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Rational generating series for affine permutation
pattern avoidance

BRANT JONES

We consider the set of affine permutations that avoid a fixed per-
mutation pattern. Crites has given a simple characterization for
when this set is infinite. We find the generating series for this set
using the Coxeter length statistic and prove that it can always be
represented as a rational function. We also give a characterization
of the patterns for which the coefficients of the generating series
are periodic. The proofs exploit a new polyhedral encoding for the
affine symmetric group.
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1. Introduction

The affine symmetric group S, is an infinite group that arises naturally in
various geometric, combinatorial, and algebraic contexts. In this work, we
are concerned with the enumeration of various subsets of this group. Since
the group is infinite, we consider “refined” counts of elements based on the
Coxeter length statistic £(w) that describes the minimal number of gener-
ators needed to factor w € S, in a certain standard group presentation of
Spn- We will use the language of generating series to describe our results:
For a given subset S C S, we form the series > ¢ /) using a formal
variable z and attempt to find a closed form for this expression. The asso-
ciated enumerating sequence is the sequence of coefficients which counts
the number of elements of each given length. These are related; for example,
the enumerating sequence is given by a linear constant-coefficient recur-
rence precisely when the generating series can be expressed as a rational
function.

One of the first results in this direction is due to Bott [Bot56] who gave
a general method to compute the Poincaré series that describes the Betti
numbers for the associated compact Lie group. Combinatorially, this is the
generating series by Coxeter length for the entire group S = 5.
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Theorem 1.1. [Bot56] We have

Z Slw) _ A+2)A+r+2)1+a+az?+a3) - (1+x+2®+23+ - +a2" 1)
— (1-2)(1—22)(1—23)---(1—2n~1) '
weS,

Although his motivation and proof were topological, it is relatively
straightforward to give a combinatorial proof by induction using the (so-
called “parabolic”) subgroups obtained from subsets of the standard gener-
ators (see [Hum90, (5.12)]). These subgroups turn out to be finite symmetric
groups, for which the generating series is given by the numerator in Theo-
rem 1.1. We give a new combinatorial proof for the denominator in Bott’s
formula in Corollary 2.2.

Recently, Crites gave a natural extension of permutation pattern avoid-
ance for the affine symmetric group as part of his thesis work with Sara
Billey [BC12] to characterize the rationally smooth Schubert varieties of
affine type A. In [Cril0], he also enumerated the number of affine permuta-
tions avoiding various fixed patterns, and proved the following remarkable
structure theorem.

Theorem 1.2. [Cri10] Let p be a finite permutation and n > 2. There exist
only finitely many affine permutations of size n that avoid p if and only if p
avoids the classical permutation pattern [321].

Even when there are infinitely many affine permutations of size n that
avoid a fixed pattern p, we can still consider the length generating series

Fpn(x) = Z ),

wegn
w avoids p

Such series first appeared in Hanusa and Jones’ [HJ10] enumeration of the
[321]-avoiding affine permutations. It is shown there that the coefficients of
the length generating series for p = [321] are periodic. These [321]-avoiding
affine permutations are also known as the fully commutative elements of
affine type A. More recently, Biagioli, Jouhet, and Nadeau [BJN14] have
described the length generating series for fully commutative elements in
other affine types, and they turn out to be periodic there as well. In fact, they
propose the problem of determining which Coxeter groups have a periodic
generating series associated to their subset of fully commutative elements.
This would generalize Stembridge’s classification [Ste96].

In this work, we consider the dual problem of classifying the periodic
patterns within the affine symmetric group. While any generating series
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with periodic coefficients can be expressed as a reduced rational function
with denominator 1 — %, it is not obvious that the F,,(z) series are even
rational in general. One standard way to show that a counting problem is
solved by a rational generating series is to produce a bijection to directed
paths in a finite graph (or equivalently, words in a regular language). Stan-
ley [Sta97] refers to this as the “transfer matrix method.” In fact, Brink
and Howlett have described a clever finite state automaton that recognizes
a canonical reduced expression for each element of a fixed Coxeter group
(see [BH93] or [BB05, Chapter 4]); Casselman has also contributed signif-
icantly to make their ideas practical for efficient implementation in soft-
ware (see [Cas95], for example). We initially attempted to modify these
constructions to filter the affine permutations based on pattern avoidance
criteria. At this stage, however, it appears that pattern avoidance is not
sufficiently related to the group structure for this approach to work in gen-
eral.

Recently, we have turned instead to a set of ideas based on geometric
convexity. Consider a rational polyhedron P defined as the set of solutions
in R™ to a set of linear inequalities with integral coefficients, and suppose
that we would like to count the lattice points in Z™ N P. To be more general,
we consider the encoding series

o E ’ 21,2 Zn
fp(ml,...,xn) p— xlleQ...xn
(215e-y2n )EZ™NP

for these points in the formal variables z1,...,z,. Brion’s formula (see
[BRO7] or [Bar02]) states that this encoding series is simply the sum of
the encoding series for each of the “tangent cones” formed by the rays ema-
nating from a vertex of P. Moreover, it is straightforward to see (after using
inclusion-exclusion if the cones are not simple) that the encoding series for
these tangent cones are all rational, and so any generating series obtained
by specializing the x; will be rational also.

More precisely, we show in Section 2 how to coordinatize (the minimal
length coset representatives of) S, as the set of lattice points (z1,...,2,—1)
in the nonnegative orthant Z;‘al with Coxeter length given by Z?;ll (n—1)z;.
Enumerating these points recovers the denominator of Bott’s formula.

However, it turns out that the subset of lattice points corresponding to
the p-avoiding affine permutations, for a fixed pattern p, is not necessarily
convex; see Figure 3(b). We then show that it is possible to decompose
725" into a disjoint union of (n — 1)! shifted, dilated cones, each of the
form

Cg = {(tl, 2to, ..., (n — 1)tn_1) + (bl, ceey bn—l) 1t € Zzo}.
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If we restrict to each Cj', then we can prove that the p-avoiding affine permu-
tations do form a polyhedral set. In fact, we give explicit defining inequalities
that include some additional coordinates for convenience, and then project
to the t-coordinates that parameterize each C;'. At the end of this process, we
can apply Brion’s formula to compute the enumerating series and conclude
that it is rational.

Let us pause to mention that this construction seems likely to be useful in
other contexts. For example, the Coxeter hyperplane arrangement of affine
type Ap,—1 in R™ is given by o; —x; = kfor 1 <i < j < n and k € Z.
The complement of these hyperplanes in R™ is a collection of regions. It
turns out that these regions are in bijection with affine permutations, and so
enumerating these regions using a statistic defined by counting the number
of hyperplanes that separate a region from a fixed region at the origin results
in the same generating series as Bott’s formula. There is some recent interest
[Arm13, FV10] in statistics and generating series for regions of the extended
Shi arrangements (which are subarrangements of this one), and affine pattern
avoidance may be a useful tool for refining this geometric picture.

The generating series we have been considering also arise in certain
lattice path enumeration problems; see [BDLPP01, BDLFP98, BJN14]. In
fact, the enumeration for p = [321] in [HJ10] used a recursive technique of
Bousquet-Mélou [BM96] developed for this context involving g-Bessel func-
tions that, while powerful, leaves the generating series in a form that is
somewhat opaque. Our decomposition of the coordinate space for these ob-
jects into shifted dilated cones seems likely to offer some new insights into
these types of recursive systems.

Once we know that our Fj, ,,(x) generating series are rational, there are
three possibilities for the sequence of coefficients: they must be eventually
zero, eventually repeat, or are unbounded. The first case is characterized by
Crites’ theorem, and in Section 3, we begin to characterize the periodic pat-
terns. We are aided by the fact that it suffices to characterize the periodic
patterns in a single C;' space, with n = 3. Stated in terms of classical permu-
tation patterns, our result essentially requires p to avoid an infinite family
of patterns from S7, Sg, S10, S12, 514, - . .; see Figure 5 and Theorem 3.11.

When p cannot be embedded into any element of S,, then the generating
series F}, () is simply given by Bott’s formula, which is not periodic (unless
n = 2). It remains an open problem to give a characterization in terms of p
for when this occurs. We do not address this here although there are standard
techniques from convex geometry that can be applied to the polyhedra we
define for any particular pattern of interest.

There are many open directions in this area, for both undergraduate
and professional researchers. Almost any of the classical problems associ-
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ated with permutation patterns, such as classification of Wilf equivalence
classes, pattern packing, or asymptotic behavior, could be posed in the affine
setting; see [B6n12| for an introduction to these classical results. It would
also be interesting to extend our geometric framework to study bivariate
generating series of the form €53, 2!y Moreover, modifying the ge-
ometric framework to handle multiple patterns would allow us to study the

{[3412], [4231]} class from [BC12] in detail.
2. Polyhedral structure
2.1. A polyhedral encoding of the affine symmetric group

An affine permutation of size n is a bijection w : Z — 7Z satisfying
w(i+n) = w(i)+nforalli e Z, and w(l)+w(2)+---+w(n) = 1+2+- - -+n.
We refer to the (infinite) image sequence (..., w(—2),w(—1),w(0),w(1),...)
of w as its Z-notation. By the first property, we can completely specify an
affine permutation by its base-window [w(1),w(2),...,w(n)]. When we do
this, the Z-notation is obtained by decomposing the image into windows of
size n, where the ith window contains the entries of the base window with
each value in the window shifted by in. (In this paper, we denote window
boundaries with a | symbol.)

The affine symmetric group S consists of all the affine permutations
of size n, with composition of functions as the group operation. It follows di-
rectly from the definitions that [wq, we, ..., w,] is the base-window notation
for an affine permutation if and only if Y " | w; = (”'QH) and the residues
(w; mod n) are all distinct.

As a group, S, is generated by the n adjacent transpositions of entries
in the Z-notation (where each transposition acts on all windows simulta-
neously). The minimal number of such transpositions into which w can be
factored is known as the Coxeter length of w, denoted £(w).

Given a permutation p € S, and an affine permutation w € S, we say
that w contains the pattern p if there exist positions i1 < 19 < -+ < i
whose Z-notation values w(i1), w(iz), . .., w(iy) are in the same relative order
as p1,p2, - - ., pk- Note that these positions need not be restricted to the base
window.

When the entries in the base-window notation for w are sorted increas-
ingly, we call w a minimal length coset representative. (See [BBO05,
Hum90] for motivation and details.) We will denote the subset of minimal
length coset representatives by S C S Then each w € SO corresponds to
an abacus diagram as follows. Begin with an array having n columns and
countably many rows. Label the entry in the ith row and jth column of the
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Figure 1: An abacus diagram for w = [-12,-8,2,9,13,17] with w =
(4,10,7,4,4) and @ = (0,3,3,2,3).
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array by the integer j + ni, where 1 < j < n. In figures, we will draw the
rows increasingly up the page, and columns increasingly from left to right.
Then these labels linearly order the entries of the array, which we refer to as
reading order. We call the entries {1+kn,2+kn,...,n+kn} the kth level
of the array. To create our diagram, we highlight certain entries in the array;
such entries are called beads and will be circled in figures. Entries that are
not beads will be called gaps. To encode w, we let the entries in the array
corresponding to the base-window notation for w be beads, and we refer to
these as the defining beads. To complete the diagram, we create beads at
all of the entries below each defining bead, lying in the same column. All of
the other entries in the diagram are gaps. We call this completed diagram
the abacus diagram for w.

Observe that the defining conditions on the base-window notation im-
ply that the levels of the defining beads in an abacus diagram must sum
to zero. We refer to this by saying that the abacus diagram must be bal-
anced. Hence, the base window notation includes a redundant coordinate.
To remedy this, we can represent any minimal length coset representative
w by its gap vector w = (wi,...,w,—1) where w; records the number
of gaps between the i and (i + 1)st defining beads in the abacus for w,
ordered increasingly. Alternatively, we may specify w by its delta vec-
tor

W = (wg—wl,wg—wg,...,wn—wn_l).

This vector records the number of entries (which may be beads or gaps) in
the abacus diagram between each successive pair of defining beads.
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Observe that any nonnegative integer vector is the gap vector for a
unique abacus diagram. To see this, simply place the largest defining bead
arbitrarily on the array, and then place each of the smaller defining beads
with consecutive distances as prescribed by the given gap vector. To balance
the abacus, subtract the sum of the levels of the defining beads from the
position of each defining bead. The result will be the unique balanced abacus
having the prescribed gap distances between consecutive defining beads.

Proposition 2.1. The Cozeter length of w is given by {(w) = wWy_1 +
Qiy_ + 3tby_g + -+ + (n — Dby

Proof. This is a “folklore” result that is sometimes stated in a slightly dif-
ferent form: To compute the Coxeter length of the element encoded by an
abacus diagram, count the number of pairs (b, g) where b is a defining bead
and g is a gap that precedes b in reading order.

Once we translate the action of S, to the abacus, it is straightforward
to prove this result by induction on ¢(w); simply check that each length
increasing adjacent transposition adds a single new (b, g) pair. ]

As a corollary to this development, we may view the (gap vectors of)
minimal length coset representatives as lattice points in the nonnegative
orthant, which is a prototype for our polyhedral encoding. When we enu-
merate these points with respect to the Coxeter length statistic, we recover
the classical result of Bott for type A. This seems to be a new proof, and it is
an open problem to give analogous proofs for the other affine Weyl groups.

Corollary 2.2. (Bott) We have

f(w) _ 1
D i RS =y}

weS?

Proof. By the development above, the encoding series for the gap vectors is

1
91 .92 | 9n-1 __ .
D oy 01— 211 —2) - (1 — 2n1)

By Proposition 2.1, we can then obtain the length generating series by sub-
stituting ¢"~* for x;. This yields the result. O

To uncover the polyhedral structure that will be useful in conjunction
with patterns, we need a further refinement. We say that an abacus on n
columns is minimal if its delta vector uses only entries between 1 and n—1.
For example, the minimal abaci in n = 4 are shown below in Figure 2.
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Figure 2: The (n — 1)! different minimal abaci in n = 4.

Proposition 2.3. There are (n — 1)! distinct minimal abaci on n columns.
In terms of their gap vectors, the set of minimal abaci is {(w1,...,wWp—1) :
0 <w; <i}.

Proof. We argue by induction, the result being clear if n = 2 where the
only minimal abacus corresponds to the identity. Assume the formula holds
for abaci on n — 1 columns. To form a minimal abacus on n columns, we
can start with a minimal abacus on n — 1 columns, insert a new column
containing a new largest defining bead in any of n — 1 distinct positions, and
rebalance the resulting n column abacus. This preserves the existing gap
coordinates and adds at most n — 2 gaps to the new gap coordinate w,_1.
Moreover, every minimal abacus on n columns arises this way. Hence, the
result holds by induction. O

Given w € gf;, we can project w to a minimal abacus by repeatedly
removing multiples of n entries between consecutive defining beads and then
rebalancing the diagram. We call the minimal abacus obtained in this way
the bias of w. Equivalently, the bias b of w is specified by its delta vector
b= (w; mod n,ws modn,...,w, 1 mod n). Let BIAS,, denote the set of

(n — 1)! possible biases on n columns.

Example 2.4. The bias of the abacus shown in Figure 1 is given by b =
(4,4,1,4,4).

Lemma 2.5. We can decompose the set of gap vectors into a disjoint union
of shifted dilated cones
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S=zgt= U o

beBIAS,,

where
Cy = {(t1,2t2,...,(n — 1)tp1) + (b1, .. wlo)nfl) 1t € L0}

Note that each element of C} is shifted by the same vector (by,...,by_1)
that depends only on b. Hence we will refer to points in C;' by their ¢-
coordinates, (ab)using the notation (¢1,...,t,—1) € CJ.

Proof. We claim that each gap vector w = (w1,...,Wy—1) € Z;‘Bl exists in
precisely one of the C}* sets. To see this, draw the abacus associated to the
point w. Suppose the i and (i + 1)st defining beads have more than n entries
between them. Then we delete one entire level of the array between them
(and then renumber the remaining entries of the array). This maneuver re-
moves i gaps from the coordinate w; (since there will be n — i beads on the
level we remove), which is equivalent to removing 1 from coordinate t;. Re-
peat this process until every consecutive pair of defining beads is separated
by less than n entries, and then rebalance the abacus (by subtracting the
sum of the levels of the defining beads from the position of each defining
bead). By definition, the result will be one of the minimal abaci.

Moreover this process is reversible since we can recover w by starting
with the minimal abacus, inserting levels as prescribed by the ¢; coordinates,
and rebalancing. Hence, the point of Cj' is unique. O

_ Until now, we have focused on the minimal length coset representatives
S, From the length-additive parabolic decomposition in the theory of Cox-
eter groups, we have that the base-window notation of each w € S,, can
be decomposed into a set of values together with a “sorting permutation”
v € Sp. The set of values is represented by some u € S;, and we have seen
that these further decompose into subsets of elements having the same bias.
The finite permutation v is the unique finite permutation having entries in
the same relative order as the base-window notation for w. We call v the
flattening of w, and it follows that £(w) = £(u) + £(v).

Hence, we can extend our polyhedral embedding to S by simply taking
n! copies of the embedding for S, . Thus we let Cp,, denote the set of w € .5y,
whose bias is b and whose flattening is equal to v.

Corollary 2.6. We have the disjoint union

n = U va

beBIAS,,
UESn
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Example 2.7. In n = 3, we can draw the minimal length coset represen-
tatives as a set of lattice points in the plane. There are two minimal abaci,
given by @ = (1,1) and b = (2,2) with offsets given by @ = (0,0) and
b = (0, 1), respectively. Then the gap vectors S5 & Z2 ; are a disjoint union
of two cones, where the second coordinate has been dilated by 2 and the

cones have been shifted by (0,0) and (0, 1), respectively.

The entire affine symmetric group §3 consists of six copies of this set of
lattice points, one for each choice of flattening.

2.2. Patterns

Fix a permutation pattern p € Si, together with a bias b and flattening v.
We will first explain how to characterize the elements of C{)fv that contain
an instance of p. Recall that an instance of the pattern p in the affine per-
mutation w is a choice of k positions in the Z-notation for w whose values
have the same relative order as p. To coordinatize this, we consider two
pieces of data associated to an instance: a strand assignment, and a window
assignment.

Definition 2.8. Let the strand assignment of an instance be the function
7w assigning each entry of p to an entry of the base window of w, where
m(1) = 7 means that p; is represented by some positional translation of the
jth smallest value of the base window (where j = n represents the largest
value).

The set of potential strand assignments for p is finite, consisting of all
sequences of length k with values from {1,...,n}. In fact, it is not difficult
to discover a further requirement for strand assignments.

Lemma 2.9. Let w be a strand assignment for p. Then either every inversion
in p must correspond to a strict inversion in 7, or else the set of w containing
p with strand assignment T is empty.
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Proof. Suppose i < j and p; > p;. If 7(i) < 7(j) then the elements repre-
senting p; and p; would necessarily be increasing in w, a contradiction. [

Definition 2.10. The window assignment of an instance is the vector
(c1,...,ck—1) where ¢; is the number of positional window boundaries be-
tween the entries representing p; and p;+1 in w. If p; and p;41 lie within the
same window then we set ¢; = 0.

Example 2.11. Consider the highlighted instance of p = [24351] in the
Z-notation for w = [-9,4, 11]:

(«--—15, —2,5| —12,1,8| —9,4,11| — 6,7,14/—3,10,17| - --)

Then, 7 =[2,3,2,2,1] and ¢ = (0,1,2,1).

It is clear that the strand assignment and the window assignment com-
pletely determine a pattern instance in w. Given an affine permutation w in
Z-notation, we can recover the t-coordinates from C;' as follows.

Lemma 2.12. Given w € g,‘; let j > 0 be mazimal such that w(i + 1) >
w(i 4 jn). Then, t; equals the number of window boundaries lying between
w(i+1) and w(i + jn).

For Example 2.11, we find ¢, = 2 since there are two window boundaries
lying between entries 11 and 10. Similarly, ¢; = 4.

Proof. Work by induction starting from a minimal abacus. In a minimal
abacus, there are no adjacent inversions between windows in Z-notation
and all the ¢; are zero. Each time we add one to a t; coordinate, we adjust w
by adding n to each of the n — ¢ largest values in the base window, and then
subtracting n — ¢ from each of the values in the base window (to rebalance).
This places one new window boundary that is counted by the description in
the statement, and preserves all of the other window boundaries. O

We next characterize the t-coordinates of points in Cj', that contain an
instance of p with strand assignment 7. To accomplish this, we highlight
some data in (p, 7).

Definition 2.13. Given a pattern p € Sy and a strand assignment 7 for p,
we say that an upshift is a pair j < ¢ such that p; = p; +1 and 7(j) > 7(i).
A downshift is a pair ¢ < j such that p; = p; + 1 and 7(i) > 7(j).

Example 2.14. Consider (p,7) = ([24351],(2,3,2,2,1]). The values 1 and
2 in p form an upshift that we denote (positionally) as (1 N\_5). Values 2
and 3 are both assigned to strand 2, so no shift takes place. Values 3 and 4
form the upshift (2 3), and values 4 and 5 form the downshift (2 \ 4).
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We are now in a position to prove our main result in this section.

Theorem 2.15. For each (p, ), the set

_ t contains an instance of p using strand }

{t = (s tet) €Cpy assignment T

consists of the integer points in a rational polyhedron.

Proof. We first prove that the set

{(t c) eCl, x k=1 . t contains an instance of p using strand }
Y ,U 20 .

assignment 7 and window assignment c

consists of integer points in a rational polyhedron. Then, we can project onto
the t-coordinates to obtain the result. More precisely, we will give a collection
of integral linear inequalities that the (¢, c) coordinates satisfy exactly when
they describe a valid instance of p in the affine permutation corresponding
to t. Then the fundamental Minkowski—Weyl Theorem for convex polyhedra
allows us to describe this set as the Minkowski sum of a (bounded) polytope
and a recession cone of rays. To perform the projection, we simply ignore
the ¢ coordinates in this latter description. (See [BRO7| or [Zie95, Lecture
1] for an introduction to these ideas.)

Given a window assignment ¢, we imagine placing the values of p into
an affine permutation w (whose values are to be determined) in increasing
order. Whenever we place a larger value in a position to the right, on the
same strand or higher, we impose no conditions on the ¢; because the strands
are necessarily increasing in w. However, if we place a larger value to the
left, we must increase the strand and so this pair of consecutive values is
an upshift. Also, if we place a larger value to the right on a lower strand,
this pair of consecutive values is a downshift. These do impose conditions
on the t;.

By Lemma 2.12, we have that t; represents the maximal number of posi-
tional window boundaries lying between (translates of) the ith and (i + 1)st
largest elements of the base window that can form an inverted pair. Similarly,
tittipi+ -t 1+ Ll_)i,jj represents the maximal number of positional window

boundaries lying between translates of the ith and jth largest elements of the
l_)(i)+l_)(i+1)+--~+l_7(jfl)J
n

base window that form an inverted pair. Here, |b; ;| = |
represents the (constant) contribution from the bias.

Therefore, when we have an upshift from strand 7 (¢) to strand 7 (j), we
must ensure that t;;) + triyp1 + try—1 + Lgﬂ(i)m(j)J is large enough to
ensure that the entries at positions j and ¢ are inverted. These positions are
separated by ¢; + ¢j11 + -+ + ¢;—1 window boundaries.

Hence, for each upshift (j '\ ¢) we include an inequality of the form
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oty tta(yr1 + o Htagy—1 + on@y )] Z ¢ H g1+ i

Using similar reasoning for each downshift (i “\, j), we include an inequality
of the form

tei) + b1+ F -1+ )] St e+ o — 1

The choice of flattening enters in the initial conditions on ¢;, which
specify the minimal number of window boundaries between the i and (i+1)st
position in the pattern instance. Since these positions must be increasing,
we include

. {0 if v=1(7()) < v (w(i + 1))

1 otherwise

for each 1 < i < k. The initial conditions ¢; > 0 should also be included.
Our strategy to place p into the affine permutation will succeed if all
of these linear inequalities are satisfied. If any are not satisfied, then we
will have a pair of consecutive values from p whose representatives in the
affine permutation do not faithfully represent the pattern. Hence, the integer
points of this polyhedron form precisely the set given in the beginning of

the argument. After projection, we obtain the result. O

Example 2.16. The linear inequalities obtained for (p,7) = ([24351],
12,3,2,2,1]) with b = (0,0) and v = [123] are:

t1>c1+ca+tegtcy, to>co to<cotcz—1,
c12>20,c2>1,c3>1,c42>1; ¢ 20,82 >0.

Definition 2.17. We will refer to the rational polyhedron constructed in
the proof of Theorem 2.15 by Cj', (p, 7).

It turns out that the bias and flattening parameters do not change the
polyhedra very much.

Lemma 2.18. Let by be the bias given by b= (0,0,...,0) and vy be the
identity permutation in S,. Then for any other choice of b € BIAS, and

n

v € Sp, we have that C, (p, ) has the same set of infinite rays as Cy; ., (p, ).

As a result, we often drop b and v from our notation, and let C"(p, 7)) =
Coo 0o (p, ).

Proof. Write the polyhedron Cp',, (p, ™) as the solution set to a collection of
linear inequalities. We can use a matrix A and multiplication by —1 to write
this in a standard form Az < b. It is well-known (and straightforward to
verify) that changing b cannot change any of the infinite rays in the solution
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set. Since changing the bias or flattening parameters only alters the defining
inequalities by a constant, and preserves all of the coefficients of the ¢; and
¢;, we obtain the result. O

Corollary 2.19. For any permutation pattern p and any n > 2, the gener-

ating series
Fpn(z)= Y '™
wegn
w avoids p
is rational. Equivalently, the coefficient sequence is generated by a linear

constant-coefficient recurrence.

Proof. Using Brion’s formula (see [BRO7] or [Bar02]) together with inclusion-
exclusion applied to Theorem 2.15, we can obtain a rational encoding series
for the points of each [J Cl?,v (p, m). The subsequent union of these sets over
all b and v are disjoint, so we can simply add the encoding series together.
Then, we specialize the encoding series by setting t; to (:J:i)nﬂ for each
1 <4 < n. The first exponent dilates the lattice to recover the gap coordi-
nates as in Lemma, 2.5, and the second exponent comes from Proposition 2.1.
Finally, we subtract the result from Bott’s formula (which itself is rational)
to enumerate the p-avoiding elements. O

Let us turn to some examples in n = 3 where we can draw pictures.

Example 2.20. In Figure 3 we have displayed some Cgfv (p, ). In each of the
examples, we have n = 3, v = [123], both biases are displayed superimposed,
and (p, ) vary. We have also drawn some of the hyperplanes of constant
Coxeter length from which the contributions to the rational generating series
can be computed.

Observe that in Example (a) the counting sequence for the number of
p-avoiding elements eventually stabilizes. In Example (b), we have a peri-
odic sequence with period 2. Example (¢) produces an unbounded counting
sequence (although other strand assignments provide a ray in the y direc-
tion that is missing for this assignment; the full counting sequence for this
p turns out to be periodic).

Warning 2.21. These polyhedra can be empty. For example,
p=1[7,1,0,4,5,2,8,10,6,9, 3]

has only one strand assignment using 3 strands, and the corresponding

C"™(p, ) polyhedron is empty.

There are some natural questions about these polyhedra to which we do
not currently know the answer.
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T.».oooooooo T.v_.oooooooo
N

Figure 3: (a) (p,7) = ([321],[3,2,1]); (b) (p,m) = ([2431],]3,3,2,1]);
(¢) (p,m) = ([24351],[2, 3,2,2,1]).

Question 2.22. If we fix the bias and flattening parameters, is the union
Uct.p.m)
™

over all strand assignments necessarily convex? (If so, this would dramati-
cally simplify the computation of the encoding series.)

Question 2.23. Given a pattern p € Sy with j strands, we certainly need
n > j in order to successfully embed p into S,. By Warning 2.21, this
nequality is sometimes strict. Is there a simple way to describe the minimal
size of an affine permutation that contains a given pattern p?

3. Periodic patterns

Let a; denote the coefficients of the rational generating series F), ,(z) from
Corollary 2.19. That is, a; counts the number of affine permutations of fixed
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size n and length ¢ that avoid the fixed pattern p. Since the a; obey a
recurrence, it follows that there are three possible types of behavior.

Definition 3.1. We say that a permutation pattern p is finitely enumer-
ated if the a; are eventually zero. We say p is periodic if the a; eventually
satisfy a; = a;_n for some fixed N. Otherwise, we say that p is unbounded.

(To verify that this definition is etymologically sound, use the pigeonhole
principle to show that whenever a; is a bounded sequence that satisfies a
recurrence using a fixed number of prior terms, then a; is actually periodic.)

Crites’ characterized the finitely enumerated patterns in [Cril0], and
Hanusa—Jones gave the first example of a periodic pattern, p = [321], in
[HJ10]. Our goal in this section is to characterize all of the periodic patterns.

Note that the classification in Definition 3.1 depends only on the de-
nominator of the generating series and so the contributions from each bias
and flattening must each fall into the same case by Lemma 2.18. For this
reason, it suffices to work with the enumerating sequence for | J. C"(p, 7) in
this section.

Definition 3.2. Given p € Sk, let m be the length of the longest decreasing
subsequence of p. In this situation, we say that p has m strands.

We rephrase Crites” Theorem from [Cril0] as follows.

Theorem 3.3. (Crites) In each n, the permutation pattern p is finitely
enumerated if and only if p has fewer than 3 strands.

The following result then shows that periodic patterns can only exist on
three strands.

Proposition 3.4. In each n, if p has four or more strands then p is un-

bounded.

Proof. Consider Bott’s formula for §§ . The sequence of coefficients is un-
bounded, and the affine permutations in §§ all avoid p (since the length
of the longest decreasing subsequence in_any of them is clearly 3 or less).
When n > 3, we can embed w € S5 into S, by padding w with zeros on the
left. This embedding is injective, the length of the longest decreasing subse-
quence in the image will be the same or smaller, and by Proposition 2.1 we
do not change the Coxeter length. Hence, we obtain the result. U

Lemma 3.5. In each n, we have that p is periodic if and only if there exists
a constant B such that |, C"(p, ™) contains every point (t1,...,t,—1) that
has two or more t; coordinates larger than B.

Proof. Since the enumerating sequences are generated by a recurrence, we
have that p is periodic if and only if there exists an upper bound for the
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values of the sequence. Also, the condition in the statement for the ¢ coor-
dinates is true if and only if it is true for the corresponding w gap vector
coordinates.

To prove the result, first suppose that at most one w; coordinate (from
the space Z’;Bl of gap vectors) can become arbitrarily large when we avoid
p. Then when we intersect with the hyperplane

Wp—1 + 2p—2 + 3p_3+ -+ (n— 1w =14

of points with fixed Coxeter length ¢, for large 4, the unbounded coordinate
actually becomes determined; it must take up the “slack” in this equation
for all of the bounded coordinates. As a result, we only have a bounded
number of p-avoiding gap vectors, so the sequence is periodic.

Conversely, if there can be two unbounded gap vector coordinates when
we avoid p, then one of these coordinates will be undetermined when we
intersect with the hyperplane of fixed Coxeter length 4, for sufficiently large <.
Hence, the enumerating sequence is unbounded and so p is not periodic. [J

Corollary 3.6. Inn = 3, we have that p is periodic if and only if . C3(p, )
contains infinite rays in the t1 and to directions.

We now turn to classify the periodic patterns in n = 3. Eventually we
show that these are the only periodic patterns for any n.

Definition 3.7. We say that (p, 7) is feasible if | J, C?(p, ) is nonempty.

While it remains an open problem to provide a (simple) combinatorial
characterization for feasibility, there are standard techniques from convex
geometry (such as Fourier—Motzkin elimination or Lenstra’s algorithm for
integer programming [Sch86]) that may be used to address this question.

Definition 3.8. Let p € S with 3 strands, and let 7 be a strand assignment
for p. Consider the diagram of (p, ) in which we represent p; by a point (i, p;)
in the plane and label the point by its strand assignment (7).

We say that two elements of the second strand p; and p; are linked
below (above) if there exists an element of the first (third, respectively)
strand lying below and right (above and left, respectively) of both of them.

We say that two elements of the second strand p; and p; are chained
below (above) if there is a sequence of elements p., = p;, Pe,, Pess - - - s Pe,,, =
p; from the second strand with each pair p., and pe,,, linked below (above,
respectively) for r =1,2,...,m — 1.

A corner of (p,m) consists of a triple (4, j, k) such that p; and p; are
distinct elements of the second strand, and pg is an element of the first or
third strand that lies inside the square having p; and p; as diagonal vertices.
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Figure 4: Minimal tight corners.

The corner is said to be tight if the elements p; and p; are chained
below, or chained above.

Some tight corners that are chained below are shown schematically in
Figures 4 and 5. Points drawn in the same row or column can be resolved
to a permutation by either perturbation of the points. Thus, each picture
encodes several classical permutation patterns.

Lemma 3.9. If (p, ) is feasible and contains a tight corner then ti or tg
is not a ray of C3(p, 7).

Proof. Suppose (p, ) has a tight corner. Without loss of generality, we may
assume it is chained below as shown in the figures. Then, we claim that ¢
is not a ray. If it were, we could fix ¢; and increase to arbitrarily. However,
once tp is fixed, there is a maximum width for the strand 2 entries that are
chained. Then we cannot increase to past the distance limited by the strand
3 entry that is in the tight corner. O

Lemma 3.10. If (p,7) is feasible and does not contain a tight corner then
both t1 and to are rays of C3(p, ).

Proof. We argue the contrapositive. Suppose, without loss of generality, that
whenever t; is fixed there are only finitely many values for to. If there were
no corner of 2 entries enclosing a strand 3 entry, then we could separate
strands 2 and 3, increasing to arbitrarily. If the 2 entries defining the corner
were not chained, then we could slide them along their strand and thereby
increase to arbitrarily. Therefore, we must have a tight corner. O
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Figure 5: General form: tight corners.

Theorem 3.11. The pattern p is periodic in §§ if and only if there exists
a strand assignment 7 that is feasible and does not contain a tight corner.

Proof. First suppose there exists such a strand assignment. Then, Lem-
ma 3.10 and Corollary 3.6 imply the result.

Next, suppose that no such strand assignment exists. If this is because
no w is feasible, then p is not periodic since the enumeration is given by
Bott’s formula.

So suppose that every feasible 7 has a tight corner. We show that they all
contain the same type of tight corner (i.e. are all chained above, or chained
below). Fix some feasible 7 and consider the “supporting entries” shown in
light gray in the figures. If these entries were not present in p, it would be
possible to modify the strand assignment 7 to get rid of the tight corner, a
contradiction.

Hence, the supporting entries must be present in p. But this implies
that the strand assignments for the entries of the tight corner are forced
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in every strand assignment. Therefore, no 7’ can contain the ray that is
missing due to the tight corner of 7 and Lemma 3.9. Thus, p is not periodic
by Corollary 3.6. O

Finally, we complete the periodic classification for n > 3.
Theorem 3.12. Let n > 3. If p is not periodic in §§ then p is not periodic
in Sy.
Proof. Suppose for the sake of contradiction that p is not periodic in §§ ,
but p is periodic in S;. Then, the values of the enumerating sequence for
the p-avoiding elements of S, are bounded by some value B.

We embed points (1, t2) from S5 into Sy, by appending zeros on the left.
After dilation, the length formula for these points is

0(0,0,...,0,t1,t2) = (n — L)ty + 2(n — 2)t;.
Hence, the points having fixed length & in §$L satisfy

2(n — 2 1
g 222, k.
n—1 n—1

Since p is not periodic in §§, we have that . C3(p, ) does not contain
rays in both the ¢ and ¢, directions. Since the points of | J_ C3(p, 7) must lie
in the nonnegative quadrant, this implies that some ray with positive slope
separates the p-containing lattice points from the p-avoiding lattice points
in Z220'

Because the embedded points having fixed length k in §fL have negative
rational slope, there must eventually be some large value of k for which we
obtain more than B distinct points (1, t2) such that:

(1) (0,...,0,t1,t2) has length & in 52,
(2) (t1,t2) avoids p in S5.

Since there are more than B of these embedded points, some of them
must contain p. So suppose t = (0, ...,0,%1,t3) contains p. Then there exists
some strand assignment 7 for which ¢ is feasible in C"(p, 7). Note that since
the first n — 3 coordinates are zero, we cannot have any upshifts involving
strands {1,2,...,n — 2}. Therefore, we can form a strand assignment 7’ by
changing all of these values to n — 2, and the point ¢ will still be feasible for
C™(p, 7). But then the point ¢ would also have been feasible for C3(p, "),
where 7" is obtained from 7’ by sending n — 2 to 1, n — 1 to 2 and n to 3.
This contradicts (2) above. O

Theorem 3.13. Let n > 3. If p is periodic in §§ then p is periodic in §fL
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Proof. By Theorem 3.11, there exists a feasible strand assignment m whose
solutions include both ¢; and ¢ as rays, so the solutions include all points
having both coordinates larger than some B’. Let ' = (t1,...,th—1) €
U, C™(p, ) with two coordinates larger than B’, say ¢; and t;.

Given 7, we can form 7’ from 7 by preserving the images equal to 1,
replacing the images equal to 2 by j, and replacing the images equal to 3 by
n. This has the effect of replacing every instance of ¢ by ¢; +---+%;_1 and
every instance of tg by t;+- - -+t,,_1 in the upshift and downshift inequalities
from the proof of Theorem 2.15.

Hence, because the solutions for 7 include all points with ¢; > B’ and
to > B’, the solutions for 7’ include all points

i+ +ti+--+tj1>B

and
t]'—|—"‘+tn71 > B

Therefore, t' is a feasible point for 7.
Thus, S, satisfies Lemma 3.5, so is periodic. ]
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