simple roots. Hence we can reduce to σ ∈ A(λ, μ) if and
only if σ(λ+ρ)−(μ+ρ) can be written as a nonnegative integral combination
of simple roots. We recall that by definition ℘(0) = 1, and hence if σ ∈ W
and σ(λ+ ρ) = μ+ ρ, then σ ∈ A(α̃, 0).
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Our goal is to describe the elements of the Weyl group which contribute
to the multiplicity of the zero-weight in the adjoint representation of the clas-
sical Lie algebras. Namely, we compute the Weyl alternation sets, A(α̃, 0),
where α̃ denotes the highest root of a simple Lie algebra g. To achieve this
goal, Subsection 2.1 gives some necessary combinatorial background used in
the proofs of our main results.

2.1. Weyl groups acting on root spaces

It is widely established throughout the literature that the finite-dimensional
Lie algebras are classified by the Dynkin diagrams in Figure 1, [8]. The
action of a simple reflection si ∈ W on the set of simple roots Δ is also
characterized by these Dynkin diagrams. We will now recall a short synopsis
of this classification for ease of reference and refer the reader to [2], [3], and
[9] for more on the combinatorics of Weyl (Coxeter) groups and their actions
on roots.

By the definition of a simple reflection, for any two simple roots αi

and αj we have si(αi) = −αi, sj(αj) = −αj , si(αj) = αj + cijαi and
sj(αi) = αi+cjiαj . The integers cij and cji are in the set {0, 1, 2, 3}, and their
particular values are determined by how many edges (and their direction)
connect the nodes αi and αj in the Dynkin diagrams as summarized in
Figure 2, [3]. It is then a simple exercise to show that si permutes the
remaining positive roots [2, Lemma 4.4.3].

Figure 1: Dynkin diagrams.
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Figure 2: Three cases for the values of cij .

3. General results for classical Lie algebras

We begin with some general results regarding the classical Lie algebras. First
we give some preliminary information for each of the Lie algebras we con-
sider. We follow the notation used by Goodman and Wallach [6].

Type Ar (slr(C)): Let r ≥ 1 and let αi = εi − εi+1 for 1 ≤ i ≤ r. Then
Δ = {αi | 1 ≤ i ≤ r}, is a set of simple roots. The associated set of pos-
itive roots is Φ+ = {εi − εj : 1 ≤ i < j ≤ r}, where the highest root is
α̃ = α1 + α2 + · · · + αr and ρ = 1

2

∑r
i=1 i(r − i + 1)αi. For 1 ≤ i ≤ r − 1

we have si(αi) = −αi, si(αi−1) = αi−1 + αi, and si(αi+1) = αi + αi+1. For
i = r, we have that sr(αr) = −αr and sr(αr−1) = αr−1 + αr.

Type Br (so2r+1(C)): Let r ≥ 2 and let αi = εi − εi+1 for 1 ≤ i ≤ r− 1 and
αr = εr. Then Δ = {αi | 1 ≤ i ≤ r}, is a set of simple roots. The associated
set of positive roots is Φ+ = {εi−εj , εi+εj : 1 ≤ i < j ≤ r}∪{εi : 1 ≤ i ≤ r},
where the highest root is α̃ = α1+2α2+· · ·+2αr and ρ = 1

2

∑r
i=1 i(2r−i)αi.

For 1 ≤ i ≤ r−1 we have si(αi) = −αi, si(αi−1) = αi−1+αi, and si(αi+1) =
αi +αi+1. For i = r we have that sr(αr) = −αr and sr(αr−1) = αr−1 +2αr.

Type Cr (sp2r(C)): Let r ≥ 3 and let αi = εi − εi+1 for 1 ≤ i ≤ r − 1 and
αr = 2εr. Then Δ = {αi | 1 ≤ i ≤ r}, is a set of simple roots. The associated
set of positive roots is Φ+ = {εi − εj , εi + εj : 1 ≤ i < j ≤ r} ∪ {2εi : 1 ≤
i ≤ r}, where the highest root is α̃ = 2α1 + 2α2 + · · · + 2αr−1 + αr and

ρ = 1
2

∑r−1
i=1 i(2r − i+ 1)αi +

r(r+1)
4 αr. For 1 ≤ i ≤ r we have si(αi) = −αi,

si(αi−1) = αi−1 + αi. For 1 ≤ i ≤ r − 2, si(αi+1) = αi + αi+1, while
sr−1(αr) = 2αr−1 + αr.

Type Dr (so2r(C)): Let r ≥ 4 and let αi = εi − εi+1 for 1 ≤ i ≤ r − 1 and
αr = εr−1 + εr. Then Δ = {αi | 1 ≤ i ≤ r}, is a set of simple roots. The
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associated set of positive roots is Φ+ = {εi − εj , εi + εj | 1 ≤ i < j ≤ r},
where the highest root is α̃ = ε1 + ε2 = α1 + 2α2 + · · ·+ 2αr−2 + αr−1 + αr

and ρ = 1
2

∑
α∈Φ+ α = (r − 1)ε1 + (r − 2)ε2 + (r − 3)ε3 + · · · 2εr−2 + εr−1 =

1
2

∑r−2
i=1 2(ir −

i(i+1)
2 )αi +

r(r−1)
4 (αr−1 + αr). For 1 ≤ i ≤ r, si(αi) = −αi.

If 1 ≤ i < j ≤ r − 1 with |i − j| = 1 or if i = r − 2 and j = r, then
si(αj) = sj(αi) = αi + αj .

Lemma 3.1. The following simple transpositions do not fix the highest root
in each respective Lie type.

• In type Ar: s1(α̃) = α̃− α1 and sr(α̃) = α̃− αr,
• In type Br: s2(α̃) = α̃− α2,
• In type Cr: s1(α̃) = α̃− 2α1,
• In type Dr: s2(α̃) = α̃− α2.

The rest of simple reflections fix the highest root si(α̃) = α̃.

Notice that Lemma 3.1 follows from how simple transpositions act on
simple roots as detailed in Section 2. For any Lie type we can define ρ =

1 +
2 + · · · +
r, where 
i is dual to the coroots. Then by definition if
1 ≤ i, j ≤ r, then si(
j) = 
j − δi,jαi, where δi,j is the Kronecker delta
function whose value is 1 if i = j and 0 otherwise.

Lemma 3.2. In any Lie type, if si is a simple root reflection, then si(ρ) =
ρ− αi.

Proof. By definition of ρ and the action of a simple root, we have that
si(ρ) = si(
1+
2+· · ·+
r) = 
1+· · ·+
i−1+(
i−αi)+
i+1+· · ·+
r =
ρ− αi.

If β and γ are elements of h∗, we say β ≤ γ if and only if β = a1α1 +
· · · + arαr and γ = b1α1 + · · · + brαr where ai ≤ bi for all 1 ≤ i ≤ r. The
analogous definition holds for a strict inequality. Also recall that for any
σ ∈ W , �(σ) denotes the length of σ. Given the above setup we can now
prove the following lemma.

Lemma 3.3. Let σ ∈ Wr for any Lie type. If σ(ρ) = ρ −
∑

i∈J ciαi, for
some J ⊆ {1, 2, 3, . . . , r}, and if there exists i ∈ J such that ci ≥ 3, then
σ /∈ A(α̃, 0).

Proof. It follows from Lemma 3.2 that σ(ρ) = ρ −
∑

i∈J ciαi for some J ⊆
{1, 2, . . . , r} where ci is a positive integer for every i ∈ J . Now notice that
for any σ ∈ Wr we have that σ(α̃) ≤ α̃. Hence

σ(α̃+ ρ)− ρ ≤ α̃+ σ(ρ)− ρ = α̃−
∑
i∈J

ciαi.
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Since α̃ is the highest root we know that for any 1 ≤ i ≤ r the coefficient of
αi in α̃ is either 1 or 2. So if there exists an index i ∈ J for which ci ≥ 3, then
the coefficient of αi in the expression α̃−

∑
i∈J ciαi would be negative. This

would also be the case for the coefficient of αi in the expression σ(α̃+ρ)−ρ,
since σ(α̃+ ρ)− ρ ≤ α̃−

∑
i∈J ciαi. Therefore σ /∈ A(α̃, 0).

Let N(σ) = {α ∈ Φ+ : σ(α) ∈ −Φ+} denote the set of positive roots
that are negated by σ. It is well-known that |N(σ)| = �(σ) for any σ ∈ W
[2, Proposition 4.4.4]. Hence the set N(σ) ⊂ Φ+ is nonempty for any σ �= e.
We conclude that the weight σ(ρ) is always less than or equal to ρ, and
hence the weight σ(ρ)−ρ can be expressed as a sum of negative roots in the
following way:

σ(ρ)− ρ =
∑

α∈N(σ)

σ(α) = −
∑
αj∈Δ

cjαj with cj ≥ 0 for all αj ∈ Δ.

The following Proposition proves that if σ contains σ′ as a subword then

− (σ(ρ)− ρ) > −
(
σ′(ρ)− ρ

)
.

While the result seems intuitive, we could not find a reference in the liter-
ature, and even our proof is rather cumbersome. Hence we would welcome
an elegant proof.

Proposition 3.4. Let si denote the simple root reflection corresponding to
αi ∈ Δ. Write the weights σ(ρ) − ρ, σsi(ρ) − ρ, and siσ(ρ) − ρ as linear
combinations of positive roots as follows:

• σ(ρ)− ρ = −
∑

αj∈Δ cjαj with cj ≥ 0,
• σsi(ρ)− ρ = −

∑
αj∈Δ djαj with dj ≥ 0, and

• siσ(ρ)− ρ = −
∑

αj∈Δ ejαj with ej ≥ 0.

Then:

1. If �(σsi) > �(σ), then dj ≥ cj for all j and dk > ck for at least one
αk ∈ Δ.

2. If �(siσ) > �(σ), then ej ≥ cj for all j with ei > ci.

The proof of Proposition 3.4 will use the following lemma. We pull it
aside now so that the verification of this fact does not disrupt the proof of
Proposition 3.4.

Lemma 3.5. If �(siσ) > �(σ) and σ(−α) = β for some α ∈ N(σ) and
si(β) < β, then si(β) = σ(−γ) for some γ in N(σ). In other words, there
exists a γ ∈ N(σ) such that si permutes σ(−γ) and σ(−α).
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Proof. Suppose �(siσ) > �(σ) and σ(−α) = β for some α ∈ N(σ). Suppose
further that si(β) < β are both positive roots. Then si(β) = β − ciαi for
some ci ≥ 0. Then consider

(2) σ−1(si(β)) = σ−1(β − ciαi) = σ−1(β)− ciσ
−1(αi) = −α− ciσ

−1(αi).

Lemma 1.6 in Humphrey’s Reflection Groups and Coxeter Groups, states
that if �(siσ) > �(σ) then σ−1(αi) ∈ Φ+ [9, Lemma 1.6]. We know that
σ−1si ∈ W permutes the set of roots, so σ−1si(β) is a root. Equation (2)
shows σ−1(siβ) = −α− ciσ

−1(αi) is a negative root because α and σ−1(αi)
are both positive roots. Hence γ = α+ ciσ

−1(αi) ∈ Φ+. Now we see that

si(β) = σ(σ−1(si(β)) = σ(σ−1(β − ciαi)) = σ
(
−α− ciσ

−1 (αi)
)
= σ(−γ).

Since σ(−γ) = siβ is an element of Φ+, we see that γ ∈ N(σ) as desired.

We are now ready to prove Proposition 3.4.

Proof. (Proof of Statement 1) Equation (4.25) in Section 4.4 of Bjorner and
Brenti states that �(σsi) > �(σ) ⇐⇒ σ(αi) ∈ Φ+. Hence if �(σsi) > �(σ),
then σ(αi) is a positive root so it can be expressed as σ(αi) =

∑
αj∈Δ bjαj

with every bj ≥ 0 and at least one bk > 0. Applying Lemma 3.2 we compute
that

σsi(ρ)− ρ = σ(ρ− αi)− ρ = σ(ρ)− ρ− σ(αi) = −
∑
αj∈Δ

cjαj − σ(αi)

= −
∑
αj∈Δ

(cj + bj)αj = −
∑
αj∈Δ

djαj .

The last equality proves that dj ≥ cj for all j and that there exists at least
one k with dk > ck, which completes the proof of Statement 1.
(Proof of Statement 2) We can write the weight σ(ρ) − ρ in the following
two ways:

σ(ρ)− ρ = −
∑
αj∈Δ

cjαj =
∑

α∈N(σ)

σ(α).

Since si(ρ) = ρ − αi we calculate that si(σ(ρ) − ρ) = siσ(ρ) − si(ρ) =
siσ(ρ) − ρ + αi or equivalently, that siσ(ρ) − ρ = si(σ(ρ) − ρ) − αi. Hence
we see that

siσ(ρ)− ρ = si(σ(ρ)− ρ)− αi = si

⎛
⎝−

∑
αj∈Δ

cjαj

⎞
⎠− αi = −

∑
αj∈Δ

ejαj .
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It follows from the way si acts on the positive roots that cj = ej if j �= i

and ei =
∑

j∈adj(i) cj + 1 − ci where adj(i) denotes the set of indices of

simple roots adjacent to αi in the Dynkin diagram. We will now show that if

�(siσ) > �(σ) then ei > ci. Since �(siσ) > �(σ) we have |N(siσ)| = |N(σ)|+1

[2, Proposition 4.4.4], and in fact N(siσ) = N(σ) ∪ {γ : σ(γ) = αi}. Hence

we get the following expression for siσ(ρ)− ρ:

si(σ(ρ))− ρ = −
∑
αj∈Δ

ejαj = si

⎛
⎝ ∑

α∈N(σ)

σ(α)

⎞
⎠− αi

= si

⎛
⎝−

∑
αj∈Δ

cjαj

⎞
⎠− αi.(3)

For each α ∈ N(σ) either siσ(−α) ≥ σ(α) or siσ(−α) < σ(α). Lemma 3.5

shows that if the root siσ(−α) < σ(−α) then there is another root γ ∈ N(σ)

such that the following sums are equal

si(σ(−α)) + si(σ(−γ)) = σ(−α) + σ(−γ).

In other words, si permutes the two positive roots σ(−α) and σ(−γ). This

implies that

si

⎛
⎝ ∑

α∈N(σ)

σ(α)

⎞
⎠ ≥

∑
α∈N(σ)

σ(α) and si

⎛
⎝−

∑
αj∈Δ

cjαj

⎞
⎠ ≥ −

∑
αj∈Δ

cjαj .

Therefore Equation (3) can be extended to an inequality as follows

si(σ(ρ))− ρ = −
∑
αj∈Δ

ejαj = si

⎛
⎝ ∑

α∈N(σ)

σ(α)

⎞
⎠− αi

= si

⎛
⎝−

∑
αj∈Δ

cjαj

⎞
⎠− αi ≥ −

∑
αj∈Δ

cjαj − αi.

Notice we have hence shown that

−
∑
αj∈Δ

ejαj ≥ −
∑
αj∈Δ

cjαj − αi.
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Since ej = cj for all j �= i (as si was the only thing acting on the cj values)
the previous line shows that ei ≥ ci+1 as desired. This completes the proof
of Statement 2.

Proposition 3.4 allows us to rule out a significant number of elements of
W from being in the set A(α̃, 0). In fact we know that if σ′ ∈ W contains σ
as a subword then σ′ = si1si2 · · · sikσsj1sj2 · · · sjl . So Proposition 3.4 shows
that if σ /∈ A(α̃, 0), then neither is any σ′ containing σ in its reduced word
decomposition.

We will now compute σ(ρ) for all σ consisting of at most four root
reflections associated to consecutive simple roots in the Dynkin diagrams.
This leads to a classification of the minimal forbidden subwords, i.e. the
smallest length Weyl group elements which are not in the set A(α̃, 0). These
minimal forbidden elements are presented in Lemma 3.11.

Figure 3: Dynkin diagram of the root system A2.

Lemma 3.6. When the Dynkin diagram of αi and αi+1 embeds into that of
A2 (Figure 3) the products of si and si+1 have the following effect on ρ

si+1si(ρ) = ρ− αi − 2αi+1,

sisi+1(ρ) = ρ− 2αi − αi+1, and

sisi+1si(ρ) = ρ− 2αi − 2αi+1.

Proof. Observe that

si+1si(ρ) = si+1(ρ− αi) = ρ− αi+1 − (αi + αi+1) = ρ− αi − 2αi+1,

sisi+1(ρ) = si(ρ− αi+1) = ρ− αi − (αi + αi+1) = ρ− 2αi − αi+1, and

sisi+1si(ρ) = si(ρ− αi+1 − (αi + αi+1)) = ρ− αi + αi − 2(αi + αi+1)

= ρ− 2αi − 2αi+1.

Figure 4: Dynkin diagram of the root system A3.

Lemma 3.7. If the Dynkin diagram of αi, αi+1, and αi+2 embeds into the
Dynkin diagram of A3 (Figure 4), then the elements sisi+1si+2, si+2si+1si,
sisi+2si+1, and si+1sisi+2 act on ρ as follows:
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sisi+1si+2(ρ) = ρ− 3αi − 2αi+1 − αi+2,

si+2si+1si(ρ) = ρ− αi − 2αi+1 − 3αi+2,

sisi+2si+1(ρ) = ρ− 2αi − αi+1 − 2αi+2,

si+1sisi+2(ρ) = ρ− αi − 3αi+1 − αi+2.

Proof. Using the same technique as before notice that

sisi+1si+2(ρ) = sisi+1(ρ− αi+2) = si(ρ− 2αi+1 − αi+2)

= ρ− 3αi − 2αi+1 − αi+2,

si+2si+1si(ρ) = si+2si+1(ρ− αi) = si+2(ρ− αi − 2αi+1)

= ρ− αi − 2αi+1 − 3αi+2,

sisi+2si+1(ρ) = sisi+2(ρ− αi+1) = si(ρ− αi+1 − 2αi+2)

= ρ− 2αi − αi+1 − 2αi+2,

si+1sisi+2(ρ) = si+1si(ρ− αi+2) = si+1(ρ− αi − αi+2)

= ρ− αi − 3αi+1 − αi+2.

Figure 5: Dynkin diagram of the root system A4.

Lemma 3.8. Assume that the Dynkin diagram of αi, αi+1, αi+2, and αi+3

embeds into A4 (Figure 5). Let i1, i2, i3, and i4 be distinct elements of the

set {i, i+ 1, i+ 2, i+ 3, i+ 4}. If σ = si1si2si3si4 , then σ /∈ A(α̃, 0).

Proof. By Lemma 3.7, the only length-three product of si, si+1 and si+2 that

is inA(α̃, 0) is the element sisi+2si+1. To obtain a word σ with all four simple
transpositions, we can either multiply on the left or right by si+3. However, if

we multiply by si+3 on the left we get si+3sisi+2si+1 = sisi+3si+2si+1. This

contains si+3si+2si+1 which is not in A(α̃, 0) by Lemma 3.7. Thus Proposi-

tion 3.4 implies that sisi+3si+2si+1 is also not in A(α̃, 0). If we multiply on
the right by si+3 we obtain sisi+2si+1si+3. By Lemma 3.7, si+2si+1si+3 is

not in A(α̃, 0) because si+2si+1si+3(ρ) = ρ− αi+1 − 3αi+2 − αi+3. So again

by Proposition 3.4, sisi+2si+1si+3 /∈ A(α̃, 0). An analogous argument shows
that si+1si+3si+2 cannot be extended to a product containing si so that the

resulting element will be in A(α̃, 0). Thereby completing the proof.
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Figure 6: Dynkin diagram of the root system B2.

Lemma 3.9. When the Dynkin diagram of αi and αi+1 embeds into the
Dynkin diagram of type B2 (Figure 6) or when i = r−1 in type Br, we have
the following

sisi+1(ρ) = ρ− 2αi − αi+1 and si+1si(ρ) = ρ− αi − 3αi+1.

Proof. Observe that

sisi+1(ρ) = si(ρ− αi+1) = ρ− 2αi − αi+1 and

si+1si(ρ) = si+1(ρ− αi) = ρ− αi − 3αi+1.

Figure 7: Dynkin diagram of the root system C2.

Lemma 3.10. When the Dynkin diagram of αi and αi+1 embeds into the
Dynkin diagram of type C2 (Figure 7) or when i = r−1 in type Cr, we have
the following

sisi+1(ρ) = ρ− 3αi − αi+1 and si+1si(ρ) = ρ− αi − 2αi+1.

Proof. Observe that

sisi+1(ρ) = si(ρ− αi+1) = ρ− 3αi − αi+1 and

si+1si(ρ) = si+1(ρ− αi) = ρ− αi − 2αi+1.

Lemmas 3.7 and 3.8 allow us to identify a set of Weyl group elements
which are not in the Weyl alternation set for any classical type. We record
this set now for ease of reference in the type specific proofs presented in the
following sections.

Lemma 3.11. Let σ ∈ Wr be a Weyl group element in any classical Lie
type. Then
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1. if σ = sisi+1si+2, si+2si+1si, si+1sisi+2 and αi, αi+1, and αi+2 embed
into the Dynkin diagram of A3, or

2. if σ = si1si2si3si4 with i1, i2, i3, i4 distinct elements of {i, i+1, i+2, i+
3}, where αi, αi+1, αi+2, and αi+3 embed into A4, or

3. if σ = si+1si and αi and αi+1 embed into the Dynkin diagram of B2,
or

4. if σ = sisi+1 and αi and αi+1 embed into the Dynkin diagram of C2,

then σ is not in the Weyl alternation set A(α̃, 0).

Proof. This result follows from applying Lemma 3.3 to Lemmas 3.7, 3.8, 3.9,
and 3.10.

If σ is one of the elements listed in Lemma 3.11, then we say that σ is
a minimal forbidden subword. Using Proposition 3.4 we have shown that all
elements of W containing these listed elements as subwords will not be in
the respective Weyl alternation sets A(α̃, 0).

4. A(α̃, 0) in type B

When we consider the Lie algebra of type B and rank r we denote the Weyl
alternation set as:

Br(λ, μ) := A(λ, μ) = {σ ∈ W : ℘(σ(λ+ ρ)− ρ− μ) > 0},

where W denotes the corresponding Weyl group. Recall that in this case the
Weyl group is isomorphic to the group of signed permutations on r letters
and has order 2r · r!. In order to illustrate the complexity in computing
weight multiplicities we present a detailed example.

Example 4.1. We will use Kostant’s weight multiplicity formula to compute
the multiplicity of the zero-weight in the adjoint representation of so7(C).
In this process we will compute the Weyl alternation set B3(α̃, 0). First note
that the Weyl group, W , corresponding to the Lie algebra so7(C) has order
233! = 48. This means that Kostant’s weight multiplicity formula will be an
alternating sum consisting of 48 terms.

We begin by considering the term corresponding to the identity element
of W . First notice that 1(α̃+ρ)−ρ = α̃ and now we must compute the value
of Kostant’s partition function. To compute the number of ways to express α̃
as a sum of positive roots we use parenthesis to denote which positive roots
we are using in this expression. In this way we can see that we may write α̃
in the following eleven ways:
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α̃ = (α1) + 2(α2) + 2(α3)

= (α1) + 2(α2 + α3)

= (α1) + (α2) + (α2 + 2α3)

= (α1) + (α2) + (α3) + (α2 + α3)

= (α1 + α2) + (α2 + 2α3)

= (α1 + α2) + (α2 + α3) + (α3)

= (α1 + α2) + (α2) + 2(α3)

= (α1 + α2 + α3) + (α2 + α3)

= (α1 + α2 + α3) + (α2) + (α3)

= (α1 + α2 + 2α3) + (α2)

= (α1 + 2α2 + 2α3).

Thus ℘(1(α̃+ ρ)− ρ) = 11.
A computation shows that of the 48 elements of the Weyl group only the

five elements 1, s1, s2, s3, and s3s1 contribute a positive partition function
value. Thus B3(α̃, 0) = {1, s1, s2, s3, s3s1}. It is worth remarking again that
as the rank of the Lie algebra increases the number of terms grows factorially,
and thus it is more evident that it is essential to know which elements are
contributing non-zero terms to the alternating sum.

Now we can finally compute the multiplicity of the zero-weight in the
adjoint representation by reducing the sum to only the contributing terms.
Thus

m(α̃, 0) =
∑
σ∈W

(−1)�(σ)℘(σ(α̃+ ρ)− ρ) =
∑

σ∈B3(α̃,0)

(−1)�(σ)℘(σ(α̃+ ρ)− ρ)

= 11− 4− 1− 5 + 2 = 3,

which is the rank of the Lie algebra so7(C), as we expected.

We now return to the general case of computing Br(α̃, 0) for all r. First
we recall that the Weyl group of type Br is a poset with order given by
inclusion of subwords. To cut down on the number of elements in Wr that
we need to consider, we start by describing the set of Weyl group elements
which are not in Br(α̃, 0). Proposition 3.4 shows that anyWeyl group element
that contains one of the elements listed below in its reduced word expression
will not be in Br(α̃, 0).

Lemma 4.1. Let σ be a reduced word in W . If σ contains s1s2, s2s1, s2s3,
s3s2, or srsr−1 in its reduced word decomposition, then σ /∈ Br(α̃, 0).
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Proof. A simple calculation shows that

s1s2(α̃+ ρ)− ρ = α̃− 3α1 − 2α2 = −2α1 + 2α3 + · · ·+ 2αr,

s2s1(α̃+ ρ)− ρ = α̃− α1 − 3α2 = −α2 + 2α3 + · · ·+ 2αr,

s2s3(α̃+ ρ)− ρ = α̃− 3α2 − α3 = α1 − α2 + α3 + 2α4 + · · ·+ 2αr,

s3s2(α̃+ ρ)− ρ = α̃− 2α2 − 3α3 = α1 − α3 + 2α4 + · · ·+ 2αr, and

srsr−1(α̃+ ρ)− ρ = α̃− αr−1 − 3αr = α1 + 2α2 + · · ·+ 2αr−2 + αr−1 − αr.

Thus Proposition 3.4 implies that no Weyl group element σ containing any

of the products of simple reflections s1s2, s2s1, s2s3, or srsr−1 in its reduced

word decomposition is in the Weyl alternation set Br(α̃, 0).

We call the subwords described in Lemmas 3.11 and 4.1 the minimal

forbidden subwords of type B. It is easy to see that the vast majority of ele-

ments in Wr contain one of these minimal forbidden subwords. Thus we have

greatly reduced the number of elements we must consider. Now that we have

described which elements of Wr are not in Br(α̃, 0), we turn our attention

to the elements σ which do not contain a minimal forbidden subword.

The next Proposition and its corollary describe the Weyl group elements

in Br(α̃, 0) as commuting products of short strings of simple root reflections.

We shall refer to the elements listed in Proposition 4.2 as the basic allowable

subwords of type B.

Proposition 4.2. The following elements of Wr are in Br(α̃, 0)

(1) (r ≥ 2): 1, i.e. the identity element of Wr

(2) (r ≥ 3): si for any 1 ≤ i ≤ r

(3) (r ≥ 4): sisi+1 for any 3 ≤ i ≤ r − 1

(4) (r ≥ 5): si+1si for any 3 ≤ i ≤ r − 2

(5) (r ≥ 5): sisi+1si for any 3 ≤ i ≤ r − 2

(6) (r ≥ 6): sisi+2si+1 for any 3 ≤ i ≤ r − 3.

Proof. Recall σ ∈ Br(α̃, 0) if and only if σ(α̃ + ρ) − ρ can be written as

a nonnegative integral combination of simple roots. Clearly 1 ∈ Br(α̃, 0)

since 1(α̃ + ρ) − ρ = α̃ which can be written as a sum of simple roots with

nonnegative integer coefficients.

Let r ≥ 3 and i ∈ {1, 3, 4, . . . , r}. Then by Lemma 3.1 si(α̃ + ρ) − ρ =

α̃+(ρ−αi)− ρ = α1+2α2+ · · ·+2αi−1+αi+2αi+1+ · · ·+2αr, and when

i = 2 we have that s2(α̃ + ρ) − ρ = (α̃ − α2) + (ρ − α2) − ρ = α̃ − 2α2 =

α1 + 2α3 + · · ·+ 2αr. Hence si ∈ Br(α̃, 0) for all 1 ≤ i ≤ r.
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Let r ≥ 4 and let 3 ≤ i ≤ r − 1. Then by Lemmas 3.1 and 3.6 we have
that sisi+1(α̃+ ρ)− ρ = α1 + 2α2 + · · ·+ 2αi−1 + αi+1 + 2αi+2 + · · ·+ 2αr.
Hence sisi+1 ∈ Br(α̃, 0), for all 3 ≤ i ≤ r − 1, whenever r ≥ 6.

Let r ≥ 5 and let 3 ≤ i ≤ r − 2. Then by Lemmas 3.1 and 3.6

si+1si(α̃+ ρ)− ρ = α1 + 2α2 + · · ·+ 2αi+1 + αi + 2αi+2 + · · ·+ 2αr, and

sisi+1si(α̃+ ρ)− ρ = α1 + 2α2 + · · ·+ 2αi−1 + 2αi+2 + · · ·+ 2αr.

Hence si+1si and sisi+1si ∈ Br(α̃, 0), for all 3 ≤ i ≤ r − 2 when r ≥ 5.

Let r ≥ 6 and 3 ≤ i ≤ r − 3. Then by Lemmas 3.1 and 3.7 we have
sisi+2si+1(α̃+ ρ)− ρ = α1 + 2α2 + · · ·+ 2αr−1 + αi+1 + 2αi+3 + · · ·+ 2αr.
Hence sisi+2si+1 ∈ Br(α̃, 0), for all 3 ≤ i ≤ r − 3, whenever r ≥ 6.

Proposition 4.2 gives a list of words that are contained in the alternation
set Br(α̃, 0). In fact this list of subwords include the longest (reduced) sub-
words consisting of consecutively indexed reflections which lie in Br(α̃, 0).
To create all other elements of the set Br(α̃, 0) we simply multiply elements
from this list that do not share indices of adjacent simple roots in the Dynkin
diagram. To make this idea precise we define a product of commuting basic
allowable subwords by using the Dynkin diagram.

Definition 4.1. Let τ = si1si2 · · · sim and π = sj1sj2 · · · sjn be basic allow-
able subwords and let

sup(τ) = {αi1 , αi2 , . . . , αim} and sup(π) = {αj1 , αj2 , . . . , αjn}.

If sup(τ) ∩ sup(π) = ∅ and for any simple root αk ∈ sup(τ) there does not
exists a simple root αk′ ∈ sup(π) such that αk and αk′ are adjacent nodes in
the Dynkin diagram, then τπ = πτ and we say that τ and π are commuting
basic allowable subwords.

Proposition 4.2 lists the basic allowable subwords of typeB, the following
lemma considers what occurs when we multiply two noncommuting basic
allowable subwords.

Lemma 4.3. Let σ and τ be noncommuting basic allowable subwords. Then
the product στ falls into one of the following three cases:

1. στ is itself a basic allowable subword with �(στ) = �(σ) + �(τ),
2. στ reduces to a commuting product of basic allowable subwords with

�(στ) < �(σ) + �(τ),
3. στ contains a minimal forbidden subword as listed in Lemma 3.11.
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Corollary 4.4. Let σ ∈ Wr be a reduced word. If σ is a product of commut-
ing basic allowable subwords of type Br, then σ ∈ Br(α̃, 0).

Proof. This follows from the fact that all basic allowable subwords are in
Br(α̃, 0) and if σ is a product of commuting basic allowable subwords then
these subwords act on nonadjacent subsets of the roots in the expression
α̃ + ρ. Hence σ(α̃ + ρ) − ρ will continue to be expressible as a nonnegative
integral combination of simple roots, and thus this commuting product of
basic allowable subwords will again be in Br(α̃, 0).

Lemma 4.3, and Corollary 4.4 show that the only elements ofWr that are
contained in Cr(α̃, 0) are words which reduce to basic allowable subwords,
as listed in Proposition 4.2, and products of basic allowable subwords that
commute (i.e. their supports are not adjacent in the Dynkin diagram.) With
these facts in hand, we are now ready to state a classification of the set
Br(α̃, 0) in terms of commuting products of basic allowable subwords.

Theorem 4.5. Let σ ∈ Wr be a reduced word. Then σ ∈ Br(α̃, 0) if and
only if σ is either basic allowable subword or a product of commuting basic
allowable subwords of type B.

Proof. (⇐) From Proposition 4.2 and Corollary 4.4 we see that the basic
allowable subwords and all products of commuting basic allowable subwords
are in Br(α̃, 0).

(⇒) Suppose that σ = b1b2 · · · bk is a reduced word, and that each bi is
a basic allowable subword of maximal length (i.e. none of the products bibj
can be written as a basic allowable subword). Suppose that there are a pair
of basic allowable subwords bi and bj in the reduced word for σ which are not
commuting basic allowable subwords. Lemma 4.3 shows that there are three
possible cases: In the first case bibj is a minimal forbidden word, and that
means σ /∈ Br(α̃, 0). In the second case bibj can be combined into one basic
allowable subword of the same length. This contradicts our assumption that
each of the bi have maximal length. The third case is that bibj is a product of
commuting allowable subwords with �(bibj) < �(bi)+ �(bj). This contradicts
our assumption that σ = b1b2 · · · bk is a reduced word. Thus σ is not in
Br(α̃, 0) if it cannot be written as a product of commuting basic allowable
subwords.

4.1. Cardinality of Br(α̃, 0)

To determine the cardinality of Br(α̃, 0), we will begin by considering the
elements of Br(α̃, 0) which do not contain a factor of sr. Let Pr denote the
set of all such elements and we define P0 = P1 to be the empty set.
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Proposition 4.6. The cardinality of the set Pr is given by the following

recursive formula:

|Pr| = |Pr−1|+ |Pr−2|+ 3|Pr−3|+ |Pr−4|,

where |P0| = |P1| = 0, |P2| = 2, |P3| = 3.

Proof. We immediately have |P0| = |P1| = 0, as both P0 and P1 are defined

to be the empty set. A fast computation of P2 = {1, s1} and P3 = {1, s1, s2}
shows us that |P2| = 2 and |P3| = 3.

Now for r ≥ 3, we note that an allowable subword of Br−1(α̃, 0) is also

an allowable subword of Br(α̃, 0). Hence Br−1(α̃, 0) ⊂ Br(α̃, 0), and since no

element of Br−1(α̃, 0) could have a factor of sr, then Pr−1 ⊂ Pr as well. Thus,

if σ ∈ Pr−1, then σ ∈ Pr. Proposition 4.2 and the definition of Pr describe

the additional elements that appear in Pr as the value of r increases. In

particular,

1. For r ≥ 4, if σ ∈ Pr−2, then σsr−1 ∈ Pr.

2. For r ≥ 5, if σ ∈ Pr−3, then Pr will contain σsr−2sr−1, σsr−1sr−2, and

σsr−2sr−1sr−2.

3. For r ≥ 6, if σ ∈ Pr−4, then σsr−3sr−1sr−2 ∈ Pr.

Let Pjπ = {σπ |σ ∈ Pj} for any Weyl group element π and any positive

integer j. Then for any k ≥ 5, Pk is the union of the pairwise disjoint sets

Pk = Pk−1 ·∪ (Pk−2sk−1) ·∪ (Pk−3sk−2) ·∪ (Pk−3sk−2sk−1)

·∪ (Pk−3sk−1sk−2) ·∪ (Pk−4sk−3sk−1sk−2).

Thus |Pk| = |Pk−1|+ |Pk−2|+ 3|Pk−3|+ |Pk−4|.

We now count the elements of Br(α̃, 0) containing a factor of sr. To do

so we note the following.

Lemma 4.7. Let r ≥ 3. If σ ∈ Br(α̃, 0) and σ contains a factor of sr, then

σ = πsr for some π ∈ Pr−1 or σ = τsr−1sr for some τ ∈ Pr−2.

Proof. By Theorem 4.5 we know that if σ ∈ Br(α̃, 0), then σ = b1b2 · · · bm for

b1, b2, . . . , bm commuting basic allowable subwords as described by Proposi-

tion 4.2. Now if σ contains a factor of sr, then either σ contains sr−1sr or it

will not contain a factor of sr−1 at all. Hence, by definition of Pk, we have

that either σ = τsr−1sr for some τ ∈ Pr−2 or σ = πsr for some π ∈ Pr−1.
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Corollary 4.8. For r ≥ 2, the cardinality of the set Br(α̃, 0) is given by the
following recursive formula:

|Br(α̃, 0)| = |Pr|+ |Pr−1|+ |Pr−2|,

where |P0| = |P1| = 0 and |P2| = 2.

Proof. Let r ≥ 2. Then by Lemma 4.7 we know that Br(α̃, 0) is the union of
three pairwise disjoint sets. Namely Br(α̃, 0) = Pr ·∪ (Pr−1sr) ·∪ (Pr−2sr−1sr).
Thus |Br(α̃, 0)| = |Pr|+ |Pr−1|+ |Pr−2|.

Beginning with i = 2, we give the first few terms of the sequences |Pi|
and |Bi|:

|Pi|: 3 2, 3, 5, 14, 30, 62, 139, 305, 660, 1444, 3158, 6887, 15037, 32842, . . .
|Bi|: 4 2, 5, 10, 22, 49, 106, 231, 506, 1104, 2409, 5262, 11489, 25082, . . .

5. A(α̃, 0) in type C

When we consider the Lie algebra of type C and rank r we denote the Weyl
alternation set as:

Cr(λ, μ) := A(λ, μ) = {σ ∈ W : ℘(σ(λ+ ρ)− ρ− μ) > 0},

where W denotes the corresponding Weyl group. Recall that in this case
the Weyl group is isomorphic to the group of signed permutations on r
letters and has order 2r · r!. Some direct calculations, as those provided in
Example 4.1, show that:

C2(α̃, 0) = {1, s2}
C3(α̃, 0) = {1, s2, s3}
C4(α̃, 0) = {1, s2, s3, s4, s2s3, s3s2, s2s3s2, s2s4}

C5(α̃, 0) =
{
1, s2, s3, s4, s5, s2s3, s2s3s5, s3s2, s3s2s5, s2s5, s2s3s2,

s2s3s2s5, s2s4, s3s4, s4s3, s3s4s3, s2s4s3, s3s5

}

C6(α̃, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1, s2, s3, s4, s5, s6, s2s3, s2s4, s2s5, s2s6, s3s2, s3s4, s3s5, s3s6,
s4s3, s4s5, s4s6, s5s4, s2s3s2, s2s3s5, s2s3s6, s2s4s3, s2s4s5,
s2s4s6, s2s5s4, s3s2s5, s3s2s6, s3s4s3, s3s4s6, s3s5s4, s4s3s6,

s4s5s4, s2s3s2s5, s2s3s2s6, s2s4s3s6, s2s4s5s4, s3s4s3s6

⎫⎪⎪⎬
⎪⎪⎭

3The sequence A232162 was added by the authors to The On-Line Encyclopedia
of Integer Sequences (OEIS).

4The sequence A232163 was added by the authors to The On-Line Encyclopedia
of Integer Sequences (OEIS).

http://oeis.org/A232162
http://oeis.org/A232163
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As we pointed out previously, it is important to note that the cardinal-
ities of the Weyl alternation sets above are much smaller than the order of
the respective Weyl group, see Table 1 on page 96.

Table 1: Cardinality comparison in type C

Rank Weyl Alternation Set Cardinality Weyl Group Order
2 2 8
3 3 48
4 8 384
5 18 3840
6 37 46080

We now describe the elements σ of Wr which are not in the Weyl alter-
nation set Cr(α̃, 0) by identifying a list of minimal forbidden subwords that
prohibit σ from being in Cr(α̃, 0).
Lemma 5.1. Let σ be a reduced word in W. If σ contains s1, sr−1sr, or
srsr−1 in its reduced word decomposition, then σ /∈ Cr(α̃, 0).
Proof. Recall that by Lemma 3.1, s1(α̃) = α̃ − 2α1 and all other simple
root reflections fix the highest root, while by Lemma 3.6 we know s1(2ρ) =
2ρ−2α1. So s1 is never in the Weyl alternation set Cr(α̃, 0), nor is any word
containing s1. Lemma 3.10 shows that the Weyl group elements sr−1sr and
srsr−1 are never in Cr(α̃, 0) nor is any word containing them.

Recall that Lemma 3.11 also shows that a Weyl group element σ con-
taining a product of simple reflections of the form sisi+1si+2, si+2si+1si, or
si+1sisi+2 where 3 ≤ i ≤ r− 2 or a product four consecutive simple root re-
flections si, si+1, si+2, si+3 is not in the Weyl alternation set Cr(α̃, 0). We call
the elements listed in Lemmas 3.11 and 5.1 the minimal forbidden subwords
of type C.

We can now describe the elements of the Weyl alternation set Cr(α̃, 0)
as products of basic allowable subwords. We note that once again each basic
allowable subword listed in the following Proposition is the largest product
of consecutive simple reflections that do not result in a minimal forbidden
subword.

Proposition 5.2. The following elements of Wr are in Cr(α̃, 0)

(1) (r ≥ 2): 1, i.e. the identity element of Wr

(2) (r ≥ 2): si for any 2 ≤ i ≤ r
(3) (r ≥ 4): sisi+1 for any 2 ≤ i ≤ r − 2
(4) (r ≥ 4): si+1si for any 2 ≤ i ≤ r − 2
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(5) (r ≥ 4): sisi+1si for any 2 ≤ i ≤ r − 2

(6) (r ≥ 5): sisi+2si+1 for any 2 ≤ i ≤ r − 3.

We refer to the elements listed in Proposition 5.2 as the basic allowable

subwords of Type C.

Proof. Recall that in the Type C case the highest root is α̃ = 2α1 + · · · +
2αr−1+αr, and that σ ∈ Cr(α̃, 0) if and only if σ(α̃+ρ)−ρ can be written as a

nonnegative integral combination of simple roots. We will apply Lemma 3.1

and Lemma 3.10 in the statement below. Clearly 1 ∈ Cr(α̃, 0) since 1(α̃ +

ρ)− ρ = α̃ which can be written as a sum of simple roots with nonnegative

integer coefficients.

Let r ≥ 2 and 2 ≤ i ≤ r. Then by Lemmas 3.1 and 3.6 si(α̃ + ρ) − ρ =

2α1 +2α2 + · · ·+2αi−1 +αi +2αi+1 + · · ·+2αr−1 +αr. Hence si ∈ Cr(α̃, 0)
for all 2 ≤ i ≤ r, with r ≥ 2.

Let r ≥ 4 and let 2 ≤ i ≤ r − 2. Then by Lemmas 3.1 and 3.6 we have

sisi+1(α̃+ ρ)− ρ = 2α1 + · · ·+ 2αi−1 + αi+1 + 2αi+2 + · · ·+ 2αr−1 + αr,

si+1si(α̃+ ρ)− ρ = 2α1 + · · ·+ 2αi−1 + αi + 2αi+2 + · · ·+ 2αr−1 + αr, and

sisi+1si(α̃+ ρ)− ρ = 2α1 + · · ·+ 2αi−1 + 2αi+2 + · · ·+ 2αr−1 + αr.

Hence sisi+1, si+1si, sisi+1si ∈ Cr(α̃, 0), for all 2 ≤ i ≤ r − 2, with r ≥ 4.

Let r ≥ 5 and let 2 ≤ i ≤ r − 3. Then by Lemmas 3.1 and 3.7

sisi+2si+1(α̃+ ρ)− ρ = 2α1 + · · ·+2αi−1 +αi+1 +2αi+3 + · · ·+2αr−1 +αr.

Hence sisi+2si+1 ∈ Cr(α̃, 0), for all 2 ≤ i ≤ r − 3, with r ≥ 5.

Lemma 5.3. Let σ and τ be noncommuting basic allowable subwords. Then

the product στ falls into one of the following three cases:

1. στ is itself a basic allowable subword with �(στ) = �(σ) + �(τ),

2. στ reduces to a commuting product of basic allowable subwords with

�(στ) < �(σ) + �(τ),

3. στ contains a minimal forbidden subword as listed in Lemma 3.11.

The proof of Lemma 5.3 is a finite computation that is analogous to the

one provided for type B, which is found in Appendix A.

Corollary 5.4. If σ ∈ W can be expressed as a product of commuting basic

allowable subwords of Type C, then σ ∈ Cr(α̃, 0).
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Proof. By Proposition 5.2, all basic allowable subwords are in Cr(α̃, 0). More-

over, two basic allowable subwords commute if and only if they act on disjoint

sets of simple roots. Hence, in a product of commuting basic allowable sub-

words each subword acts on nonconsecutive indices of the expression α̃+ ρ.

Hence the expression σ(α̃+ρ)−ρ will continue to be expressible as a nonneg-

ative integral combination of simple roots, and thus a product of commuting

basic allowable subwords will again be in Cr(α̃, 0).

Lemma 5.3, and Corollary 5.4 show that the only elements ofWr that are

contained in Br(α̃, 0) are words which reduce to basic allowable subwords,

as listed in Proposition 5.2, and products of basic allowable subwords that

commute (i.e. their supports are not adjacent in the Dynkin diagram.) Thus

we give a classification of the set Cr(α̃, 0) in terms of commuting products

of basic allowable subwords as follows.

Theorem 5.5. Let σ ∈ Wr be a reduced word. Then σ ∈ Cr(α̃, 0) if and

only if σ is either basic allowable subword or a product of commuting basic

allowable subwords of type C.

Proof. (⇐) From Proposition 5.2 and Corollary 5.4 we see that the basic

allowable subwords and all products of commuting basic allowable subwords

are in Cr(α̃, 0).
(⇒) Suppose that σ = b1b2 · · · bk is a reduced word, and that each bi is

a basic allowable subword of maximal length (i.e. none of the products bibj
can be written as a basic allowable subword). Suppose that there are a pair

of basic allowable subwords bi and bj in the reduced word for σ which are not

commuting basic allowable subwords. Lemma 5.3 shows that there are three

possible cases: In the first case bibj is a minimal forbidden subword, and that

means σ /∈ Cr(α̃, 0). In the second case bibj can be combined into one basic

allowable subword of the same length. This contradicts our assumption that

each of the bi have maximal length. The third case is that bibj is a product of

commuting allowable subwords with �(bibj) < �(bi)+ �(bj). This contradicts

our assumption that σ = b1b2 · · · bk is a reduced word. Thus σ is not in

Cr(α̃, 0) if it cannot be written as a product of commuting basic allowable

subwords.

5.1. Cardinality of Cr(α̃, 0)

We will now build Cr(α̃, 0) recursively in order to determine the cardinality

of this set. For r ≥ 3, let Pr denote the subset of Cr(α̃, 0) of all elements
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which do not contain a factor of sr. We define P0 as the empty set and some

simple computations show that P1 = P2 = {1} and P3 = {1, s2}.

Proposition 5.6. The cardinality of the set Pr is given by the following

recursive formula:

|Pr| = |Pr−1|+ |Pr−2|+ 3|Pr−3|+ |Pr−4|,

where |P0| = 0, |P1| = |P2| = 1, |P3| = 2.

Proof. We know that P0 is the empty set, hence |P0| = 0. By definition

of Pr and some basic computations we can show that P1 = P2 = {1} and

P3 = {1, s2}, hence |P1| = |P2| = 1 and |P3| = 2. Now for r ≥ 3, we note that

an allowable subword of Cr−1(α̃, 0) is also an allowable subword of Cr(α̃, 0).
Hence Cr−1(α̃, 0) ⊂ Cr(α̃, 0), and since no element of Cr−1(α̃, 0) could have

a factor of sr, then Pr−1 ⊂ Pr as well. Thus, if σ ∈ Pr−1, then σ ∈ Pr.

Theorem 5.2 and the definition of Pr describe the additional elements that

appear in Pr as the value of r increases. In particular,

1. For r ≥ 3, if σ ∈ Pr−2, then σsr−1 ∈ Pr.

2. For r ≥ 4, if σ ∈ Pr−3, then Pr will contain σsr−2sr−1, σsr−1sr−2, and

σsr−2sr−1sr−2.

3. For r ≥ 5, if σ ∈ Pr−4, then σsr−3sr−1sr−2 ∈ Pr.

Let Pjπ = {σπ |σ ∈ Pj} for any Weyl group element π and any positive

integer j. Then for k ≥ 5, Pk is the union of the pairwise disjoint sets

Pk = Pk−1 ·∪ (Pk−2sk−1) ·∪ (Pk−3sk−2sk−1) ·∪ (Pk−3sk−1sk−2)

·∪ (Pk−3sk−2sk−1sk−2) ·∪ (Pk−4sk−3sk−1sk−2).

Thus |Pk| = |Pk−1|+ |Pk−2|+ 3|Pk−3|+ |Pk−4|.

We now count the elements of Cr(α̃, 0) containing a factor of sr.

Lemma 5.7. Let r ≥ 2. If σ ∈ Cr(α̃, 0) and σ contains a factor of sr, then

σ = πsr for some π ∈ Pr−1.

Proof. By Theorem 5.5 we know that if σ ∈ Cr(α̃, 0), then σ = b1b2 · · · bm for

b1, b2, . . . , bm commuting basic allowable subwords as described by Proposi-

tion 5.2. Now if σ contains a factor of sr, then σ will not contain a factor

of sr−1 at all. Hence, by definition of Pr−1, we have that σ = πsr for some

π ∈ Pr−1.
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Corollary 5.8. For r ≥ 2, the cardinality of the set Cr(α̃, 0) is given by the

following recursive formula:

|Cr(α̃, 0)| = |Pr|+ |Pr−1|,

where |P1| = |P2| = 1.

Proof. Let r ≥ 2. Then by Lemma 5.7 we know that Cr(α̃, 0) is the union of

two pairwise disjoint sets. Namely Cr(α̃, 0) = Pr ·∪(Pr−1sr). Thus |Cr(α̃, 0)| =
|Pr|+ |Pr−1|.

Beginning with i = 2, we give the first few terms of the sequences |Pi|
and |Ci|:

|Pi|: 5 1, 2, 6, 12, 25, 57, 124, 268, 588, 1285, 2801, 6118, 13362, 29168, . . .
|Ci|: 6 2, 3, 8, 18, 37, 82, 181, 392, 856, 1873, 4086, 8919, 19480, 42530, . . .

6. A(α̃, 0) in type D

When we consider the Lie algebra of type D and rank r ≥ 4 we denote the

Weyl alternation set as follows:

Dr(λ, μ) : = A(λ, μ) = {σ ∈ W : ℘(σ(λ+ ρ)− ρ− μ) > 0}.(4)

Direct calculations, as those provided in Example 4.1, show that:

D4(α̃, 0) = {1, s1, s2, s3, s4, s1s3, s1s4, s3s4, s1s3s4}

D5(α̃, 0) =

{
1, s1, s2, s3, s4, s5, s1s3, s1s4, s1s5, s2s4, s2s5,
s4s5, s3s4, s3s5, s1s4s5, s1s3s4, s1s3s5, s2s4s5

}

D6(α̃, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1, s1, s2, s3, s4, s5, s6, s1s3, s1s4, s1s5, s1s6, s2s4, s2s5,
s2s6, s3s4, s3s5, s3s6, s4s3, s4s5, s4s6, s5s6, s1s3s4,
s1s3s5, s1s3s6, s1s4s3, s1s4s5, s1s4s6, s1s5s6, s2s4s5,
s2s4s6, s2s5s6, s3s4s3, s3s5s6, s1s3s4s3, s1s3s5s6

⎫⎪⎪⎬
⎪⎪⎭

5The sequence A232164 was added by the authors to The On-Line Encyclopedia

of Integer Sequences (OEIS).
6The sequence A232165 was added by the authors to The On-Line Encyclopedia

of Integer Sequences (OEIS).

http://oeis.org/A232164
http://oeis.org/A232165
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D7(α̃, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, s1, s2, s3, s4, s5, s6, s7, s1s3, s3s4, s1s4, s2s4,
s4s3, s4s5, s1s5, s2s5, s3s5, s5s4, s5s6, s5s7, s1s6,
s2s6, s3s6, s4s6, s1s7, s2s7, s3s7, s4s7, s7s6, s1s3s4,
s3s4s3, s1s4s3, s1s4s5, s2s4s5, s4s5s4, s1s3s5, s5s3s4,
s1s5s4, s2s5s4, s1s5s6, s2s5s6, s3s5s6, s1s5s7, s2s5s7,
s3s5s7, s1s3s6, s3s4s6, s1s4s6, s2s4s6, s4s3s6, s1s3s7,
s3s4s7, s1s4s7, s2s4s7, s4s3s7, s1s7s6, s2s7s6, s3s7s6,

s4s7s6, s1s3s4s3, s1s4s5s4, s2s4s5s4, s1s5s3s4,
s1s3s5s6, s1s3s5s7, s1s3s4s6, s3s4s3s6, s1s4s3s6,
s1s3s4s7, s3s4s3s7, s1s4s3s7, s1s3s7s6, s3s4s7s6,

s1s4s7s6, s2s4s7s6, s4s3s7s6, s1s3s4s3s6, s1s3s4s3s7,
s1s3s4s7s6, s3s4s3s7s6, s1s4s3s7s6, s1s3s4s3s6s7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We start by identifying a list of minimal forbidden subwords that are
not in Dr(α̃, 0).

Lemma 6.1. Any Weyl group element σ ∈ Wr containing the following
subwords is not in the Weyl alternation set Dr(α̃, 0)

s1s2, s2s1, s2s3, s3s2, sr−1sr−2, or srsr−2,

sisi+1si+2, si+2si+1si, or si+1sisi+2 where 1 ≤ i ≤ r − 2.

In addition, any σ containing a product of four consecutive simple reflections
si, si+1, si+2, si+3 in any order, will not be in Dr(α̃, 0).

Proof. We calculate that s1s2, s2s1, s2s3, s3s2, sr−1sr−2, and srsr−2 are not
in the Weyl alternation set Dr(α̃, 0) because

s1s2(α̃+ ρ)− ρ = α̃− 3α1 − 2α2

= −2α1 + 2α3 + · · ·+ 2αr−2 + αr−1 + αr,

s2s1(α̃+ ρ)− ρ = α̃− α1 − 3α2

= −α2 + 2α3 + · · ·+ 2αr−2 + αr−1 + αr,

s2s3(α̃+ ρ)− ρ = α̃− 3α2 − α3

= α1 − 2α2 + α3 + 2α4 + · · ·+ 2αr−2 + αr−1 + αr,

s3s2(α̃+ ρ)− ρ = α̃− 2α2 − 3α3

= α1 − α3 + 2α4 + · · ·+ 2αr−2 + αr−1 + αr,

sr−1sr−2(α̃+ ρ)− ρ = α̃− αr−2 − 2αr−1

= α1 + 2α2 + · · ·+ 2αr−2 − αr, and
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srsr−2(α̃+ ρ)− ρ = α̃− αr−2 − 2αr

= α1 + 2α2 + · · ·+ 2αr−3 + αr−2 + αr−1 − αr.

Thus σ cannot contain any of the above subwords as factors in its reduced
word expression.

Now Lemma 3.11 shows that if σ contains any of the subwords sisi+1si+2,
si+2si+1si, or si+1sisi+2 with 1 ≤ i ≤ r− 2 or a product of four consecutive
simple root reflections, then σ is not in Dr(α̃, 0).

We have identified a large set of elements in Wr which are not in the
Weyl alternation set Dr(α̃, 0). Now we will show that the remaining elements
are in Dr(α̃, 0) and describe them as products of basic allowable subwords
as follows.

Proposition 6.2. The following elements of Wr are in Dr(α̃, 0)

(1) (r ≥ 2): 1, i.e. the identity element of Wr

(2) (r ≥ 3): si for any 1 ≤ i ≤ r
(3) (r ≥ 4): sisi+1 for any 3 ≤ i ≤ r − 1
(4) (r ≥ 6): si+1si for any 3 ≤ i ≤ r − 3
(5) (r ≥ 6): sisi+1si for any 3 ≤ i ≤ r − 3
(6) (r ≥ 7): sisi+2si+1 for any 3 ≤ i ≤ r − 4.

We will refer to the elements listed in Proposition 6.2 as the basic allowable
subwords of type D.

Proof. Recall that for 1 ≤ i ≤ r, si(αi) = −αi. If 1 ≤ i < j ≤ r − 1 with
|i − j| = 1 or if i = r − 2 and j = r, then si(αj) = sj(αi) = αi + αj . For
i = r − 1 or i = r we have that sr−1(αr) = αr and sr(αr−1) = αr−1. The
highest root in this case is α̃ = α1 + 2α2 + · · ·+ 2αr−2 + αr−1 + αr.

Observe that σ ∈ Dr(α̃, 0) if and only if σ(α̃+ ρ)− ρ can be written as
a nonnegative integral combination of simple roots.

Clearly 1 ∈ Dr(α̃, 0) since 1(α̃ + ρ) − ρ = α̃ which can be written as a
sum of simple roots with nonnegative integer coefficients.

Let r ≥ 3 and observe that by Lemma 3.1 and Lemma 3.6

s1(α̃+ ρ)− ρ = α̃+ ρ− α1 − ρ

= 2α2 + · · ·+ 2αr−2 + αr−1 + αr,

s2(α̃+ ρ)− ρ = α̃− α2 + ρ− α2 − ρ

= α1 + 2α3 + · · ·+ 2αr−2 + αr−1 + αr,

sr−1(α̃+ ρ)− ρ = α̃+ ρ− αr−1 − ρ

= α1 + 2α+ · · ·+ 2αr−2 + αr,
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sr(α̃+ ρ)− ρ = α̃+ ρ− αr − ρ

= α1 + 2α2 + · · ·+ 2αr−2 + αr−1.

Now for 3 ≤ i ≤ r we have that by Lemma 3.1 and Lemma 3.6

si(α̃+ ρ)− ρ = α1 + 2α2 + · · ·+ 2αi−1 + αi + 2αi+1 + · · ·
+ 2αr−2 + αr−1 + αr.

Hence si ∈ Dr(α̃, 0) for all 1 ≤ i ≤ r, with r ≥ 3.
Now let r ≥ 4 and 3 ≤ i ≤ r − 3. Then by Lemmas 3.1 and 3.6

sisi+1(α̃+ ρ)− 2ρ = α1 + 2α2 + · · ·+ 2αi−1 + αi+1 + 2αi+2 + · · ·
+ 2αr−2 + αr−1 + αr.

Similarly,

sr−2sr−1(α̃+ ρ)− ρ = α̃+ ρ− αr−1 − αr − ρ = α1 + 2α2 + · · ·+ 2αr−2.

Hence sisi+1 ∈ Dr(α̃, 0), for all 3 ≤ i ≤ r − 3, with r ≥ 4.
Now let r ≥ 6 and 3 ≤ i ≤ r − 3. Then by Lemmas 3.1 and 3.6

si+1si(α̃+ ρ)− ρ = α1 + 2α2 · · ·+ 2αi−1 + αi + 2αi+2 + · · ·
+ 2αr−2 + αr−1 + αr.

Hence si+1si ∈ Dr(α̃, 0), for all 3 ≤ i ≤ r − 3, with r ≥ 6.
Let r ≥ 6 and let 3 ≤ i ≤ r − 3. Then by Lemmas 3.1 and 3.6

sisi+1si(α̃+ ρ)− ρ = α1 + 2α2 + · · ·+ 2αi−1 + 2αi+2 + · · ·
+ 2αr−2 + αr−1 + αr.

Hence sisi+1si ∈ Dr(α̃, 0), for all 3 ≤ i ≤ r − 3, with r ≥ 6.
Let r ≥ 7 and let 3 ≤ i ≤ r − 4. Then by Lemmas 3.1 and 3.7

sisi+2si+1(α̃+ ρ)− ρ = α1 + 2α2 + · · ·+ 2αi−1 + αi+1 + 2αi+3 + · · ·
+ 2αr−2 + αr−1 + αr.

Hence sisi+2si+1 ∈ Dr(α̃, 0), for all 3 ≤ i ≤ r−4, with r ≥ 7. This completes
the proof.

Lemma 6.3. Let σ and τ be noncommuting basic allowable subwords. Then
the product στ falls into one of the following three cases:



104 Pamela E. Harris et al.

1. στ is itself a basic allowable subword with �(στ) = �(σ) + �(τ),
2. στ reduces to a commuting product of basic allowable subwords with

�(στ) < �(σ) + �(τ),
3. στ contains a minimal forbidden subword as listed in Lemma 3.11.

The proof of Lemma 6.3 is analogous to the one provided for type B
given in Appendix A.

Corollary 6.4. If σ ∈ W can be expressed as a product of commuting basic
allowable subwords of type D, then σ ∈ Dr(α̃, 0).

Proof. This follows from the fact that all basic allowable subwords are
in Dr(α̃, 0) by Proposition 6.2, and since we are assuming these basic al-
lowable subwords commute, these subwords act on disjoint sets of simple
roots in expression α̃ + ρ. Hence the expression σ(α̃ + ρ) − ρ will continue
to be expressible as a nonnegative integral combination of simple roots,
and thus this disjoint product of basic allowable subwords will again be in
Dr(α̃, 0).

Lemma 6.3, and Corollary 6.4 show that the only elements of Wr that
are contained in the alternation set Dr(α̃, 0) are words which reduce to
basic allowable subwords (these subwords are listed in Proposition 6.2) and
products of basic allowable subwords that commute (i.e. their supports are
not adjacent in the Dynkin diagram.) Thus we give a classification of the
set Dr(α̃, 0) in terms of commuting products of basic allowable subwords as
follows.

Theorem 6.5. Let σ ∈ Wr be a reduced word. Then σ ∈ Dr(α̃, 0) if and
only if σ is either basic allowable subword or a product of commuting basic
allowable subwords of type D.

Proof. (⇐) From Proposition 6.2 and Corollary 6.4 we see that the basic
allowable subwords and all products of commuting basic allowable subwords
are in Dr(α̃, 0).

(⇒) Suppose that σ = b1b2 · · · bk is a reduced word, and that each bi is
a basic allowable subword of maximal length (i.e. none of the products bibj
can be written as a basic allowable subword). Suppose that there are a pair
of basic allowable subwords bi and bj in the reduced word for σ which are not
commuting basic allowable subwords. Lemma 6.3 shows that there are three
possible cases: In the first case bibj is a minimal forbidden subword, and that
means σ /∈ Dr(α̃, 0). In the second case bibj can be combined into one basic
allowable subword of the same length. This contradicts our assumption that
each of the bi have maximal length. The third case is that bibj is a product of
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commuting allowable subwords with �(bibj) < �(bi)+ �(bj). This contradicts

our assumption that σ = b1b2 · · · bk is a reduced word. Thus σ is not in

Dr(α̃, 0) if it cannot be written as a product of commuting basic allowable

subwords.

6.1. Cardinality of Dr(α̃, 0)

To help us recursively count the elements in Dr, we start by defining some

special subsets of the support. Letting Dr := Dr(α̃, 0), as denoted in Equa-

tion (4), we then let Mr ⊂ Dr denote the subset of Dr consisting of elements

that do not contain s1 in any reduced word decomposition. Let Nr ⊂ Dr

denote the subset of Dr consisting of elements that contain s1. By definition

Nr = Dr \Mr, Dr = Mr ·∪ Nr and hence |Dr| = |Mr| + |Nr|. Let Lr ⊂ Dr

denote the subset of Dr consisting of elements that do not contain s1 or s2.

Note that if σ ∈ Nr, then there exists τ ∈ Lr such that s1τ = σ. Hence

|Nr| = |Lr|.
With this notation in place, we define a map

φ : Dr−1 → Mr ⊂ Dr

which sends si to si+1 for every simple transposition s1, . . . , sr−1.

We can now characterize the elements of the set Nr. When r ≥ 8 the

elements of Nr are obtained from the sets Lr−1,Lr−2, Lr−3, and Lr−4 by

either multiplying s1 times a word from φ(Lr−1), multiplying s1s3 times a

word from φ2(Lr−2), multiplying s1s3s4, s1s4s3, or s1s3s4s3 times a word

from φ3(Lr−3), or multiplying s1s3s5s4 times a word from φ4(Lr−4).

Since |Nr| = |Lr| this implies that the cardinality of Nr satisfies the

following recursion:

(5) |Nr| = |Nr−1|+ |Nr−2|+ 3|Nr−3|+ |Nr−4|.

Next we characterize the elements of the set Mr. Every element of Mr either

contains s2 or it does not. The ones that contain s2 are obtained by multi-

plying s2 times the elements of φ(Lr−1). The elements of Mr by definition

do not contain s1, so if in addition they do not contain s2 they are, again by

definition, all elements of Lr. This implies that |Mr| satisfies the following

recursion:

(6)

|Mr| = |Lr|+ |Lr−1| = |Nr|+ |Nr−1| = 2|Nr−1|+ |Nr−2|+3|Nr−3|+ |Nr−4|.
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Finally, by the definitions of Dr, Mr, and Nr we see that
(7)
|Dr| = |Mr|+ |Nr| = 2|Nr|+ |Nr−1| = 3|Nr−1|+2|Nr+2|+6|Nr−3|+2|Nr−4|.

We have listed the elements of Dr for r ≤ 7 in the previous section. From
these sets, and the recursions described in Equations (5), (6), (7), we can find
the cardinalities of the sets Dr, Mr, Nr, and Lr for r ≥ 4.7 The cardinalities
of the sets Dr, Mr, Nr for 4 ≤ r ≤ 16 are:

|Dr|: 9, 18, 35, 82,180, 385, 846, 1853, 4034, 8810, 19249, 42014, 91727, . . .
|Mr|: 5, 11, 21, 48, 107, 229, 501, 1099, 2394, 5225, 11417, 24923, 54409, . . .
|Nr|: 4, 7, 14, 34, 73, 156, 345, 754, 1640, 3585, 7832, 17091, 37318, 81490, . . .

7. Non-zero weight spaces

It is fundamental in Lie theory that the zero-weight space is a Cartan sub-
algebra, and that the non-zero weights of the adjoint representation of g are
the roots and have multiplicity 1. We visit this from our point of view in
the case of the Lie algebras of types B, C, and D. First we begin with the
following general result.

Theorem 7.1. Let λ be a dominant integral weight of the simple Lie algebra
g of rank r. Then σ(λ+ ρ)− λ− ρ can be written as a nonnegative integral
sum of positive roots if and only if σ is the identity.

Proof. (⇒) If σ �= 1, then there exists nonnegative integers m1, . . . ,mj be-

tween 1 and r, such that σ(λ+ρ) = λ+ρ−
∑j

i=1miαi. Then σ(λ+ρ)−λ−ρ =

−
∑j

i=1miαi. Hence σ(λ+ ρ)− λ− ρ cannot be written as nonnegative in-
tegral sum of positive roots.

(⇐) If σ = 1, then σ(λ + ρ) − λ − ρ = 0, which can be written as a
nonnegative integral combination of positive roots as desired.

Recall that the fundamental weights (relative to the choice of simple
roots) are the elements 
1, . . . , 
r of h∗ which are dual to the coroot basis
{α̌1, . . . , α̌r}, see [6] for notation. Also recall that in every Lie type the
highest root is a dominant weight since it is the highest weight of the adjoint
representation. Thus Theorem 7.1 implies the following.

Corollary 7.2. Let α̃ denote the highest root of the Lie algebra of type
A, B, C, or D, respectively. Then, in each respective Lie type, the Weyl

7These sequences of integers, A234576, A234597, A234599, were added by the
authors to The On-Line Encyclopedia of Integer Sequences (OEIS).

http://oeis.org/A234576
http://oeis.org/A234597
http://oeis.org/A234599
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alternation set associated to the pair of dominant weights λ = α̃ and μ = α̃
is given by A(α̃, α̃) = {1}.

Recall that given μ ∈ P (g), there exists w ∈ W and ξ ∈ P+(g) such
that w(ξ) = μ and given that weight multiplicities are invariant under W
(Propositions 3.1.20, 3.2.27 in [6]) it suffices to consider μ ∈ P+(g). Thus
Corollary 7.2 implies that for all Lie types, m(α̃, μ) = 1, whenever μ ∈ Φ.

However, it is interesting to consider the remaining cases where there
exists a dominant positive root, which is not the highest root. Namely the
case λ = α̃ and μ = 
1 in type B and the case λ = α̃ and μ = 
2 in type
C.8

Theorem 7.3. Let σ ∈ W , then σ ∈ Br(α̃,
1) if and only if σ = 1 or
σ = si1si2 · · · sij , where i1, . . . , ij are nonconsecutive integers between 3 and
r.

Proof. Recall σ ∈ Br(α̃,
1) if and only if σ(α̃+ ρ)− ρ−
1 can be written
as a nonnegative integral combination of simple roots. Also recall that in the
type B case the highest root is α̃ = α1+2α2+· · ·+2αr and
1 = α1+· · ·+αr.

(⇐): Observe that 1(α̃+ ρ)− ρ−
1 = (α1 + 2α2 + · · ·+ 2αr)− (α1 +
· · · + αr) = α2 + · · · + αr, which can be written as a sum of simple roots
with nonnegative integer coefficients. Thus, if σ = 1, then σ ∈ Br(α̃,
1).
Now observe that if 3 ≤ i ≤ r, then by Lemmas 3.1 and 3.6

si(α̃+ ρ)− ρ−
1 = α2 + · · ·+ αi−1 + αi+1 + · · ·+ αr.

Hence si ∈ Br(α̃,
1) for all 3 ≤ i ≤ r. Suppose σ = si1si2 · · · sij , where
i1, . . . , ij are nonconsecutive integers between 3 and r. Then by Lemmas 3.1
and 3.6 we have that

si1si2 · · · sij (α̃+ ρ)− ρ−
1 = (α2 + · · ·+ αr)− (αi1 + αi2 + · · ·+ αij ).

Thus σ ∈ Br(α̃,
1) as claimed.
(⇒): Suppose that σ ∈ Br(α̃,
1). If σ = 1, we are done. So suppose

that σ is not the identity element. First notice that s1(α̃ + ρ) − ρ − 
1 =
−α1 + α2 + · · ·+ αr and s2(α̃+ ρ)− ρ−
1 = −α2 + α3 + · · ·+ αr. Hence
σ cannot contain s1 and s2 as a factor. Then by Lemmas 3.1 and 3.6

sisi+1(α̃+ ρ)− ρ−
1 = α2 + · · ·+ αi−1 − αi + αi+2 + · · ·+ αr and

si+1si(α̃+ ρ)− ρ−
1 = α2 + · · ·+ αi−1 − αi+1 + αi+2 + · · ·+ αr.

8It is a simple exercise to show that these are the only other dominant positive
roots. In fact, this is exercise 3.2.5 #1(a) in [6].
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Therefore σ cannot contain any consecutive factors, as claimed.

The Fibonacci numbers, denoted by Fn and defined in [14], are given by
the recurrence relation Fn = Fn−1 + Fn−2, where F1 = F2 = 1.

Corollary 7.4. Let r ≥ 2. Then |Br(α̃,
1)| = Fr.

The proof of Corollary 7.4 follows from the fact that the rth Fibonacci
number, Fr, counts the number of ways to choose nonconsecutive integers
from the numbers 3, 4, . . . , r.

Now we consider the case λ = α̃ and μ = 
2 in the Lie algebra of type
C.

Theorem 7.5. Let σ ∈ W . Then σ ∈ C(α̃,
2) if and only if σ = 1.

Proof. Recall that the highest root is α̃ = 2α1 + · · ·+2αr−1 +αr and 
2 =
α1+2α2+· · ·+2αr−1+αr = α̃−α1. (⇒): Let σ ∈ Cr(α̃,
2). If σ = 1, then we
are done. So suppose σ is not the identity. Now observe that by Lemmas 3.1
and 3.6 s1(α̃+ρ)−ρ−
2 = (α̃−2α1)+(ρ−α1)−ρ−(α̃−α1) = −2α1 and for
any 2 ≤ i ≤ r we have that si(α̃+ρ)−ρ−
2 = α̃+(ρ−αi)−ρ− (α̃−α1) =
α1 − αi. So σ cannot contain any factors s1, . . . , sr. Thus σ must be the
identity.

(⇐): Observe that 1(α̃+ ρ)− ρ−
2 = α̃+ ρ− ρ− (α̃−α1) = α1, hence
1 ∈ Cr(α̃,
2).

Corollary 7.6. In type C, m(α̃,
2) = 1.

This follows directly from Theorem 7.5 which implies that m(α̃,
2) =
℘(1(α̃ + ρ) − ρ −
2) = ℘(α1) = 1. Thus the multiplicity of the weight 
2

in the adjoint representation of the Lie algebra of type C is 1, as expected.
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Appendix A

Lemma 4.3. Let σ and τ be noncommuting basic allowable subwords. Then
the product στ falls into one of the following three cases:
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1. στ is itself a basic allowable subword with �(στ) = �(σ) + �(τ),
2. στ reduces to a commuting product of basic allowable subwords with

�(στ) < �(σ) + �(τ),
3. στ contains a minimal forbidden subword as listed in Lemma 3.11.

Proof. We proceed by a case by case analysis, multiplying pairs of basic
allowable subwords and classifying which case each product falls into. Let us
begin by considering the product of two identical basic allowable subwords:

• (si)(si) = 1 is a basic allowable subword (Proposition 4.2 Part (1)),
• (sisi+1)(sisi+1) = (si+1sisi+1)si+1 = si+1si is a basic allowable sub-
word (Proposition 4.2 Part (3)),

• (si+1si)(si+1si) = (sisi+1si)si = sisi+1 is a basic allowable subword
(Proposition 4.2 Part (2)),

• (sisi+1si)(sisi+1si) = 1 is a basic allowable subword (Proposition 4.2
Part (1)),

• (sisi+2si+1)(sisi+2si+1) = si(si+2si+1si)si+2si+1 contains a minimal
forbidden subword (Lemma 3.11 Part 1).

In the case where we multiply two distinct basic allowable subwords we can
consider the following cases.
Using (2)(3):

• (si−1)(sisi+1) = si−1sisi+1 contains a minimal forbidden subword
(Lemma 3.11 Part 1),

• (si)(sisi+1) = si+1 is a basic allowable subword (Proposition 4.2 Part
(2)),

• (si+1)(sisi+1) = si+1sisi+1 = s1si+1si is a basic allowable subword
(Proposition 4.2 Part (5)).

Using (3)(2):

• (sisi+1)(si−1) = sisi−1si+1 contains a minimal forbidden subword
(Lemma 3.11 Part 1),

• (sisi+1)(si) = sisi+1si is a basic allowable subword (Proposition 4.2
Part (5)),

• (sisi+1)(si+1) = si is a basic allowable subword (Proposition 4.2 Part
(2)).

Using (2)(4):

• (si−1)(si+1si) = si−1si+1si is a basic allowable subword (Proposi-
tion 4.2 Part (5)),
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• (si)(si+1si) = sisi+1si is a basic allowable subword (Proposition 4.2
Part (5)),

• (si+1)(si+1si) = si is a basic allowable subword (Proposition 4.2 Part
(2)).

Using (4)(2):

• (si+1si)(si−1) = si+1sisi−1 contains a minimal forbidden subword
(Lemma 3.11 Part 1),

• (si+1si)(si) = si+1 is a basic allowable subword (Proposition 4.2 Part
(2)),

• (si+1si)(si+1) = sisi+1si is a basic allowable subword (Proposition 4.2
Part (5)).

Using (2)(5):

• (si−1)(sisi+1si) = (si−1sisi+1)si contains a minimal forbidden sub-
word (Lemma 3.11 Part 1),

• (si)(sisi+1si) = si+1si is a basic allowable subword (Proposition 4.2
Part (4)),

• (si+1)(sisi+1si) = sisi+1 is a basic allowable subword (Proposition 4.2
Part (3)).

Using (5)(2):

• (sisi+1si)(si−1) = si(si+1sisi−1) contains a minimal forbidden sub-
word (Lemma 3.11 Part 1),

• (sisi+1si)(si) = sisi+1 is a basic allowable subword (Proposition 4.2
Part (3)),

• (sisi+1si)(si+1) = si+1si is a basic allowable subword (Proposition 4.2
Part (4)).

Using (2)(6):

• (si−1)(sisi+2si+1) = si+2si−1sisi+1 contains a minimal forbidden sub-
word (Lemma 3.11 Part 2),

• (si)(sisi+2si+1) = si+2si+1 is a basic allowable subword (Proposi-
tion 4.2 Part (4)),

• (si+1)(sisi+2si+1) = (si+1sisi+2)si+1 contains a minimal forbidden
subword (Lemma 3.11 Part 1).

Using (6)(2):

• (sisi+2si+1)(si−1) = si+2sisi−1si+1 contains a minimal forbidden sub-
word (Lemma 3.11 Part 2),
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• (sisi+2si+1)(si) = si(si+2si+1si) contains a minimal forbidden sub-
word (Lemma 3.11 Part 1),

• (sisi+2si+1)(si+1) = sisi+2 a commuting product of allowable basic
subwords.

Using (3)(4):

• (si−2si−1)(si+1si) = si+1(si−2si−1si) contains a forbidden subword
(Lemma 3.11 Part 1),

• (si−1si)(si+1si) = si−1(si+1sisi+1) = si+1(si−1sisi+1) contains a for-
bidden subword (Lemma 3.11 Part 1),

• (sisi+1)(si+1si) = 1 is a basic allowable subword (Proposition 4.2 Part
(1)),

• (si+1si+2)(si+1si) = si+1(si+2si+1si) contains a minimal forbidden
subword (Lemma 3.11 Part 1),

• (si+2si+3)(si+1si) = (si+2si+1si+3)si contains a minimal forbidden
subword (Lemma 3.11 Part 1).

Using (4)(3):

• (si+1si)(si−2si−1) = si−2si+1sisi−1 contains a minimal forbidden sub-
word (Lemma 3.11 Part 2),

• (si+1si)(si−1si) = (si+1sisi−1)si contains a minimal forbidden sub-
word (Lemma 3.11 Part 1),

• (si+1si)(sisi+1) = 1 is a basic allowable subword (Proposition 4.2 Part
(1)),

• (si+1si)(si+1si+2) = si+1(sisi+1si+2) contains a minimal forbidden
subword (Lemma 3.11 Part 1),

• (si+1si)(si+2si+3) = (si+1si+2si+3si) contains a minimal forbidden
subword (Lemma 3.11 Part 2).

Using (3)(5):

• (si−2si−1)(sisi+1si) = (si−2si−1sisi+1)si) contains a forbidden sub-
word (Lemma 3.11 Part 2),

• (si−1si)(sisi+1si) = si−1si+1si is a basic allowable subword (Proposi-
tion 4.2 Part (6)),

• (sisi+1)(sisi+1si) = si+1 is a basic allowable subword (Proposition 4.2
Part (2)),

• (si+1si+2)(sisi+1si) = (si+1sisi+2)si+1si contains a minimal forbidden
subword (Lemma 3.11 Part 1),

• (si+2si+3)(sisi+1si) = (sisi+2si+1si+3)si contains a minimal forbidden
subword (Lemma 3.11 Part 2).
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Using (5)(3):

• (sisi+1si)(si−2si−1) = si(si+1sisi−2si−1) contains a minimal forbidden
subword (Lemma 3.11 Part 2),

• (sisi+1si)(si−1si) = si(si+1sisi−1)si contains a minimal forbidden sub-
word (Lemma 3.11 Part 1),

• (sisi+1si)(sisi+1) = si is a basic allowable subword (Proposition 4.2
Part (2)),

• (sisi+1si)(si+1si+2) = sisi+1(sisi+1si+2) contains a minimal forbidden
subword (Lemma 3.11 Part 1),

• (sisi+1si)(si+2si+3) = si(si+1sisi+2si+3) contains a minimal forbidden
subword (Lemma 3.11 Part 2).

Using (3)(6):

• (si−2si−1)(sisi+2si+1) = si−2(si−1si)si+2si+1) contains a minimal for-
bidden subword (Lemma 3.11 Part 2),

• (si−1si)(sisi+2si+1) = (si−1)(si+2si+1) a commuting product of basic
allowable subwords,

• (sisi+1)(sisi+2si+1) = si(si+1sisi+2)si+1 contains a minimal forbidden
subword (Lemma 3.11 Part 1),

• (si+1si+2)(sisi+2si+1) = (si+1sisi+1) = sisi+1si is a basic allowable
subword (Proposition 4.2 Part (5)),

• (si+2si+3)(sisi+2si+1) = si+2(si+3sisi+2si+1) contains a minimal for-
bidden subword (Lemma 3.11 Part 2),

• (si+3si+4)(sisi+2si+1) = (si+3sisi+2si+1)si+4 contains a minimal for-
bidden subword (Lemma 3.11 Part 2).

Using (6)(3):

• (sisi+2si+1)(si−2si−1) = si+2(sisi+1si−2si−1) contains a minimal for-
bidden subword (Lemma 3.11 Part 2),

• (sisi+2si+1)(si−1si) = (sisi+2si+1si−1)si contains a minimal forbidden
subword (Lemma 3.11 Part 2),

• (sisi+2si+1)(sisi+1) = si(si+2si+1si)si+1 contains a minimal forbidden
subword (Lemma 3.11 Part 1),

• (sisi+2si+1)(si+1si+2) = si is a basic allowable subword (Proposi-
tion 4.2 Part (2)),

• (sisi+2si+1)(si+2si+3) = si+2(sisi+1si+2si+3) contains a minimal for-
bidden subword (Lemma 3.11 Part 2),

• (sisi+2si+1)(si+3si+4) = si(si+2si+1si+3si+4) contains a minimal for-
bidden subword (Lemma 3.11 Part 2).
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Using (4)(5):

• (si−1si−2)(sisi+1si) = (si−1sisi+1si−2)si contains a minimal forbidden

subword (Lemma 3.11 Part 2),

• (sisi−1)(sisi+1si) = si(si−1sisi+1)si contains a minimal forbidden sub-

word (Lemma 3.11 Part 1),

• (si+1si)(sisi+1si) = si is a basic allowable subword (Proposition 4.2

Part (2)),

• (si+2si+1)(sisi+1si) = (si+2si+1si)si+1si contains a minimal forbidden

subword (Lemma 3.11 Part 1),

• (si+3si+2)(sisi+1si) = (si+3sisi+2si+1)si contains a minimal forbidden

subword (Lemma 3.11 Part 2).

Using (5)(4):

• (sisi+1si)(si−1si−2) = si(si+1sisi−1si−2) contains a minimal forbidden

subword (Lemma 3.11 Part 2),

• (sisi+1si)(sisi−1) = sisi−1si+1 contains a minimal forbidden subword

(Lemma 3.11 Part 1),

• (sisi+1si)(si+1si) = si+1 is a basic allowable subword (Proposition 4.2

Part (2)),

• (sisi+1si)(si+2si+1) = si(si+1sisi+2)si+1 contains a minimal forbidden

subword (Lemma 3.11 Part 1),

• (sisi+1si)(si+3si+2) = si(si+3si+1sisi+2) contains a minimal forbidden

subword (Lemma 3.11 Part 2).

Using (4)(6):

• (si−1si−2)(sisi+2si+1) = (si−1sisi+2si+1)si−2 contains a minimal for-

bidden subword (Lemma 3.11 Part 2),

• (sisi−1)(sisi+2si+1) = si(si+2si−1sisi+1) contains a minimal forbidden

subword (Lemma 3.11 Part 2),

• (si+1si)(sisi+2si+1) = si+1si+2si+1 is a basic allowable subword (Propo-

sition 4.2 Part (5)),

• (si+2si+1)(sisi+2si+1) = (si+2si+1si)si+2si+1 contains a minimal for-

bidden subword (Lemma 3.11 Part 1),

• (si+3si+2)(sisi+2si+1) = si+3(sisi+1) a commuting product of basic

allowable subwords,

• (si+4si+3)(sisi+2si+1) = si+4(si+3si+2sisi+1) contains a minimal for-

bidden subword (Lemma 3.11 Part 2).

Using (6)(4):
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• (sisi+2si+1)(si−1si−2) = si+2(sisi−1si+1si+2)si+1 contains a minimal
forbidden subword (Lemma 3.11 Part 2),

• (sisi+2si+1)(sisi−1) = si(si+2si+1sisi−1) contains a minimal forbidden
subword (Lemma 3.11 Part 2),

• (sisi+2si+1)(si+1si) = si+2 is a basic allowable subword (Proposi-
tion 4.2 Part (2)),

• (sisi+2si+1)(si+2si+1) = si+2(sisi+1si+2)si+1 contains a minimal for-
bidden subword (Lemma 3.11 Part 1),

• (sisi+2si+1)(si+3si+2) = (sisi+2si+1si+3)si+2 contains a minimal for-
bidden subword (Lemma 3.11 Part 2),

• (sisi+2si+1)(si+4si+3) = si(si+4si+2si+1si+3) contains a minimal for-
bidden subword (Lemma 3.11 Part 2).

Notice that if we use two basic allowable subwords from part (5) and (6),
then their product will contain a subword whose indices are four consecutive
roots in the Dynkin diagram. Hence they will contain a minimal forbidden
subword as listed in Lemma 3.11.
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