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Degree sequences of random digraphs and bipartite
graphs
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We investigate the joint distribution of the vertex degrees in three
models of random bipartite graphs. Namely, we can choose each
edge with a specified probability, choose a specified number of
edges, or specify the vertex degrees in one of the two colour classes.

This problem can alternatively be described in terms of the row
and sum columns of a random binary matrix or the in-degrees and
out-degrees of a random digraph, in which case we can optionally
forbid loops. It can also be cast as a problem in random hyper-
graphs, or as a classical occupancy, allocation, or coupon collection
problem.

In each case, provided the two colour classes are not too different
in size nor the number of edges too low, we define a probability
space based on independent binomial variables and show that its
probability masses asymptotically equal those of the degrees in
the graph model almost everywhere. The accuracy is sufficient to
asymptotically determine the expectation of any joint function of
the degrees whose maximum is at most polynomially greater than
its expectation.

AMS 2000 subject classifications: Primary 05C80, 60C05; secondary
60K30, 05C20, 05C07.
Keywords and phrases: Bipartite graph, degree sequence, random
graph, contiguity, digraph, directed graph, allocation, occupancy, coupon
collection.

1 Introduction 22

1.1 Historical notes 24

1.2 Asymptotic notation 25

1.3 Graph models 26

1.4 Binomial models 28

arXiv: 1302.2446
∗Research supported by the Australian Research Council.

21

http://www.intlpress.com/JOC/
http://arxiv.org/abs/1302.2446


22 Brendan D. McKay and Fiona Skerman

1.5 The main theorems 30

2 Some useful lemmas and an example 32

2.1 Vertices of low degree in random digraphs 33

3 Properties of likely degree sequences 36

4 Proofs of the main theorems 42

5 Concluding remarks 45

References 46

1. Introduction

We will study the joint distributions of the vertex degrees for three differ-
ent models of random bipartite graphs. In each case, we construct simpler
probability spaces which match these distributions to high precision. The
new probability spaces are based on independent binomial distributions and
allow asymptotic calculations of any random variable which is a function of
the degrees and has maximum at most polynomially greater than its expec-
tation. In Section 2.1 we will show an example of such a calculation. Note
that our results are much stronger than contiguity or decreasing total vari-
ation distance. These results are similar to those obtained by McKay and
Wormald [29, 30] for the case of ordinary (not necessarily bipartite) graphs.

We prefer to use graph terminology, but will also describe the problem
in the matrix and other settings. Consider a probability space of m × n
matrices over {0, 1}. Three probability spaces will be considered. In the first
case, which we call Gp, some number p ∈ (0, 1) is specified and each entry
of the matrix is independently equal to 1 with probability p and equal to 0
otherwise. In the second case, which we call Gk, some integer k is specified,
and all m×n binary matrices with exactly k ones have the same probability,
and no other matrices are allowed. In the third case, which we call Gt, a
list of n integers t1, . . . , tn is specified, and all m × n binary matrices with
column sums t1, . . . , tn, respectively, are equally likely and no others are
allowed.

We can interpret the matrix as a bipartite graph in the standard fash-
ion. Associate distinct vertices U = {u1, . . . , um} with the rows, and V =
{v1, . . . , vn} with the columns, and place an edge between ui and vj exactly
when the matrix entry in position (i, j) equals 1. The row and column sums
of the matrix correspond to the degrees of the vertices.
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These probability models have also appeared in other settings. Given m
bins, at each stage j = 1, . . . , n throw tj balls into distinct bins with all(
m
tj

)
possible placings equally likely. Then the distribution of the number of

balls in each bin S = (S1, . . . , Sm) can be studied. This model is referred
to as allocation by complexes and is precisely our Gt model. If we allow the
number of balls thrown to be a random variable Tj , binomially distributed
with parameters (m, p), we attain the Gp model.

Similarly, in the coupon collection problem a customer repeatedly buys
a random number, T , of distinct coupons from a set of m possible different
coupons. This covers both our Gp case when T is binomially distributed with
parameters (m, p) and our Gt case where Tj = tj with probability 1. (Here,
our vector s describes the number of each coupon collected and t the number
of coupons collected at each stage.)

Finally, consider a hypergraph on m vertices. At each stage j = 1, . . . , n,
choose at random a hyperedge of size tj , allowing multi-edges. Then if we set
Si to be the number of hyperedges which contain the ith vertex, we obtain
the Gt model.

If m = n, we can also associate the matrix with a directed graph. There
are n vertices {w1, . . . , wn}. A matrix entry equal to 1 in position (i, j)
corresponds to a directed edge from wi to wj . The case i = j is permit-
ted, so these directed graphs can have loops. The row and column sums
of the matrix correspond to the out-degrees and in-degrees, respectively, of
the directed graph. We will also treat the case of loop-free digraphs, which
correspond to square matrices with zero diagonal. Our methods would also
work if some other limited set of matrix entries are required to be zero, but
we have not applied them in that case.

We now continue using the bipartite graph formulation. For each of the
three probability spaces of random bipartite graphs, we seek to examine
the (m+n)-dimensional joint distribution of the vertex degrees. If G is a
bipartite graph on U ∪ V (respecting the partition into U and V ), then
s = s(G) = (s1, . . . , sm) is the list of degrees of u1, . . . , um, and t = t(G) =
(t1, . . . , tn) is the list of degrees of v1, . . . , vn. We call the pair (s, t) the degree
sequence of G.

Define In = {0, 1, . . . , n} and Im,n = Imn × Inm. Also let G(s, t) be the
number of (labelled) bipartite graphs on U ∪ V with degree sequence (s, t).
In the case of m = n, we also define �G(s, t) to be the number of loop-free
digraphs with in-degrees s and out-degrees t.

For precision we need to distinguish between random variables (writ-
ten in uppercase) and the values they may take (written in lowercase). For
each probability space of random graphs, as determined by the context,
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S = (S1, . . . , Sm) will denote the random variable given by the degrees in
U and T = (T1, . . . , Tn) will denote the random variable given by the the
degrees in V . We will take S to have range Imn and T to have range Inm. Also
define random variables

K =

m∑
i=1

Si and Λ =
K

mn
.

As usual, q is an abbreviation for 1− p.

1.1. Historical notes

The Gt model has received wide-ranging attention, in particular the distri-
bution of the number of isolated vertices. This is also a natural question
in the alternative (non-graph) wordings of the model. It corresponds to the
number of empty bins in the allocation model [3, 13, 19, 31, 44, 38, 12],
the number of uncollected coupons in the collector’s problem [43, 25], the
number of isolated vertices in the hypergraph model and the number of zero
rows in the binary matrix model [14]. More generally, the number of vertices
with a particular degree (or range of degrees) in Gt has been studied in allo-
cation [32, 39, 40], graph [7, 23] and matrix models [8]. A different extension
on this theme is to study the distribution of the number of draws required
to go from i to j non-empty bins [1, 21, 32, 41, 42]. In a similar direction,
Khakimullin and Enatskaya studied the distribution of the number of draws
to exceed a particular lineup in the bins in the Gt model [18] and in the i.i.d.
case which includes the Gp model as well [20]. The monograph by Kolchin
gives many results on Gt phrased as the balls and bins model [22].

We are interested in asymptotic results as we take m,n roughly equal as
they tend to infinity, but another natural option is to fix m, the number of
vertices in one part, and let n, the number of vertices in the other part, tend
to infinity. There seems to be a consistent divide in the literature that when
considered as a graph the asymptotics of Gt are studied with m,n both tend-
ing towards infinity while the balls and bins and coupon collection articles
(including those cited above) fix m and take n tending toward infinity. The
latter corresponds to fixing the number of bins and taking the number of
balls to infinity or having a fixed number of coupons and letting the number
of sampling rounds tend to infinity.

In the other two probability models on bipartite graphs, Gp and Gk, two
types of results are known: those on the minimum and maximum degrees
[7, 5, 36] and those on the number of vertices with a given degree [23, 33, 34].
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For results in the digraph counterpart �Gp see [37] (and below). The model
Gp also appears in papers on ball and bin models. Sometimes the numbers
of balls thrown at each stage are allowed to be i.i.d. random variables [16].
If we then take these random variables to be binomially distributed with
parametersm, p we recover the Gp model. Godbole et al. [9] study the number
of sets of r mutually threatening rooks. This corresponds to the number of
vertices with degree h ≥ r weighted by

(
h
r

)
in our Gp and Gk models.

Of the papers cited, we highlight some which concern the minimum and
maximum degrees, a fixed number of the smallest and largest degrees and
the distribution of the hth largest degree.

Khakimullin determined the asymptotic distribution of the hth largest
degree when the average degree increases faster than logm [16]. The model
used allowed the numbers of balls allocated at each step to be i.i.d. random
variables and so includes both our Gp and uniform Gt cases. This extends an
earlier result by the same author which gave the asymptotic distribution of
the largest degree [17].

Palka and Sperling showed that if we fix p such that np = w(n) logn =
o(n), then any fixed number of the smallest and largest degrees are unique
in �Gp and in the uniform Gt model [37]. A similar result for the �Gt model is
shown by Palka in [35], where t = (d, d, . . . , d) and d = w(n) logn = o(n).
There is also some work on the degrees in random digraphs by Jaworski and
Karoński [15] who showed, in the case that t = (d, d, . . . , d) and d = o(n),
that the minimum vertex degree in Gt is almost surely the same as that
in �Gt.

1.2. Asymptotic notation

As we are dealing with asymptotics of functions of many variables, we must
be careful to define our asymptotic notation.

We will tacitly assume that all variables not declared to be constant are
functions of a single underlying index � that takes values 1, 2, . . . , and that all
asymptotic statements refer to � → ∞. Thus, the size parameters m,n are in
reality functions m(�) and n(�), and a statement like f(m,n) = O(g(m,n))
means that there is a constant A > 0 such that |f(m,n)| ≤ A|g(m,n)|
when � is large enough. This should not be cause for alarm, because we will
invariably impose conditions implying that m,n → ∞ as � → ∞.

The expression õ(1) represents any function of � of magnitude O(e−nc

)
for some constant c > 0. The constant c might be different for different
appearances of the notation. The class õ(1) is closed under addition, multi-
plication, taking positive powers, and multiplication by polynomials in n.
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1.3. Graph models

We now define a sequence of finite probability spaces that we call “mod-
els”, with sample space either I(m,n) = Imn × Inm or Imn . The probability
measure for each model will be defined using random variables (S,T) or S,
respectively, whose distribution equals the respective probability measure.
In general our notation will not distinguish between each probability space
and its probability measure.

We first consider six models whose probability measures are derived from
the degrees of a random bipartite graph or digraph G.

1. (p-models Gp, �Gp, for 0 < p < 1) Generate G by choosing each of the
mn possible edges uivj with probability p, such choices being inde-
pendent. The probability distribution Gp = Gp(m,n) on Im,n is that
of the degree sequence (S,T) of G. If m = n and the edges {uivi}
are forbidden, we obtain the probability distribution �Gp instead, cor-
responding to the degree sequences of a loop-free digraph where each
possible directed edge is chosen independently with probability p. Note
that G(s, t) = 0 for many pairs (s, t). We have

ProbGp
(S = s ∧T = t) = pkqmn−kG(s, t),

Prob�Gp
(S = s ∧T = t) = pkqn

2−n−k �G(s, t),

where q = 1− p and k =
∑m

i=1 si.

2. (k-models Gk, �Gk, for integer k ≥ 0) GenerateG by choosing each of the
bipartite graphs on U ∪V having k edges, with equal probability. The
probability distribution Gk = Gk(m,n) on Im,n is that of the degree
sequence (S,T) of G. If m = n and the edges {uivi} are forbidden,
we obtain the distribution �Gk = �Gk(n) of the degree-sequences for the
uniform probability space of all loop-free digraphs with k edges. We
have

ProbGk
(S = s ∧T = t)

=

⎧⎪⎨
⎪⎩

(
mn

k

)−1

G(s, t), if
∑m

i=1 si =
∑n

j=1 tj = k;

0, otherwise,

Prob�Gk
(S = s ∧T = t)

=

⎧⎪⎨
⎪⎩
(
n2 − n

k

)−1

�G(s, t), if
∑n

i=1 si =
∑n

j=1 tj = k;

0, otherwise.
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3. (t-models Gt, �Gt, for t ∈ Inm) Generate G by choosing each of the bi-
partite graphs on U ∪ V having t(G) = t, with equal probability. For
consistency we can define the random variable T to have the value t,
but since this is constant we will define our probability spaces using
S only. The probability distribution Gt = Gt(m) on Imn is that of the
degree sequence S of G in U . If m = n and the edges {uivi} are for-
bidden, we obtain the distribution �Gt = �Gt(n) of the in-degrees for the
uniform probability distribution of all loop-free digraphs with fixed
out-degrees t. For a given t ∈ Inm, we have

ProbGt
(S = s) =

n∏
j=1

(
m

tj

)−1

G(s, t),

Prob�Gt
(S = s) =

n∏
j=1

(
n−1

tj

)−1

�G(s, t).

The probability spaces Gp, Gk and Gt are clearly related, by mixing and
conditioning. In particular, for any event E ⊆ Im,n or E′ ⊂ Imn , the following
hold. Note that the first relationships on lines (2) and (3) are independent
of p and assume 0 < p < 1.

ProbGp
(E) =

mn∑
k=0

(
mn

k

)
pkqmn−k ProbGk

(E)(1)

=
∑
t∈In

m

( n∏
j=1

(
m

tj

)
ptjqm−tj

)
ProbGt

(E),

ProbGk
(E) = ProbGp

(E | K = k)(2)

=
∑

t:
∑n

j=1 tj=k

(
mn

k

)−1 n∏
j=1

(
m

tj

)
ProbGt

(E),

ProbGt
(E′) = ProbGp

(E′ × {t} | T = t)(3)

= ProbGk=
∑

j tj
(E′ × {t} | T = t),

with similar relations between �Gp, �Gk and �Gt.
Note that the separate distributions of S and T in Gp and Gk are elemen-

tary. In Gp, the components of S have independent binomial distributions,
while in the Gk model S has a multivariate hypergeometric distribution. The
difficulty is in quantifying the dependence between S and T when all m+n
components are considered together.
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1.4. Binomial models

Our aim is to compare the degree sequence distributions defined above to
some distributions derived from independent binomials. Our motivating ob-
servation is the known marginal distributions of S and T in the models Gp

and Gk.

1. (Independent models Ip, �Ip, for 0 < p < 1) Generate m components
distributed Bin(n, p) and n components distributed Bin(m, p), allm+n
components being independent. The joint distribution on Im,n is Ip =
Ip(m,n). If instead we have m = n and the 2n components are all

distributed Bin(n−1, p), the joint distribution on In,n is �Ip = �Ip(n).
We have

ProbIp
(S = s ∧T = t)

= p
∑

i si+
∑

j tjq2mn−
∑

i si−
∑

j tj

m∏
i=1

(
n

si

) n∏
j=1

(
m

tj

)
,

Prob�Ip
(S = s ∧T = t)

= p
∑

i si+
∑

j tjq2n
2−2n−

∑
i si−

∑
j tj

n∏
i=1

(
n−1

si

) n∏
j=1

(
n−1

tj

)
.

2. (Binomial p-models Bp, �Bp, for 0 < p < 1) The distribution Bp =
Bp(m,n) on Im,n is the conditional distribution of Ip subject to∑m

i=1 Si =
∑n

j=1 Tj . For m = n, the distribution �Bp = �Bp(n) on In,n

is obtained from �Ip by the same conditioning. We have

ProbBp
(S = s ∧T = t)

=

⎧⎪⎨
⎪⎩

ProbIp
(S = s ∧T = t)

ProbIp

(∑m
i=1 Si =

∑n
j=1 Tj

) , if
∑m

i=1 si =
∑n

j=1 tj ;

0, otherwise,

and similarly for �Bp.

3. (Binomial k-models Bk, �Bk, for integer k ≥ 0) The distribution Bk =
Bk(m,n) on Im,n is the conditional distribution of Ip subject to∑m

i=1 Si =
∑n

j=1 Tj = k. For m = n, �Bk = �Bk(n) is derived from �Ip
in the same way. In both cases, the distribution doesn’t depend on p.
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We have

ProbBk
(S = s ∧T = t)

=

⎧⎪⎨
⎪⎩

(
mn

k

)−2 m∏
i=1

(
n

si

) n∏
j=1

(
m

tj

)
, if

∑m
i=1 si =

∑n
j=1 tj = k;

0, otherwise,

Prob �Bk
(S = s ∧T = t)

=

⎧⎪⎨
⎪⎩

(
n2 − n

k

)−2 n∏
i=1

(
n−1

si

) n∏
j=1

(
n−1

tj

)
, if

∑n
i=1 si =

∑n
j=1 tj = k;

0, otherwise.

In each case S and T have independent multivariate hypergeometric

distributions.

4. (Binomial t-models Bt, �Bt, for t ∈ Inm) The distribution Bt = Bt(m,n)

on Imn is the distribution of S when (S,T) has distribution Bk for

k =
∑n

j=1 tj . For m = n, �Bt = �Bt(n) is derived from �Bk in the same

way. For a given t ∈ Inm, we have

ProbBt
(S = s) =

⎧⎪⎨
⎪⎩

(
mn

k

)−1 m∏
i=1

(
n

si

)
if

∑m
i=1 si =

∑n
j=1 tj ;

0, otherwise,

Prob �Bt
(S = s) =

⎧⎪⎨
⎪⎩

(
n2 − n

k

)−1 n∏
i=1

(
n−1

si

)
if

∑n
i=1 si =

∑n
j=1 tj ;

0, otherwise.

In each case, S has a multivariate hypergeometric distribution.

5. (Integrated p-models Vp, �Vp, for 0 < p < 1) The distribution Vp =

Vp(m,n) on Im,n is a mixture of Bp′ distributions, while for m = n the

distribution �Vp = �Vp(n) on In,n is a mixture of �Bp′ distributions. Let

Kp(p
′) =

(
mn

πpq

)1/2

exp

(
−mn

pq
(p′ − p)2

)
,

V (p) =

∫ 1

0
Kp(p

′) dp′.
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Then we define

ProbVp
(S = s ∧T = t) = V (p)−1

∫ 1

0
Kp(p

′) ProbBp′ (S = s ∧T = t) dp′,

Prob�Vp
(S = s ∧T = t) = V (p)−1

∫ 1

0
Kp(p

′) Prob �Bp′
(S = s ∧T = t) dp′.

Our main theorems will show that, under certain conditions, Gp is very
close to Vp, Gk to Bk, and Gt to Bt. Similar relationships hold for the digraph
models.

1.5. The main theorems

Consider positive integers m,n and a real variable x ∈ (0, 1). (As explained
in Section 1.2, these variables are actually functions of a background index �.)
For constants a, ε > 0, we say that (m,n, x) is (a, ε)-acceptable if

m,n → ∞ with m = o(n1+ε), n = o(m1+ε), and

(1− 2x)2

4x(1− x)

(
1 +

5m

6n
+

5n

6m

)
< a log n.(4)

Note that (4) implies x(1− x) = Ω
(
(log n)−1

)
.

For ε > 0, a vector (x1, x2, . . . , xN ) will be called ε-regular if

xi −
1

N

N∑
j=1

xj = O(N1/2+ε)

uniformly for i = 1, . . . , N . We say that (s, t) is ε-regular if
∑m

i=1 si =∑n
j=1 tj and s, t are both ε-regular.

Finally, define λm(t) = (mn)−1
∑n

j=1 tj . If
∑m

i=1 si =
∑n

j=1 tj , the com-
mon value of λn(s) and λm(t) will be denoted by λ. Note that λ is the value
in [0, 1] that gives the density of a bipartite graph with degrees (s, t), relative
to Km,n. In the case of loop-free digraphs, λ ∈ [0, 1− 1/n].

We now state the theorems that are the main contribution of this paper.
Their proofs will be given in Section 4, after some preliminary lemmas are
proved in Section 3.

Theorem 1.1. Let constants a, b > 0 satisfy a + b < 1
2 . Then there is a

constant ε = ε(a, b) > 0 such that the following holds. Let D and D′ be
probability spaces on Im,n in one of the following cases.
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(a) (m,n, p) is (a, ε)-acceptable and (D,D′) = (Gp,Vp),

(b) m = n, (n, n, p) is (a, ε)-acceptable and (D,D′) = (�Gp, �Vp),
(c) (m,n, k/mn) is (a, ε)-acceptable and (D,D′) = (Gk,Bk),
(d) m = n, (n, n, k/n2) is (a, ε)-acceptable and (D,D′) = (�Gk, �Bk).

Then there is an event B = B(D) ⊆ Im,n such that ProbD(B) = õ(1), and
uniformly for (s, t) ∈ Im,n \B,

ProbD(S = s ∧T = t) =
(
1 +O(n−b)

)
ProbD′(S = s ∧T = t).

Moreover, let X : Im,n → R be a random variable and let E ⊆ Im,n be an
event. Then,

ProbD(E) =
(
1 +O(n−b)

)
ProbD′(E) + õ(1),

ED(X) = ED′(X) +O(n−b)ED′(|X|) + õ(1) max
(s,t)∈Im,n

|X|,

VarD(X) =
(
1 +O(n−b)

)
VarD′(X) + õ(1) max

(s,t)∈Im,n

X2.

Theorem 1.2. Let E ⊆ Im,n be an event. Then, under the conditions of
Theorem 1.1,

if ProbBp
(E) → 0 then ProbGp

(E) = õ(1) + o(1)
√

ProbBp
(E) , and

if ProbGp
(E) → 0 then ProbBp

(E) = õ(1) + o(1)
√

ProbGp
(E) .

Similarly, for m = n,

if Prob �Bp
(E) → 0 then Prob�Gp

(E) = õ(1) + o(1)
√

Prob �Bp
(E) , and

if Prob�Gp
(E) → 0 then Prob �Bp

(E) = õ(1) + o(1)
√

Prob�Gp
(E) .

In particular, Gp and Bp are contiguous; i.e., ProbGp
(E) → 0 if and only if

ProbBp
(E) → 0, and similarly for �Gp and �Bp.

Theorem 1.3. Let constants a, b > 0 satisfy a + b < 1
2 . Then there is a

constant ε = ε(a, b) > 0 such that the following holds whenever (m,n, λm(t))
is (a, ε)-acceptable and t is ε-regular. Let D and D′ be probability spaces on
Imn in one of the following cases.

(a) (D,D′) = (Gt,Bt),
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(b) m = n and (D,D′) = (�Gt, �Bt).

Then there is an event B = B(D) ⊆ Imn such that ProbD(B) = õ(1), and

uniformly for s ∈ Imn \B,

ProbD(S = s) =
(
1 +O(n−b)

)
ProbD′(S = s).

Moreover, let X : Imn → R be a random variable and let E ⊆ Imn be an event.

Then,

ProbD(E) =
(
1 +O(n−b)

)
ProbD′(E) + õ(1),

ED(X) = ED′(X) +O(n−b)ED′(|X|) + õ(1)max
s∈Im

n

|X|,

VarD(X) =
(
1 +O(n−b)

)
VarD′(X) + õ(1)max

s∈Im
n

X2.

A weak corollary of these theorems is that each of the distribution pairs

(Gp,Vp), (�Gp, �Vp), (Gk,Bk), (�Gk, �Bk), (Gt,Bt) and (�Gt, �Bt) have total variation

distance O(n−b) under the stated conditions.

The proofs of the theorems will be presented in Sections 3 and 4. Mean-

while, we will give an example that illustrates how the theorems can be

applied.

2. Some useful lemmas and an example

We first record a few elementary properties.

Lemma 2.1. If
∑m

i=1 si =
∑n

j=1 tj = k and pqmn → ∞, then

ProbBp
(S = s ∧T = t)

=
(
2 +O((pqmn)−1)

)
p2kq2mn−2k√πpqmn

m∏
i=1

(
n

si

) n∏
j=1

(
m

tj

)
,

Prob �Bp
(S = s ∧T = t)

=
(
2 +O((pqn2))−1)

)
p2kq2n

2−2n−2k

×
√

πpqn(n−1)

n∏
i=1

(
n−1

si

) n∏
j=1

(
n−1

tj

)
,

uniformly over s, t.
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Proof. In Ip, both
∑m

i=1 Si and
∑n

j=1 Tj have the distribution Bin(mn, p).
Therefore

ProbIp

(∑m
i=1 Si =

∑n
j=1 Tj

)
=

mn∑
k=0

(
mn

k

)2

p2kq2mn−2k(5)

=
1

2
√
πpqmn

(
1 +O((pqmn)−1)

)
.

For the last step we use that the central part of the sum is approximately
normal and sum it with the Euler-Maclaurin formula, while the two tails of
the sum are negligible in comparison. The first claim now follows from the
formulas for ProbBp

(S = s∧T = t) and ProbIp
(S = s∧T = t). The second

claim is proved in the same manner.

Lemma 2.2. If pqmn → ∞, then

V (p) = 1− o
(
e−pqmn

)
.

Proof. Kp(p
′) is a normal density with mean p and variance pq/(2mn), so we

just need to apply standard normal tail bounds to the definition of V (p).

The next lemma demonstrates how statistics of variables in Bp can be
converted into statistics in Vp. Note that X can be the indicator variable of
an event, so the lemma applies to probabilities as well.

Lemma 2.3 ([29]). Let X : Im,n → R be a random variable. Then

EVp
(X) = V (p)−1

∫ 1

0
Kp(p

′)EBp′ (X) dp′,

VarVp
(X) = V (p)−1

∫ 1

0
Kp(p

′)
(
VarBp′ (X) + (EVp

(X)− EBp′ (X))2
)
dp′.

2.1. Vertices of low degree in random digraphs

We now provide an example of how Theorem 1.1(b) can be applied to random
digraphs. Since this is only an illustration, we will not attempt to treat all
values of the parameters or to obtain the best possible error terms.

Let G be a random loop-free digraph on n vertices and edge probability
p = 1

2 . For convenience we will assume that n is even, though treatment
of the odd case would be much the same. As usual, S1, . . . , Sn are the out-
degrees of the vertices, and T1, . . . , Tn are the in-degrees. LetX,Y be random
variables which count the vertices with out-degree at most n

2 − 1, and the



34 Brendan D. McKay and Fiona Skerman

vertices with in-degree at most n
2 −1, respectively. It is easy to see that each

of X and Y has a distribution exactly Bin(n, 12), but that X and Y are not
independent. Our aim will be to find their asymptotic joint distribution.

We will first calculate some properties of binomial distributions trun-
cated at the centre. Application of model �V1/2 requires us to consider prob-

abilities close to 1
2 .

Lemma 2.4. The following hold when ε > 0 is sufficiently small. Let n be
even and let p = 1

2 + δ where δ = O(n−1+ε). For 0 ≤ k ≤ n
2 − 1 define

b(p, k) =

(
n− 1

k

)
pk(1− p)n−1−k

and P (δ) =
∑n/2−1

k=0 b(p, k). Then

(6) P (δ) =
1

2
− δ

√
2n

π
+O(n−1−ε).

Define two random variables, Z−
δ by truncating Bin(n− 1, p) to [0, 12n− 1],

and Z+
δ by truncating Bin(n− 1, p) to [12n, n− 1]. Then

E(Z−
δ ) =

1

2
n−

√
n

2π
+O(n1/2−ε), E(Z+

δ ) =
1

2
n+

√
n

2π
+O(n1/2−ε),

(7)

Var(Z−
δ ) =

(π − 2)n

4π
+O(n1−ε), Var(Z+

δ ) =
(π − 2)n

4π
+O(n1−ε).

(8)

Proof. Define sj = b(p, 12n − 1 − j). From [28] we have for j = O(n1/2+ε)
that

s0 =
(
1− 2δ − 2δ2n− 1/(4n) +O(n−1−ε)

)√ 2

πn
, and

sj
s0

=
(
1− 4j4/(3n3) +O(n−1−ε)

)
exp

(
−4δj − 2j(j + 1)/n

)
.

By summing sj/s0 using the Euler-Maclaurin method, as in [28], we obtain
the formula for P (δ). Similarly summing jsj/s0 and j2sj/s0, we obtain the
formulas for E(Z−

δ ) and Var(Z−
δ ).

Finally, note that the truncations divide the range exactly in half, and
so we have 1 − P (δ) = P (−δ), E(Z−

δ ) + E(Z+
−δ) = n − 1 and Var(Z−

δ ) =

Var(Z+
−δ). This proves the statistics for Z+

δ .
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Theorem 2.5. Suppose n is even and x, y are integers with x, y=O(n−1/2+ε)
for sufficiently small ε > 0. Then

Prob�G1/2

(
(X = 1

2n+ x) ∧ (Y = 1
2n+ y)

)

=
2 + o(1)

n
√
π2 − 4

exp

(
−2π(πx2 + πy2 − 4xy)

(π2 − 4)n

)
.

Proof. Theorem 1.1(b) tells us to calculate the probability in �V1/2, for which

we need the probability in �Bp when p ≈ 1
2 . For integers x, y, define events

E(x, y) =
{
(S,T) | X = 1

2n+ x ∧ Y = 1
2n+ y

}
, and

EΣ =
{
(S,T) |

∑n
i=0 Si =

∑n
j=0 Tj

}
.

Recall that �Bp is �Ip conditioned on event EΣ so, applying Bayes’ rule twice,

(9) Prob �Bp
(E(x, y)) = Prob�Ip

(E(x, y))
Prob�Ip

(EΣ | E(x, y))

Prob�Ip
(EΣ)

.

We have already computed Prob�Ip
(EΣ) in (5); for p = 1

2 + o(1) it is

(10) Prob�Ip
(EΣ) =

1 + o(1)

n
√
π

.

Now consider Prob�Ip
(EΣ | E(x, y)). Under this conditioning, symmetry im-

plies that
∑

i Si has the same distribution as the sum of 1
2n + x copies of

Z−
δ and 1

2n− x copies of Z+
δ , all of these being independent. A similar fact

holds for
∑

j Tj , which is in addition independent of
∑

i Si since we are

operating in �Ip. Also recall that the binomial distribution and therefore its
truncations and their convolutions are log-concave, so we know from [4] that
Δ =

∑
i Si −

∑
j Tj , in �Ip conditioned on E(x, y), satisfies a local central-

limit theorem. Using Lemma 2.4, we calculate

E�Ip
(Δ | E(x, y)) = (y − x)

√
2n

π
+O(n1−ε)

Var�Ip
(Δ | E(x, y)) =

(π − 2)n2

2π
+O(n2−ε),

and so

(11) Prob�Ip
(EΣ | E(x, y)) =

1 + o(1)

n
√
π − 2

exp

(
−2(x− y)2

(π − 2)n

)
.
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Finally, consider Prob�Ip
(E(x, y)). Since the 2n events Si ≤ 1

2n − 1, Tj ≤
1
2n− 1 are independent in �Ip, X and Y are independent Binomial variables
Bin(n, P (δ)). Using (6) and the normal approximation for the binomial dis-
tribution, we have

Prob�Ip
(E(x, y))

=
2 + o(1)

πn
exp

(
−2(x

√
π + δ

√
2n3 )2

πn
− 2(y

√
π + δ

√
2n3 )2

πn

)
.

Applying this to (9) together with (10) and (11), we find that

Prob �Bp
(E(x, y)) =

2 + o(1)

n
√

π(π − 2)

× exp

(
−2(x

√
π + δ

√
2n3 )2

πn
− 2(y

√
π + δ

√
2n3 )2

πn
− 2(x− y)2

(π − 2)n

)
.

Now we apply Lemma 2.3 to pass the result to �V1/2. Multiplying by

K1/2(
1
2 + δ) and integrating, we obtain the formula in the theorem, which

holds for �G1/2 on account of Theorem 1.1(b).

A corollary of the theorem is that X−Y and X+Y have asymptotically
independent normal distributions, apart from necessarily having the same
parity.

Theorem 2.6. Under the conditions of the theorem, let α, β be integers of
the same parity such that α, β = O(n1/2+ε). Then

Prob�G1/2

(
(X + Y = n+ α) ∧ (X − Y = β)

)

=
2 + o(1)

n
√
π2 − 4

exp

(
− πα2

(π + 2)n
− πβ2

(π − 2)n

)
.

More complex information could also be obtained, such as the distribu-
tions of all the order statistics of the degrees, but the calculations would
be considerably more intricate. See [30] for similar calculations for ordinary
graphs.

3. Properties of likely degree sequences

To prove our theorems, our first task will be to investigate the bulk behaviour
of our various probability spaces in order to identify some behaviour that
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has probability õ(1). We will apply a few concentration inequalities, which
we now give.

Theorem 3.1 ([26, Lemma 1.2]). Let X = (X1, X2, . . . , XN ) be a family of
independent random variables, with Xi taking values in a set Ai for each i.
Suppose that for each j the function f :

∏N
i=1Ai → R satisfies |f(x) −

f(x′)| ≤ cj whenever x,x′ ∈
∏N

i=1Ai differ only in the j-th component.
Then, for any z,

Prob
(∣∣f(X)− E(f(X))

∣∣ ≥ z
)
≤ 2 exp

(
−2z2/

∑N
i=1 c

2
i

)
.

Theorem 3.2. Let X = (X1, X2, . . . , XN ) be a family of independent real
random variables such that |Xi − E(Xi)| ≤ ci for each i. Define X =∑N

i=1Xi. Then, for any z,

Prob
(
|X − E(X)| ≥ z

)
≤ 2 exp

(
−1

2z
2/

∑N
i=1 c

2
i

)

Another consequence of Theorem 3.1 is the following.

Theorem 3.3. Let A1, . . . , AN be finite sets, and let a1, . . . , aN be integers
such that 0 ≤ ai ≤ |Ai| for each i. Let

(
Ai

ai

)
denote the uniform probability

space of ai-element subsets of Ai. Suppose that for each j the function f :∏N
i=1

(
Ai

ai

)
→ R satisfies |f(x) − f(x′)| ≤ cj whenever x,x′ ∈

∏N
i=1

(
Ai

ai

)
are

the same except that their j-th components xj , x
′
j have |xj∩x′j | = aj−1 (i.e.,

the aj-element subsets xj , x
′
j are minimally different). If X = (X1, . . . , XN )

is a family of independent set-valued random variables with distributions(
A1

a1

)
, . . . ,

(
AN

aN

)
, then for any z,

Prob
(∣∣f(X)− E(f(X))

∣∣ ≥ z
)
≤ 2 exp

(
−2z2∑N

i=1 c
2
i min{ai, |Ai| − ai}

)
.

Proof. We start by reminding the reader of a classical algorithm called
“reservoir sampling”, attributed by Knuth to Alan G. Waterman [24, p. 144].

Let Y
(i)
ai+1, . . . , Y

(i)
|Ai| be independent random variables, where Y

(i)
j has the dis-

crete uniform distribution on {1, 2, . . . , j}. Now supposeAi = {w1, . . . , w|Ai|}.
Execute the following algorithm:

For j = 1, . . . , ai set xj := wj ;

For j = ai + 1, . . . , |Ai|, if Y (i)
j ≤ ai then set xY (i)

j
:= wj .

Define Xi = Xi(Y
(i)
ai+1, . . . , Y

(i)
|Ai|) to be the value of {x1, . . . , xai

} when the

algorithm finishes. The raison d’être of the algorithm, which is easy to check,
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is that Xi has distribution
(
Ai

ai

)
; i.e., it is uniform. It is also easy to check

that the maximum change to Xi resulting from a change in a single Y
(i)
j is

that one element is replaced by another.

Therefore, we can apply Theorem 3.1 if we consider f(X) as a function

of all the independent variables {Y (i)
j }. If ai < |Ai|/2, we can represent Xi

by its complement; this justifies the term min{ai, |Ai| − ai} in the theorem
statement.

We next apply these concentration inequalities to show that certain
events are very likely in our probability spaces.

Theorem 3.4. The following are true for sufficiently small ε > 0.

(a) Suppose that (m,n, p) and (m,n, k/mn) are (a, ε)-acceptable. Then

ProbD
(
(S,T) is ε-regular

)
= 1− õ(1)

for D being any of Gp, Gk, Ip, Bp, Bk, or Vp. The same is true for

m = n when D is any of �Gp, �Gk, �Ip, �Bp, �Bk, or �Vp.
(b) If t ∈ Inm is ε-regular, and (m,n, λm(t)) is (a, ε)-acceptable, then

ProbD
(
S is ε-regular

)
= 1− õ(1).

for D being Gt or Bt. The same is true for m = n when D is either of
�Gt or �Bt.

Proof. By symmetry, we need only show that S is almost always ε-regular.

In the case that D is Gp or Ip, each Si has the binomial distribu-
tion Bin(n, p), and K has the distribution Bin(mn, p). Therefore, by Corol-
lary 3.2,

ProbD
(
|Si − pn| ≥ n1/2+ε/2

)
= õ(1), i = 1, . . . ,m,

ProbD
(
|Λ− p| ≥ n−1+2ε

)
= õ(1),(12)

from which it follows that

ProbD
(
S is ε-regular

)
= 1− õ(1).

The cases that D is Gk, Bp, or Bk follow, since these are the same as slices
of Gp or Ip of size n−O(1), using p = k/mn. Also, the distribution of S in Bt

is the same as in Bk for k =
∑n

j=1 tj , so that case follows too.
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For D = Gt, note that each Si is the sum of independent variables
X1, . . . , Xn, where Xj is a Bernoulli random variable with mean tj/m. The
theorem thus follows using the same argument as we used for Gp.

Finally consider D = Vp. Taking X to be the indicator of the event that
S is not ε-regular, Lemmas 2.2–2.3 give

EVp
(X) = O(1)

∫ 1

0
Kp(p

′)EBp′ (X) dp′

= O(1)

(∫ p−n−1+ε

0
+

∫ p+n−1+ε

p−n−1+ε

+

∫ 1

p+n−1+ε

)
Kp(p

′)EBp′ (X) dp′.

The first and third integrals are õ(1) since the tails of Kp(p
′) are small (recall

that it is a normal density with mean p and variance O((mn)−1)), while the
second integral is õ(1) by the present theorem in the case D = Bp′ . (Note
that if (m,n, p) is (a, ε)-acceptable, then all p′ ∈ [p− n−1+ε, p+ n−1+ε] are
(a′, ε)-acceptable for slightly different a′.)

For the digraph models, the proofs are essentially the same.

The following concentration results will form a key part of the proof of
Theorem 1.1.

Theorem 3.5. The following are true for sufficiently small ε > 0.

(a) Suppose that (m,n, p) and (m,n, k/mn) are (a, ε)-acceptable. Then

ProbD
( m∑

i=1

(Si − nΛ)2(13)

=
(
1 +O(n−1/2+2ε)

)
Λ(1− Λ)mn

)
= 1− õ(1),

ProbD
( n∑

j=1

(Tj −mΛ)2(14)

=
(
1 +O(m−1/2+2ε)

)
Λ(1− Λ)mn

)
= 1− õ(1),

when D is Gp or Gk. When m = n, the same bounds hold when D is
�Gp or �Gk.

(b) If t ∈ Inm is ε-regular, and (m,n, λm(t)) is (a, ε)-acceptable, then (13)
holds when D is Gt, and when m = n and D is �Gt.

(c) If m = n, (n, n, p) and (n, n, k/n2) are (a, ε)-acceptable, then

ProbD
( n∑

i=1

(Si − nΛ)(Ti − nΛ)(15)
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= O(n−1/2+2ε)Λ(1− Λ)n2
)
= 1− õ(1)

when D is �Gp or �Gk.
(d) If m = n, (n, n, λn(t)) is (a, ε)-acceptable and t ∈ Inn is ε-regular, then

(15) holds when T = t and D is �Gt.

Proof. Write R =
∑m

i=1(Si−nΛ)2. For i = 1, . . . ,m and j = 1, . . . , n, let Xij

be the indicator for an edge from ui to vj . Define Δii′jj′ = (Xij−Xi′j)(Xij′−
Xi′j′). Then we have

1

2m

m∑
i,i′=1

n∑
j,j′=1

Δii′jj′ =
1

m

m∑
i,i′=1

n∑
j,j′=1

XijXij′ −
1

m

m∑
i,i′=1

n∑
j,j′=1

XijXi′j′

=

m∑
i=1

S2
i −

1

m

( m∑
i=1

Si

)2
= R.(16)

When D is either Gp or Gt, Xij is independent of Xi′j′ if j �= j′, and ED(Xij)
is independent of i. This shows that ED(Δii′jj′) = 0 for j �= j′, leaving us
with

ED(R) =
1

2m

m∑
i,i′=1

n∑
j=1

ProbD(Xij �= Xi′j).

This gives

EGp
(R) = pq(m− 1)n,

EGt
(R) =

1

m

n∑
j=1

tj(m− tj).

Now define R∗ =
∑m

i=1min{(Si − nΛ)2,m1+2ε}. If S is ε-regular and Sj

is changed by 1 for some j, which changes Λ by 1/mn, then min{(Si −
nΛ)2,m1+2ε} changes by O(m1/2+ε) for i = j and by O(m−1/2+ε) for i �= j.
Consequently, R∗ changes by O(m1/2+ε). Applying Theorem 3.1, we find
that

ProbD
(
|R∗ − ED(R

∗)| ≥ 1
2m

1+εn1/2+ε/2
)
= õ(1)

for D = Gp. It also holds for D = Gt, using Theorem 3.3 in the same way.
Now Theorem 3.4 shows that ProbD(R �= R∗) = õ(1), which implies that

ED(R
∗) = ED(R) + õ(1). Therefore we can argue

ProbD
(
|R−ED(R)| ≥ m1+εn1/2+ε/2

)
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≤ ProbD(R �= R∗) + ProbD
(
|R∗ − ED(R)| ≥ m1+εn1/2+ε/2

)
≤ õ(1) + ProbD

(
|R∗ − ED(R

∗)| ≥ m1+εn1/2+ε/2 + õ(1)
)

= õ(1).

We also have that Λ is fixed at the value λm(t) = (mn)−1
∑n

j=1 tj in Gt and
that

ProbGp

(
|Λ− p| ≥ n−1+2ε

)
= õ(1),

by (12). From these bounds, inequality (13) follows for Gp and Gt, and (14)
follows for Gp by symmetry. By choosing p = k/mn and noting that Gk is a
slice of size n−O(1) of Gp, the theorem is proved for Gk too.

For D = �Gp, �Gk, �Gt, the proofs of (13) and (14) follow the same pat-
tern. Since (16) still holds, we can note that E�Gp

(Δii′jj′) = EGp
(Δii′jj′) and

E�Gt
(Δii′jj′) = EGt

(Δii′jj′) unless {j, j′} ⊆ {i, i′}, to infer that E�Gp
(R) =

EGp
(R) + O(n) and E�Gt

(R) = EGt
(R) + O(n). This is enough to ensure

that the rest of the proof continues in the same way. (For the record,
E�Gp

(R) = pq(n− 1)2.)

We now prove part (d); take D = �Gt, with t being ε-regular and (n, n,
λn(t)) being (a, ε)-acceptable. We have

E�Gt
(Si) =

∑
j �=i

tj
n− 1

=
λn2

n− 1
− ti

n− 1
,

from which it follows that

E�Gt

( n∑
i=1

(Si − λn)(ti − λn)
)
= −

∑n
j=1(tj − λn)2

n− 1
= O(n1+2ε).

In the notation of Theorem 3.3 set Aj = [n]\{j} and aj = tj for each j ∈ [n].
Then in the probability space X, Xj is the set of indices of vertices incident

with vj in �Gt. Note Si = |{j : ui ∈ Xj}| and two sets being minimally
different in the j-th component corresponds to two graphs in which one of
the tj edges incident with vertex vj is incident with different vertices in U .
This means, as t is ε-regular, cj = O(n1/2+ε) for each j and we can apply
Theorem 3.3 to conclude that (d) holds.

In the case of D = �Gp, Theorem 3.4 says that T is ε-regular with prob-

ability 1 − õ(1), so (c) is true for �Gp. Finally, �Gk is a substantial slice of �Gp

if p = k/n2, so (c) holds for �Gk too.
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4. Proofs of the main theorems

In this section we will give the proofs of the theorems and corollary stated in
Section 1.5. The bases for our analysis are the following enumerative results
of Canfield, Greenhill and McKay [6, 10]. Also see Barvinok and Hartigan [2]
for an overlapping result.

Theorem 4.1 ([6, 10]). Let a, b > 0 be constants such that a+ b < 1
2 . Then

there is a constant ε0 = ε0(a, b) > 0 such that the following is true for any
fixed ε with 0 < ε ≤ ε0. If (s, t) is ε-regular, then

G(s, t) =

(
mn

λmn

)−1 m∏
i=1

(
n

si

) n∏
j=1

(
m

tj

)

× exp

(
−1

2

(
1−

∑m
i=1 (si − λn)2

λ(1− λ)mn

)(
1−

∑n
j=1 (tj − λm)2

λ(1− λ)mn

)
+O(n−b)

)
.

Moreover, if m = n, then

�G(s, t) =

(
n2 − n

λn2

)−1 n∏
i=1

(
n−1

si

) n∏
j=1

(
n−1

tj

)

× exp

(
−1

2

(
1−

∑n
i=1 (si − λn)2

λ(1− λ)n2

)(
1−

∑n
j=1 (tj − λn)2

λ(1− λ)n2

)

−
∑n

i=1 (si − λn)(ti − λn)

λ(1− λ)n2
+O(n−b)

)
.

We first consider Gp. Suppose that a, b > 0 are constants with a+ b < 1
2 ,

and that (m,n, p) is (a, ε)-acceptable. According to Theorems 3.4–4.1 and
equation (12), there is an event B ⊆ Im,n such that ProbGp

(B) = õ(1) and,
for (s, t) /∈ B,

|K − pmn| ≤ mn2ε,(17)

ProbGp
(S = s ∧T = t) = pkqmn−k exp

(
O(n−b)

)(mn

k

)−1 m∏
i=1

(
n

si

) n∏
j=1

(
m

tj

)
,

= p2kq2mn−2k
√

2πpqmn

m∏
i=1

(
n

si

) n∏
j=1

(
m

tj

)
(18)

× exp

(
(k − pmn)2

2pqmn
+O(n−b)

)
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for
∑

i si =
∑

j tj = k, where the last step follows by Stirling’s formula and,
as always, we are assuming that ε is sufficiently small.

We wish to show that (18) closely matches the probability in Vp. Define
P (p, s, t) = ProbBp

(S = s ∧T = t). By the definition of Vp, we have

ProbVp
(S = s ∧T = t) = V (p)−1

∫ 1

0
Kp(p

′)P (p′, s, t) dp′.

By Section 1.4 item 2, we have

(19)
P (p′, s, t)

P (p, s, t)
=

ProbIp

(∑m
i=1 Si =

∑n
j=1 Tj

)
ProbIp′

(∑m
i=1 Si =

∑n
j=1 Tj

)
(
p′

p

)2k(1− p′

1− p

)2mn−2k

.

We will divide the integral into three parts. Define Jp = [p − n−1+3ε,
p+ n−1+3ε]. By Lemma 2.1 and (17), for p′ ∈ Jp and (s, t) /∈ B, we have

(20)
P (p′, s, t)

P (p, s, t)
= exp

(
2(k − pmn)

pq
(p′ − p)− mn

pq
(p′ − p)2 +O(n−1/2)

)
,

which gives

∫
Jp

Kp(p
′)P (p′, s, t) dp′ = 2−1/2P (p, s, t) exp

(
(k − pmn)2

2pqmn
+O(n−1/2)

)
.

To bound the integral outside Jp, note that (p
′/p)2k

(
(1−p′)/(1−p)

)2mn−2k
is

increasing for p′ ≤ p−n−1+3ε and decreasing for p ≥ p+n−1+3ε. Also, since
the mean square of a set of numbers is at least as large as the square of their
mean, we can infer from (5) that ProbIp′

(∑m
i=1 Si =

∑n
j=1 Tj

)
≥ (mn+1)−1

for all p′. Since mn õ(1) = õ(1), we obtain from (19) that

∫
[0,1]\Jp

Kp(p
′)P (p′, s, t) dp′ = õ(1)P (p, s, t).

Recalling Lemma 2.2, we conclude that

V (p)−1

∫ 1

0
Kp(p

′)P (p′, s, t) dp′

= 2−1/2P (p, s, t) exp

(
(k − pmn)2

2pqmn
+O(n−1/2)

)
,

which matches (18) when the value of P (p, s, t) given by Lemma 2.1 is
substituted. This completes the proof of the first claim of Theorem 1.1(a).
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The next two claims follow on summing the first claim over all (s, t). For
the variance, we can apply the formula for the expectation to argue

VarGp
(X) = min

μ∈R
EGp

(X − μ)2

= min
μ∈R

(
õ(1)max

(s,t)
(X − μ)2 + (1 +O(n−b))EVp

(X − μ)2
)

= min
μ∈R

(
õ(1)max

(s,t)
X2 + (1 +O(n−b))EVp

(X − μ)2
)

= õ(1)max
(s,t)

X2 + (1 +O(n−b))min
μ∈R

EVp
(X − μ)2

= õ(1)max
(s,t)

X2 + (1 +O(n−b))VarVp
(X).

For the third line we have used the obvious fact that the minimum in the
first line occurs somewhere in the interval [minX,maxX].

The proof of Theorem 1.1(b) is the same. To prove Theorem 1.1(c), note
that according to Theorems 3.4, 3.5 and 4.1, there is an event B ⊆ Im,n such
that ProbGk

(B) = õ(1) and, for (s, t) /∈ B,

ProbGk
(S = s ∧T = t) = exp

(
O(n−b)

)(mn

k

)−2 m∏
i=1

(
n

si

) n∏
j=1

(
m

tj

)
,

which matches ProbBk
(S = s ∧ T = t) up to the error term. Similarly for

Theorem 1.1(d).
Theorem 1.3 follows from a similar argument, on noting that the ε-regu-

larity of t implies

n∑
j=1

(Tj − λm)2 ≤ n2+2ε ≤ m4ελ(1− λ)mn.

Finally, we prove Corollary 1.2 for D = Gp, which is representative of
the four cases. In view of Theorem 1.1, it will suffice to prove that

(21) ProbVp
(E) ≤ õ(1) + o(1)

√
ProbBp

(E)

if ProbBp
(E) → 0. Define

y = min
{
nε,

√
− log(ProbBp

(E))− 1
2 log(− log(ProbBp

(E)))
}

and
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Ê =
{
(s, t) ∈ E : |K − pmn| ≤ y

√
pqmn

}
.

By a suitable normal approximation of the binomial distribution, such as [27,
Thm. 3], ProbGp

(E \ Ê) = O(e−y2/2/y), so by Theorem 1.1, ProbVp
(E \ Ê) =

õ(1) +O(e−y2/2/y). Also note that

(22)

∫
|p′−p|>y

√
pq/2mn

Kp(p
′) dp′ = O(e−y2/2/y).

Therefore, since V (p)−1 = 1 + õ(1) by Lemma 2.2,

ProbVp
(E) = õ(1) +O(e−y2/2/y) +

∫
|p′−p|≤y

√
pq/2mn

Kp(p
′) ProbBp′ (Ê) dp.

Now note that, by (20), for |p′− p| ≤ y
√

pq/2mn and |k− pmn| ≤ y
√
pqmn

we have

ProbBp′ (S = s ∧T = t)

ProbBp
(S = s ∧T = t)

≤ exp

(
2(k − pmn)

pq
(p′ − p)− mn

pq
(p′ − p)2 +O(n−1/2)

)

≤ (1 +O(n−1/2))ey
2/2

and so

ProbBp′ (Ê) ≤ (1 +O(n−1/2))ey
2/2 ProbBp

(Ê).

Since
∫
Kp(p

′) dp < 1, we have proved that

ProbVp
(E) ≤ õ(1) +O(e−y2/2/y) + (1 + o(1))ey

2/2 ProbBp
(E),

which gives (21) when the value of y is substituted. To prove the statement
for the case D = Bp, redefine y and Ê by replacing each instance of Bp with
Vp. and then proceed in the same fashion (although in this case because
of the direction of the inequality it is enough to note that the tails of the
integral in (22) are positive; we do not need to show an upper bound as in
the above proof for D = Gp).

5. Concluding remarks

A theorem similar to Theorem 4.1 holds also in the sparse domain. This was
shown by Greenhill, McKay and Wang in the case that (maxi si)(maxj tj) =
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o
(
(
∑

i si)
2/3

)
[11]. That theorem can be used to develop a parallel theory

of degree sequences in that domain, though some of the methods used in

this paper must be replaced. However the lack of a precise enumeration in

the gap between the sparse domain and the dense domain of Theorem 4.1

currently thwarts a theory which spans both the sparse and dense domains.
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