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The classification of 231-avoiding permutations by
descents and maximum drop

Matthew Hyatt and Jeffrey Remmel

We study the number of 231-avoiding permutations of length n
with j-descents and maximum drop of less than or equal to k,

which we denote by a
(k)
n,j . We show that a

(k)
n,j also counts the number

of Dyck paths of length 2n with n − j peaks and height ≤ k + 1,
and the number of ordered trees with n edges, j+1 internal nodes,
and height ≤ k + 1. We show that the generating functions for

the a
(k)
n,js with k fixed satisfy a simple recursion. We also use the

combinatorics of ordered trees to prove new explicit formulas for

a
(k)
n,j and prove a simple recursion for the a

(k)
n,js.
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1. Introduction

In [1], Chung, Claesson, Dukes, and Graham studied generating functions for
permutations according to the number of descents and the maximum drop.
Here if σ = σ1 . . . σn is a permutation in the symmetric group Sn, then
we say that σ has drop at i if σi < i and σ has a descent at i if σi > σi+1.
MacMahon proved that the number of permutations with k descents is equal
to the number of permutations with k drops. Let [n] = {1, 2, . . . , n} and for
any 1 ≤ i < j ≤ n, let [i, j] = {s ∈ [n] : i ≤ s ≤ j}. We let

DES(σ) = {i ∈ [n] : σi > σi+1}, des(σ) = |DES(σ)|,

and

maxdrop(σ) = max{i− σi : i ∈ [n]}.

We let B(k)
n denote the set of permutations σ ∈ Sn such that maxdrop(σ) ≤

k.
There is another interpretation of B(k)

n in terms of the classic bubble sort,
which we denote by bubble. (See [8] for more on the bubble sort operator.)
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Let bsc(σ) = min{i : bubblei(σ) = id}, i.e. bsc(σ) is the minimum number

of times that bubble must be applied to σ in order to reach the identity

permutation. An inductive argument shows that bsc(σ) = maxdrop(σ), thus

B(k)
n is the set of permutations in Sn which can be sorted by applying bubble k

times. Additionally, the permutations in B(k)
n are in bijective correspondence

with certain juggling sequences (see [1]).

Let

B(k)
n (x) =

∑
σ∈B(k)

n

xdes(σ) =

n−1∑
j=0

b
(k)
n,jx

j ,

where b
(k)
n,j denotes the number permutations in Sn (not necessarily avoiding

the pattern 231) with j-descents, and maximum drop less than or equal to

k. Note that for k ≥ n − 1, B(k)
n = Sn and B

(k)
n (x) becomes the Eulerian

polynomial

Bn(x) =
∑
σ∈Sn

xdes(σ).

For convenience we let B0(x) = 1. In [1], the authors prove the following

generating function formula

B(k)(x, t) =
∑
n≥0

B(k)
n (x)tn

=
1 +

∑k
r=1

(
Br(x)−

∑r
i=1

(
k+1
i

)
(x− 1)i−1Br−i(x)

)
tr

1−
∑k+1

i=1

(
k+1
i

)
ti(x− 1)i−1

.

We now turn our attention to pattern avoidance. Given a sequence

σ = σ1 . . . σn of distinct integers, let red(σ) be the permutation found by

replacing the i-th smallest integer that appears in σ by i. For example, if

σ = 2754, then red(σ) = 1432. Given a permutation τ = τ1 . . . τj in the

symmetric group Sj , we say that the pattern τ occurs in σ = σ1 . . . σn ∈ Sn

provided there exists 1 ≤ i1 < · · · < ij ≤ n such that red(σi1 . . . σij ) = τ . We

say that a permutation σ avoids the pattern τ if τ does not occur in σ. Let

Sn(τ) denote the set of permutations in Sn which avoid τ . In the theory of

permutation patterns (see [6] for a comprehensive introduction to the area),

τ is called a classical pattern. Throughout the rest of this paper we focus on

permutations avoiding the pattern 231. Thus we let

A(k)
n = Sn(231) ∩ B(k)

n .
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Thus A(k)
n is the set of σ ∈ Sn such that maxdrop(σ) ≤ k and σ avoids

231. The set A(k)
n can also be interpreted in terms of sorting algorithms.

The 231-avoiding permutations are precisely the permutations which can be
sorted by one application of the stack sort, which we denote by stack (see
[7]). So

A(k)
n = {σ ∈ Sn : bubblek(σ) = id, and stack(σ) = id},

i.e. the permutations in Sn which can be sorted by one stack sort, but require
at most k bubble sorts to be sorted.

The main goal of this paper is to study the generating functions

(1) A(k)(x, t) = 1 +
∑
n≥1

A(k)
n (x)tn

where

A(k)
n (x) =

∑
σ∈A(k)

n

xdes(σ) =

n−1∑
j=0

a
(k)
n,jx

j .

Note that the only permutation σ ∈ Sn such that maxdrop(σ) = 0 is the

identity permutation σ = 123 . . . n which is 231-avoiding. Thus A
(0)
n (x) = 1

for all n ≥ 1 so that

(2) A(0)(x, t) =
1

1− t
.

Our key theorem is to show that generating functions A(k)(x, t) for k ≥ 1
satisfy the following simple recursion.

Theorem 1. For all k ≥ 1,

(3) A(k)(x, t) =
1

1− t+ tx− txA(k−1)(x, t)

where

A(0)(x, t) =
1

1− t
.

Theorem 1 allowed us to explicitly compute the values of a
(k)
n,j for small

values of j, k, and n, which lead us to conjecture and prove a number of

simple formulas for a
(k)
n,j in certain special cases. For example, one can show

that

a
(k)
n,1 =

(
n

2

)
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for all n ≥ 2 and k ≥ 1, and

a
(k)
n,2 =

(n− 1)2((n− 1)2 − 1)

12

for n ≥ 3 and k ≥ 2. More generally, we shall show that for all n > j ≥ 1

and all k ≥ j,

a
(k)
n,j = N(n, n− j) =

1

n

(
n

j

)(
n

j + 1

)
.

Here the N(n, j)s are the Narayana numbers which count the number of

Dyck paths of length 2n with j peaks, and also count the number of ordered

trees n edges and j leaves. This suggested that the numbers a
(k)
n,j should

also have natural combinatorial interpretations in terms of Dyck paths and

ordered trees. In fact, we construct bijections to show that a
(k)
n,j is the number

of ordered trees with height less than or equal to k + 1, n edges, and j + 1

internal nodes and is the number of Dyck paths of length 2n with n − j

peaks and height less than or equal to k + 1.

Kemp [5] gave a general formula for the number of ordered trees with

n edges, j leaves, and height less than or equal to k, which we denote by

N(n, j, k) (which is also the number of Dyck paths of length 2n with j peaks

and height less than or equal to k). Thus we have a general formula for a
(k)
n,j .

However, in many cases, Kemp’s formula is unnecessarily complicated so

that we use the combinatorics of ordered trees to derive a new recurrence

for the numbers N(n, j, k) and a
(k)
n,j .

Theorem 2. For all k ≥ 2 and for all n ≥ j ≥ 1 we have

a
(k−1)
n,n−j = N(n, j, k) =

n−j∑
i=0

N(n− j, i, k − 1)

(
2n− j − i

2n− 2j

)
,

where N(n, j, 1) = 1 if n = j, and is zero otherwise.

We note that the recurrence in Theorem 2 is different from the recur-

rence implied by Theorem 1. By iterating the recurrence in Theorem 2,

we obtain an explicit formula for N(n, j, k) which looks strikingly differ-

ent than the formula of Kemp. Specifically, the formula below is a positive

sum of products of binomials coefficients, whereas Kemp’s formula contains

negative terms.

Corollary 1. For n ≥ j ≥ 0 and k ≥ 3 we have
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N(n, j, k) = a
(k−1)
n,n−j =

∑
n−j≥ik−2≥···≥i1≥0

(
k−2∏
m=0

(
im+2 + im
2im+1

))
,

where i0 := 0, ik−1 := n− j, ik := n.

Remark 1. Our attempts to simplify the expression on the right hand side
of Corollary 1 have been unsuccessful. An interesting problem would be to
simplify this expression in a meaningful way.

The outline of this paper is as follows. In section 2, we shall prove The-

orem 1 as well as provide a combinatorial proof of the fact that a
(1)
n,r =

(
n
2r

)
for all r ≥ 1 and n ≥ 2r. In section 3, we shall prove our alternative combi-

natorial interpretations of a
(k)
n,j in terms of ordered trees and Dyck paths. In

section 4, we shall use the combinatorics of ordered trees to prove formulas

for a
(k)
n,j , and provide the proofs of Theorem 2 and Corollary 1. Finally, in

section 5, we shall briefly discuss some combinatorial identities that arise by
comparing Kemp’s formula and our formulas.

2. Proof of Theorem 1

In this section, we shall prove Theorem 1. We accomplish this by first proving
the following claim for n ≥ 2,

(4) A(k)
n (x) = A

(k)
n−1(x) + x

n−1∑
i=1

A
(k)
i−1(x)A

(k−1)
n−i (x).

The proof proceeds by decomposing the 231-avoiding permutations σ =
σ1 . . . σn by the position of n in σ. Classically each σ ∈ Sn(231) has the
structure pictured in Figure 1. That is, in the graph of σ, the elements
to the left of n, Li(σ), have the structure of a 231-avoiding permutation,
the elements to the right of n, Ri(σ), have the structure of a 231-avoiding
permutation, and all the elements in Li(σ) lie below all the elements in
Ri(σ). Note that the number of 231-avoiding permutations in Sn is the
Catalan number Cn = 1

n+1

(
2n
n

)
and the generating function for the Cn’s is

given by

(5) C(t) =
∑
n≥0

Cnt
n =

1−
√
1− 4t

2t
=

2

1 +
√
1− 4t

.

Suppose that k ≥ 1 and n ≥ 2. Let A(k)
n (i) denote the set of σ ∈ A(k)

n

such that σi = n. Clearly if σ ∈ A(k)
n (i), then Li(σ) must be a permutation in
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Figure 1: The structure of 231-avoiding permutations.

Si−1(231) such that maxdrop(Li(σ)) ≤ k. Similarly, τ = red(Ri(σ)) must be
a permutation in Sn−i(231) such that maxdrop(τ) ≤ k − 1. That is, we can
consider Ri(σ) as a map from {(i+1, . . . , i+(n− i)} into {(i−1+1, . . . , (i−
1) + (n− i)}. Thus for j = 1, . . . , n− i, a drop j − τj in τ corresponds to a
drop i+ j − (i− 1+ τj) = i+ j − σi+j − 1 in σ. Thus the drop at position j
in τ is one less than the drop at position i+ j in σ. Now if i ≤ n− 1, then
σi = n will start a descent in σ. Thus the possible choices for Li(σ) will

contribute a factor of A
(k)
i−1(x) to

∑
σ∈A(k)

n (i) x
des(σ) and the possible choices

for Ri(σ) will contribute a factor of A
(k−1)
n−i (x) to

∑
σ∈A(k)

n (i) x
des(σ). Thus the

contribution of the permutations in A(k)
n (i) to A

(k)
n (x) is xA

(k)
i−1(x)A

(k−1)
n−i (x).

Finally, it is easy to see that the contribution of the permutations in A(k)
n (n)

to A
(k)
n (x) is just A

(k)
n−1(x). The claim in (4) follows from these facts.

Note that A
(k)
1 (x) = 1 so that if we define A

(k)
0 (x) = 1, then (4) also

holds for n = 1. Multiplying both sides of (4) by tn and summing for n ≥ 1,
we see that for k ≥ 1,

A(k)(x, t)− 1 = tA(k)(x, t) + t
∑
n≥1

tn−1x

n−1∑
i=1

A
(k)
i−1(x)A

(k−1)
n−i (x)

= tA(k)(x, t) + txA(k)(x, t)(A(k−1)(x, t)− 1).

Solving this equation for A(k)(x, t), we see that
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(6) A(k)(x, t) =
1

1− t+ xt− xtA(k−1)(x, t)
,

which proves Theorem 1.
One can use Mathematica to calculate the first few of the generating

functions A
(k)
231(x, t).

A(0)(x, t) =
1

1− t
,

A(1)(x, t) =
1− t

1− 2t+ (1− x)t2
,

A(2)(x, t) =
1− 2t+ (1− x)t2

1− 3t+ (3− 2x)t2 − (1− x)2t3
,

A(3)(x, t) =
1− 3t+ (3− 2x)t2 − (1− x)2t3

1− 4t+ 3(2− x)t2 − 2(2− 3x+ x2)t3 + (1− x)3t4
,

A(4)(x, t) =

1− 4t+ 3(2− x)t2 − 2(2− 3x+ x2)t3 + (1− x)3t4

1− 5t+(10− 4x)t2 − (10− 12x+ 3x2)t3 − (1− x)2(2x− 5)t4 − (1− x)4t5
.

By setting x = 1, we can obtain information on the asymptotic growth

rate of the cardinality of A(k)
n . For k = 0, 1, it is easy to extract the exact

value of |A(k)
n | for all n, namely |A(0)

n | = 1 and |A(1)
n | = 2n−1. For k =

2, 3, 4, we give the exponential growth rate of |A(k)
n |. Following Flajolet and

Sedgewick [2], let

|A(k)
n | �� Kn if and only if lim sup

n→∞
|A(k)

n |1/n = K.

By examining the modulus of the poles ([2, Theorem IV.7]), we find that

|A(2)
n | ��

(
3 +

√
5

2

)n

, |A(3)
n | �� 3n, |A(4)

n | �� (3.247)n.

Note that the denominator of A(4)(1, t) is a cubic, and we have given a
numeric approximation of the reciprocal of the modulus of the root closest
to the origin.

It turns out that all the coefficients of the generating function A(1)(x, t)

are binomial coefficients. Since |A(1)
n | = 2n−1, this suggested a bijective

explanation for the coefficients of A(1)(x, t).
Indeed, let P([n]) denote the set of all subsets of [n], and Pe([n]) denote

the set of all elements of P([n]) that have even cardinality. We define a
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map φ : Pe([n]) → A(1)
n as follows. First, let φ(∅) = 12 . . . n. Now if S =

{s1, s2, . . . , s2r−1, s2r} ∈ Pe([n]) where 1 ≤ s1 < s2 < · · · < s2r−1 < s2r ≤ n,
then we consider the intervals Ij = [s2j−1, s2j ] for j = 1, . . . , r. We define

φ(S) = τS = τS1 . . . τSn

to be the permutation in Sn such that τSi = i if i is not in one of the intervals
I1, . . . , Ir, and

τSs2j−1
. . . τSs2j = s2js2j−1(s2j−1 + 1) . . . (s2j − 1).

For example, if n = 12, and S = {1, 3, 6, 8, 10, 12}, then I1 = [1, 3], I2 =
[6, 8], and I3 = [10, 12]. Thus

τS = 3 1 2 4 5 8 6 7 9 12 10 11.

Theorem 3. For all r ≥ 1 and n ≥ 2r, the map φ : Pe([n]) → A(1)
n is a

bijection satisfying |S| = 2 des(φ(S)). Consequently

A(1)
n (x)|xr = a(1)n,r =

(
n

2r

)
.

Proof. On each of the intervals Ij , τS has maximum drop 1 so that
maxdrop(τS) ≤ 1 for all S ∈ Pe([n]). Moreover it easy to see that τS is 231-
avoiding and that we can recover S from τS . Thus φ is a one-to-one map from

Pe([n]) into A(1)
n . However, since we know that |Pe([n])| = 2n−1 = |A(1)

n |,
the map φ must also be a surjection. Thus φ is a bijection from Pe([n]) onto

A(1)
n .
Since each interval Ij introduces exactly one descent in τS , it follows that

for all S ∈ Pe([n]), we have des(φ(S)) = |S|
2 . Thus the number of σ ∈ A(1)

n

such that des(σ) = r equals the number of subsets S of [n] of size 2r. That

is, A
(1)
n (x)|xr =

(
n
2r

)
.

3. Ordered trees of bounded height

We begin this section by showing there is a bijective correspondence be-
tween permutations in Sn(231) with a given maximum drop and a given
number of descents, to a certain class of trees. An ordered tree is a rooted
tree where the children of each vertex are ordered, so for example we can
refer to the leftmost child of a vertex. We use the convention of placing the
root at the top of the tree. Micheli and Rossin show there is a bijection
between 231-avoiding permutations and ordered trees [9]. Given an ordered
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Figure 2: An ordered tree T (left), T with edges labeled by a postorder
traversal (right).

tree T , let φ(T ) be the word obtained by first labeling the edges of T by
a postorder traversal, then reading the labels by a preorder traversal. For
example, consider the ordered tree T in Figure 2. When we read the labels
by a preorder traversal, we obtain the permutation φ(T ) (which we write in
two-line notation)

φ(T ) =

[
1 2 3 4 5 6 7 8 9 10 11 12
5 1 4 2 3 7 6 12 11 8 9 10

]
.

We show that this same bijection also carries additional information
about the descents and maximum drop of 231-avoiding permutations. The
level of a vertex is the length of the unique path from that vertex to the
root. The height of an ordered tree is the maximum of the levels of all
vertices in the tree. An internal node is a vertex which has at least one
child. Let T (k)

n,j denote the set of all ordered trees having n edges, height

less than or equal to k, and j internal nodes. Let A(k)
n,j denote the set of

permutations in σ ∈ Sn(231) with des(σ) = j and maxdrop(σ) ≤ k, thus∣∣∣A(k)
n,j

∣∣∣ = A
(k)
n (x)|xj = a

(k)
n,j .

Theorem 4. The map φ : T (k)
n,j → A(k−1)

n,j−1 is a bijection for all n, k, j ≥ 1,
thus

a
(k)
n,j =

∣∣∣T (k+1)
n,j+1

∣∣∣ .
In other words a

(k)
n,j is equal to the number of ordered trees with n edges,

j + 1 internal nodes, and height less than or equal to k + 1.

Proof. Given T ∈ T (k)
n,j , let φ(T ) = σ. Since Micheli and Rossin showed that

σ ∈ Sn(231) and φ is a bijection (see [9]), our Theorem is proved if we can
show that des(σ) = j − 1 and maxdrop(σ) ≤ k − 1.
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Figure 3: An ordered tree with edge labeled σi directly above a leaf x at
level m.

First we show that des(σ) = j − 1. Given any edge of T , let σi be its

label from the postorder traversal, and let x be the vertex at the bottom of

this edge.

If x is an internal node, then σi+1 is the label on the leftmost edge

immediately below x. Since the labeling is done with a postorder traversal,

we have σi > σi+1.

If x is not an internal node (i.e. a leaf), then either it is the case that x

is the rightmost leaf of T in which case the label on the edge is σn or there

is a vertex y with subtrees Y1 and Y2 below y such that σi is a label on an

edge of Y1, σi+1 is a label on an edge of Y2, and Y1 is to the left of Y2 so

that σi < σi+1.

Since every vertex other than the root is at the bottom of a unique edge,

σ has j − 1 descents.

Next we show that maxdrop(σ) ≤ k − 1. Suppose σi < i, and let x be

the vertex at the bottom of the edge labeled σi.

If x is an internal node, then σi > σi+1 as noted above, thus there is a

larger drop size at position i+ 1 in σ. Since we want to find the maximum

drop size, we need only consider the case that x is a leaf. Thus assume that

x is a leaf and let m be the level of x. On the path from x to the root,

there are m (possibly empty) subtrees along the left side of the path, as in

Figure 3. Let |Tr| denote the number of edges in a tree Tr. Then we have
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|T1|+ |T2|+ · · ·+ |Tm| = σi − 1,

since the edges in the subtrees T1, T2, . . . , Tm are precisely the edges which

precede the edge labeled σi in the postorder traversal. The edges in the

subtrees T1, T2, . . . , Tm along with the edges in the path from x to the root

are precisely the edges which precede the edge labeled σi in the preorder
traversal, therefore

i = |T1|+ |T2|+ · · ·+ |Tm|+m = σi +m− 1.

Thus σ has a drop of size i−σi = m− 1 at position i. Since m ≤ k, we have

maxdrop(σ) ≤ k − 1.

The set of trees in T (k)
n,j are also in bijection with certain Dyck paths.

A Dyck path of length 2n is a path in the plane that starts at the point

(0, 0) and ends at the point (2n, 0). The path may consist only of up-steps

(1, 1) and down-steps (1,−1), and the path always stays on or above the

x-axis. Let D2n denote the set of Dyck paths of length 2n. Next we describe
a couple statistics for Dyck paths. The height of a Dyck path is the highest

y-coordinate attained in the path. A peak is a point in a Dyck path which is

immediately preceded by an up-step, and immediately followed by a down-

step. Let D(k)
2n,j denote the set of Dyck paths of length 2n with j peaks and

height less than or equal to k. The standard bijection from ordered trees to

Dyck paths preserves height, and converts each leaf to a peak. A tree with

n edges and j + 1 internal nodes has n + 1 total nodes, thus n − j leaves.

From this it follows that
∣∣∣T (k)

n,j+1

∣∣∣ = ∣∣∣D(k)
2n,n−j

∣∣∣.
Next we provide a direct bijection from permutations in A(k)

n,j to Dyck

paths in D(k+1)
2n,n−j . However, in subsequent sections of this paper we choose

to use ordered trees to obtain enumeration results for the numbers a
(k)
n,j .

Theorem 5. For all n ≥ 1 and all j, k ≥ 0, there is a bijection φn : A(k)
n,j →

D(k+1)
2n,n−j. In other words, a

(k)
n,j is equal to the number of Dyck paths of length

2n with n− j peaks, and height less than or equal to k + 1.

Proof. First we need to define the lifting of a path P ∈ D2n to path

L(P ) ∈ D2n+2. Let P = (p1, . . . , p2n) where each pi is either an up-step

or a down-step. Then L(P ) is obtained from P by appending an up-step
at the start of P , and a down-step at the end of P . That is, L(P ) =

((1, 1), p1, . . . , p2n, (1,−1)). An example is shown in Figure 4. Also, if P1 ∈
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Figure 4: The lifting of a Dyck path.

Figure 5: Values of φn up to n = 3.

D2n and P2 ∈ D2k, then we let P1P2 ∈ D2n+2k denote the path which starts

with P1 followed by P2.

For n = 1, we simply define φ1(σ) = ((1, 1), (1,−1)), i.e. and up-step

followed by a down-step. For n > 1 we define φn recursively by cases as

follows.

Case 1. σn = n.

Then φn(σ) = P1P2 where P1 = φn−1(σ1 . . . σn−1) and P2 = ((1, 1), (1,−1)).

Case 2. σ1 = n.

Then φn(σ) = L(φn−1(σ2 . . . σn)).

Case 3. σi = n where 1 < i < n. In this case, φn(σ) = P1P2 where

P1 = φi−1(red(σ1 . . . σi−1)) and P2 = L(φn−i(red(σi+1 . . . σn))).

The first few values of this map are pictured in Figure 5, where σ is on

the left and φn(σ) is on the right.
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Since a
(k)
n,j = |T (k+1)

n,j+1 | = |D(k+1)
2n,n−j |, it suffices to show that φn is well-

defined and injective. We induct on n. The base case n = 1 is obvious. Now
let n > 1 and assume the theorem holds for all m < n. Let σ = σ1 . . . σn ∈
A(k)

n,j , and let σi = n. Since σ avoids the pattern 231, we have σ1 . . . σi−1 ∈
A(k)

i−1, and red(σi+1 . . . σn) ∈ A(k−1)
n−i (see also the proof of Theorem 1). To

show φn is well-defined, we consider the three cases for i in the definition of
φn.

Case 1. σn = n.
In this case, φn(σ) = P1P2 where P1 = φn−1(σ1 . . . σn−1) and

P2 = ((1, 1), (1,−1)). Since n − 1 /∈ DES(σ), we have σ1 . . . σn−1 ∈ A(k)
n−1,j .

By the inductive hypothesis we have P1 ∈ D(k+1)
2n−2,n−j−1. Since appending P2

to P1 increases the length by two, increases the number of peaks by one,

and does not change the height, it follows that P1P2 ∈ D(k+1)
2n,n−j .

Case 2. σ1 = n.
In this case, φn(σ) = L(φn−1(σ2 . . . σn)). Since 1 ∈ DES(σ), we have

σ2 . . . σn ∈ A(k−1)
n−1,j−1. By induction, φn−1(σ2 . . . σn) ∈ D(k)

2n−2,n−j . Since lift-
ing a path increases the height by one, increases the length by two, and adds

no peaks, it follows that L(φn−1(σ2 . . . σn)) ∈ D(k+1)
2n,n−j .

Case 3. σi = n where 1 < i < n.
In this case, φn(σ) = P1P2 where

P1 = φi−1(red(σ1 . . . σi−1)),

and

P2 = L(φn−i(red(σi+1 . . . σn))).

Note that red(σ1 . . . σi−1) = σ1 . . . σi−1. Since i ∈ DES(σ) we have

σ1 . . . σi−1 ∈ A(k)
i−1,j1

, and red(σi+1 . . . σn) ∈ A(k−1)
n−i,j2

, where j1 + j2 + 1 = j.
Then

φn−i(red(σi+1 . . . σn)) ∈ D(k)
2n−2i,n−i−j2

,

and

P2 = L(φn−i(red(σi+1 . . . σn))) ∈ D(k+1)
2n−2i+2,n−i−j2

.

Also, P1 ∈ D(k+1)
2i−2,i−1−j1

. It follows that P1P2 ∈ D(k+1)
2n,n−j1−j2−1 as desired since

n− j1 − j2 − 1 = n− j.

This proves φn is well-defined.
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To prove injectivity let σ, π ∈ A(k)
n,j , and suppose σ 	= π. If σi = πi = n

for some i, then for each case that i falls into in the definition of φn, one can
easily use the inductive hypothesis to prove that φn(σ) 	= φn(π). So assume
σi1 = n and πi2 = n where i1 < i2. If 1 ≤ i1 < i2 ≤ n, then it is easy to
see that φn(π) hits the x-axis after 2i2− 2 steps while φn(σ) does not. Thus
φn(σ) 	= φn(π).

4. Recursions and closed form expressions for a
(k)
n,j

In this section we prove some recursions and closed form expressions for

a
(k)
n,j . For certain cases of the values of n, j, k, we can find nice closed form

expressions for these numbers (see also [4]). For the general case, it turns
out that there is a closed form expression due to Kemp (see [5]) for a class

of trees very closely related to T (k)
n,j . This formula can easily be translated

to a closed form expression for a
(k)
n,j . We also prove the recurrence for a

(k)
n,j

from Theorem 2. We conclude this section by showing that this recurrence

leads to the closed form expression for a
(k)
n,j appearing in Corollary 1, which

looks completely different from the formula due to Kemp.

Theorem 6 ([5, Theorem 1]). Let hk(n, j) be the number of ordered trees
with n nodes, j leaves, and height1 less than or equal to k−1. Then hk(1, j) =
δj,1, h1(n, j) = δn,jδn,1 where δn,j is Kronecker’s symbol. For k ≥ 2 and
n ≥ 2

hk(n, j) = N(n− 1, j)− [Q1(n, j, k)− 2Q0(n, j, k) +Q−1(n, j, k)] ,

where

Qa(n, j, k) =
∑
s≥1

(
n− s(k − 1)− 2

j + s+ a− 1

)(
n+ s(k − 1)− 2

j − s− a− 1

)
,

and N(n, j) are the Narayana numbers given by

N(n, j) =
1

n

(
n

j

)(
n

j − 1

)
.

Corollary 2. For all n ≥ 1, and j, k ≥ 0 we have

a
(k)
n,j = hk+2(n+ 1, n− j).

1In [5], the author uses the convention that the root is a vertex at level one, so
we have translated this result to coincide with our definition of height.
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Proof. A tree with n edges has n + 1 nodes. An ordered tree with n edges
and j + 1 internal nodes has n + 1 − (j + 1) = n − j leaves. Thus from
Theorem 4 we have

a
(k)
n,j =

∣∣∣T (k+1)
n,j+1

∣∣∣ = hk+2(n+ 1, n− j).

The Narayana numbers N(n, j) appear in several combinatorial prob-
lems (see A001263 in the OEIS [10]). One interpretation is that N(n, j) is
equal to the number of Dyck paths of length 2n with j peaks. Another in-
terpretation is that N(n, j) is equal to the number of ordered trees with n

edges and j leaves. Next we show that a
(k)
n,j reduces to a Narayana number

whenever k ≥ j.

Corollary 3. For all n > j ≥ 1, and for all k ≥ j we have

a
(k)
n,j = N(n, n− j) =

1

n

(
n

j

)(
n

j + 1

)
.

Proof. An ordered tree with n edges and j+1 internal nodes has height less
than or equal to j + 1, and n− j leaves. Thus whenever k ≥ j we have

a
(k)
n,j =

∣∣∣T (k+1)
n,j+1

∣∣∣ = N(n, n− j) =
1

n

(
n

n− j

)(
n

n− j − 1

)
=

1

n

(
n

j

)(
n

j + 1

)
.

Note that in general N(n, j) = N(n, n− j + 1), i.e. the Narayana num-
bers are symmetric, and this follows from the symmetry of the binomial
coefficients.

Our next goal is to establish the recurrence for a
(k)
n,j appearing in The-

orem 2. We accomplish this using a bijection to find a recurrence for trees
with n edges, j leaves, and height less than or equal to k. Let N (n, j, k)
denote the set of ordered trees with n edges, j leaves, and height less than
or equal to k, and let N(n, j, k) = |N (n, j, k)|. In other words, N(n, j, k) are
the Narayana numbers refined by height. For example, N (k, k, 1) consists of
a single tree T of height 1 whose root has k children. For convenience, we
let N (0, 0, k) be the set containing the tree with one vertex and no edges,
hence N(0, 0, k) = 1 for all k ≥ 0. Note that in terms of Dyck paths we

have N(n, j, k) =
∣∣∣D(k)

2n,j

∣∣∣, i.e. the number of Dyck paths of length 2n with j

peaks and height less than or equal to k. We find a recurrence for N(n, j, k),

which can easily be translated into a recurrence for a
(k)
n,j . Before we prove

this theorem, we need the following definition and proposition.



524 Matthew Hyatt and Jeffrey Remmel

Definition 1. Let Wn(i, j) be the set of weak compositions
(p1, p2, . . . , pi;m1,m2, . . . ,mj) in N

i+j such that

(i) pr ≥ 1 for r = 1, 2, . . . i,
(ii) mr ≥ 0 for r = 1, 2, . . . j, and

(iii)
(∑i

r=1 pr

)
+
(∑j

r=1mr

)
= n.

In other words, Wn(i, j) is the set of weak compositions of n with i+ j parts
where the first i parts are positive.

Proposition 1. For all n, i, j ≥ 0 we have |Wn(i, j)| =
(
n+j−1
i+j−1

)
.

Proof. Let p′r = pr − 1 for r = 1, 2, . . . , i. Then

(p1, p2, . . . , pi;m1,m2, . . . ,mj) ∈ Wn(i, j)

if and only if

(p′1, p
′
2 . . . , p

′
i;m1,m2, . . . ,mj) ∈ Wn−i(0, i+ j).

Wn(0, k) is simply the number of weak compositions of n into k parts, and
|Wn(0, k)| =

(
n+k−1
k−1

)
(see [11]). Thus

|Wn(i, j)| = |Wn−i(0, i+ j)| =
(
n+ j − 1

i+ j − 1

)
.

For convenience we recall Theorem 2 before providing its proof: for all
k ≥ 2 and for all n ≥ j ≥ 1 we have

a
(k−1)
n,n−j = N(n, j, k) =

n−j∑
i=0

N(n− j, i, k − 1)

(
2n− j − i

2n− 2j

)
,

where N(n, j, 1) = 1 if n = j, and is zero otherwise.

Proof of Theorem 2.

The fact that a
(k−1)
n,n−j = N(n, j, k) follows from Theorem 4, so it remains

to prove the second equality in Theorem 2. For this we construct a map

s :

n−j⋃
i=0

N (n− j, i, k − 1)×Wj(i, 2n− 2j − i+ 1) → N (n, j, k),

which we will show is a bijection.
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Figure 6: An example of the map s.

Informally, given

(T, c) ∈ N (n− j, i, k − 1)×Wj(i, 2n− 2j − i+ 1),

one obtains s(T, c) as follows: visit the vertices of T from right to left and

bottom to top, at the leaves add edges according to the positive parts of c,

and at the internal nodes add edges between pairs of children according the
nonnegative parts of c. For example let n = 14, j = 10, k = 3, i = 3, and let

T ∈ N (4, 3, 2) be the tree in the upper left of Figure 6. Each tree Uh for
h = 1, 2, 3 in Figure 6 shows the added edges (dashed) obtained by visiting

the vertices at level h, and the parts of c determining the number of edges

added are in bold. The output of this map is s(T, c) = U1.

A formal description of s is as follows. Let T ∈ N (n− j, i, k−1), and let

c = (l1, . . . , li;n1, . . . , n2n−2j−i+1) ∈ Wj(i, 2n− 2j − i+ 1)

for some i such that 0 ≤ i ≤ n− j. We describe s(T, c) via a composition of
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maps, s = s1 ◦ s2 ◦ · · · ◦ sk, where each sh implicitly depends on c. Let

Uh = sh ◦ sh+1 ◦ · · · ◦ sk(T )

for 1 ≤ h ≤ k, and set Uk+1 = T , thus s(T, c) = U1. Construct an ordered
tree Uh−1 = sh−1(Uh) by visiting the vertices at level h− 1 of Uh from right
to left, and (possibly) adding edges to each vertex x as follows:

• If x is the pth leaf visited in the process of applying sh−1, sh, . . . , sk to
T , then attach the unique tree from N (lp, lp, 1) as a subtree below x.

• Suppose x is an internal node. Let nc(x) denote the number of children
of x (i.e. nc(x) + 1 = deg x), and suppose nc(x) = d. Attach the tree
from N (nr, nr, 1) to the right of the rightmost edge below x where
r = 1+

∑
(nc(y)+1) and the sum is over all internal nodes previously

visited in the process of applying sh−1, sh, . . . , sk to T . Then for m =
1, 2, . . . , d, attach the tree from N (nr+m, nr+m, 1) to the left of the
m-th rightmost edge below x.

First we show that s is well-defined. Note that T has n− j edges and c
is a weak composition of j. Thus applying s will add j edges to T , so s(T, c)
has n edges. Since l1, . . . , li are all positive, every leaf of T has edges added
to it, and is therefore not a leaf in s(T, c). On the other hand, every edge
added to T creates a leaf, so s(T, c) has j leaves. Since T has height less
than or equal to k − 1, it is clear that s(T, c) has height less than or equal
to k. Furthermore, T has i leaves and the first i parts of c are positive. We
also need to check that c has the appropriate number of parts for adding
edges to internal nodes. This follows from the fact that∑
x is an internal

node of T

(1 + nc(x)) = |{internal nodes of T}|+
∑

x is an internal
node of T

nc(x)

= |{vertices of T}|− |{leaves of T}|+ |{edges of T}|
= (n− j + 1)− i+ (n− j)

= 2n− 2j − i+ 1.

Next we describe the inverse map of s, which we denote by f . We have
chosen the letter s to correspond to spring, since the tree “grows” edges
during this map. And the letter f corresponds to fall since we will remove
edges during this map. Let T ∈ N (n, j, k).

Given T ∈ N (n, j, k) let f(T ) = (V, c). Informally, one obtains the tree
V as follows: visit the vertices of T from left to right and top to bottom,
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Figure 7: An example of the map f .

removing all single edges below each vertex. If the current vertex has no

grandchildren, then record the number of edges removed as a positive part

of c. If the current vertex does have grandchildren, then record the number

of edges removed between each pair of non-removable children (i.e. children

of the current vertex who themselves have children) as a nonnegative part

of c.

For example let V0 ∈ N (10, 7, 3) be the tree in the upper left of Figure 7.

Each tree Vh for h = 0, 1, 2 in Figure 7 shows the edges (dashed) to be

removed at height h+ 1. The output is of this map is f(V0) = (V3, c3).

Formally, we describe f(T ) via a composition of maps f = fk ◦ fk−1 ◦
· · · ◦ f1. Let

(Vh, ch) = fh ◦ fh−1 ◦ · · · ◦ f1(T )

for 1 ≤ h ≤ k, where Vh is an ordered tree and ch is a weak composition,

and let (V0, c0) = (T, ∅). Note that f(T ) = (Vk, ck). Construct (Vh+1, ch+1) =

fh+1(Vh, ch) by visiting the vertices at level h of Vh from left to right, and

removing all single edges below each vertex. The weak composition ch+1
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is obtained from ch by recording at each vertex x, the numbers of edges
removed as follows:

• If x has p children and all subtrees below x have height one (in other
words x has no grandchildren), then append a p to the beginning of
the positive parts of ch.

• Suppose x has subtrees below it of height greater than one. Call Y an
immediate subtree of x if the root of Y is x, Y has exactly one vertex
y of level one, and Y contains all edges and vertices below y. Suppose
x has immediate subtrees Y1, Y2, . . . , Yd (from left to right) of height
greater than or equal to 2. Let r1 be the number of single edges below
x and to the left of Y1. For m = 2, 3, . . . , d, let rm equal the number of
single edges below x between Ym−1 and Ym. Let rd+1 be the number
of single edges below x and to the right of Yd. Then append the parts
(rd+1, rd, . . . , r1) to the beginning of the nonnegative parts of ch.

Next we show that f is well-defined. When applying fh, we never visit
a vertex which is a leaf since such a vertex would have been removed when
applying fh−1. Since we remove from T precisely all edges which have a leaf
at the bottom, we see that Vk has n− j edges. Since Vk has n− j edges, the
number of leaves of Vk is less than or equal to n − j. Clearly, the height of
Vk is one less than the height of T . Thus Vk ∈ N (n − j, i, k − 1) for some
0 ≤ i ≤ n− j.

Since the map f removes j edges from T and ck records the total number
of edges removed, ck is a weak composition of j. A leaf of Vk is created only
when we visit a vertex with only single edges below. The number of such
edges is recorded as a positive part in the weak composition ck. So if Vk

has i leaves, then ck has i positive parts. Lastly, the total number of parts
(positive and nonnegative) of ck is given by∑

x is a
vertex of Vk

(1 + nc(x)) = |{vertices of Vk}|+ |{edges of Vk}|

= (n− j + 1) + (n− j)

= 2n− 2j + 1,

thus ck has 2n− 2j + 1− i nonnegative parts.
It is clear by construction that f is the inverse of s.
The Theorem now follows from the fact that (see Proposition 1)

|Wj(i, 2n− 2j − i+ 1)| =
(
2n− j − i

2n− 2j

)
.
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This completes the proof of Theorem 2.

For convenience we state Theorem 2 in terms of a
(k)
n,j .

Corollary 4. For all k ≥ 1 and n > j, we have

a
(k)
n,j =

j∑
i=0

a
(k−1)
j,i

(
n+ i

2j

)
,

where a
(k−1)
0,0 := 1 for all k ≥ 1.

The recurrence in Corollary 4 can be iterated to obtain a closed form

expression for a
(k)
n,j . Indeed, a

(0)
j,i is the number of permutations in Sj(231)

with i descents and no drops. Since the identity permutation is the only

permutation with no drops, we see that a
(0)
j,i = 1 if i = 0, and a

(0)
j,i is zero

otherwise. Hence

a
(1)
n,j =

j∑
i=0

a
(0)
j,i

(
n+ i

2j

)
=

(
n

2j

)
,

as expected (see Theorem 3). We iterate to obtain the following formulas,
and in each case the formula holds for all n > j ≥ 0.

a
(2)
n,j =

∑
j≥i≥0

a
(1)
j,i

(
n+ i

2j

)
=

∑
j≥i≥0

(
j

2i

)(
n+ i

2j

)
.

a
(3)
n,j =

∑
j≥i2≥i1≥0

(
i2
2i1

)(
j + i1
2i2

)(
n+ i2
2j

)
.

a
(4)
n,j =

∑
j≥i3≥i2≥i1≥0

(
i2
2i1

)(
i3 + i1
2i2

)(
j + i2
2i3

)(
n+ i3
2j

)
.

a
(5)
n,j =

∑
j≥i4≥i3≥i2≥i1≥0

(
i2
2i1

)(
i3 + i1
2i2

)(
i4 + i2
2i3

)(
j + i3
2i4

)(
n+ i4
2j

)
.

A pattern emerges, giving us a formula for a
(k)
n,j and N(n, j, k). For con-

venience we recall Corollary 1, and then provide its proof.
For n ≥ j ≥ 0 and k ≥ 3 we have

N(n, j, k) = a
(k−1)
n,n−j =

∑
n−j≥ik−2≥···≥i1≥0

(
k−2∏
m=0

(
im+2 + im
2im+1

))
,

where i0 := 0, ik−1 := n− j, ik := n.
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Proof of Corollary 1.

Proof. We prove that for all n, j ≥ 0 and all k ≥ 2 we have

a
(k)
n,j =

∑
j≥ik−1≥···≥i1≥0

(
k−1∏
m=0

(
im+2 + im
2im+1

))
,

where i0 := 0, ik := j, ik+1 := n. The corollary is then implied by Theorem
4.

Induct on k. The base case k = 2 follows from Corollary 4. Now let k ≥ 3
and assume the result holds for k − 1. Then from Corollary 4 we have

a
(k)
n,j =

∑
j≥pk−1≥0

a
(k−1)
j,pk−1

(
n+ pk−1

2j

)
.

Use the induction hypothesis to substitute an expression for a
(k−1)
j,pk−1

.

a
(k)
n,j =

∑
j≥pk−1≥0

pk−1≥ik−2≥···≥i1≥0

(
k−4∏
m=0

(
im+2 + im
2im+1

))(
pk−1 + ik−3

2ik−2

)(
j + ik−2

2pk−1

)

×
(
n+ pk−1

2j

)
.

The result now follows from replacing pk−1 with ik−1.

Note that for k ≥ 1, e
(k)
n,j = a

(k)
n,j − a

(k−1)
n,j is the number of permutations

σ ∈ Sn(231) such maxdrop(σ) = k. Observing that the i1 = 0 term of a
(k)
n,j is

just the expression for a
(k−1)
n,j , we immeditately have the following corollary

of Corollary 1.

Corollary 5. For all k ≥ 2 and n > j ≥ 0,

e
(k)
n,j =

∑
j≥ik−1≥···≥i1≥1

(
k−1∏
m=0

(
im+2 + im
2im+1

))
,

where i0 := 0, ik := j, ik+1 := n.

For example, when k = 2 and j = 2 or j = 3, there is only one term in the

sum so that e
(2)
n,2 =

(
n+1
4

)
and e

(2)
n,3 = 3

(
n+1
6

)
. Similarly, when k = 2 and j = 4

or j = 5, there are only two terms in the sum so that e
(2)
n,4 =

(
n+2
8

)
+ 6

(
n+1
8

)



The classification of 231-avoiding permutations 531

and e
(2)
n,5 = 5

(
n+2
10

)
+ 10

(
n+1
10

)
. Also one can show that in the sum for e

(j)
n,j ,

there is only one term that gives a nonzero contribution, namely, is = s for

s = 1, . . . , j so that e
(j)
n,j =

(
n+j−1

2j

)
. It would be interesting to give a simple

direct combinatorial explanation for any of these facts.

5. Resulting identities

In the previous section we proved that the set of permutations in Sn(231)
with j descents and maximum drop less than or equal to k is in bijective
correspondence with the set of ordered trees with n edges, j + 1 internal
nodes, and height less than or equal to k + 1. We also found two seemingly
different closed form expressions for the number of such trees: one due to
Kemp [5] (Theorem 6 and Corollary 2), and another resulting from iterating
our recurrence (Corollary 1). This leads to some remarkable identities.

Theorem 7. For n ≥ 1 and j ≥ 0 we have

(7) a
(1)
n,j = h3(n+ 1, n− j).

Consequently

(8)

(
n

2j

)
= N(n, j + 1)−

[
Q̃1(n, j, 3)− 2Q̃0(n, j, 3) + Q̃−1(n, j, 3)

]
,

where

N(n, j + 1) =
1

n

(
n

j + 1

)(
n

j

)
,

and

Q̃a(n, j, 3) =
∑
s≥1

(
n− 2s− 1

j − 3s− a

)(
n+ 2s− 1

j + 3s+ a

)
.

Proof. First note that (7) is just a special case of Corollary 2 with k = 1.
The left hand side of (8) follows from Theorem 3. While the right hand

side of (8) follows from Theorem 6, noting that

N(n, n− j) = N(n, j + 1),

and

Qa(n+ 1, n− j, 3) =
∑
s≥1

(
n− 2s− 1

n− j + s+ a− 1

)(
n+ 2s− 1

n− j − s− a− 1

)
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= Q̃a(n, j, 3),

using the symmetry of the Narayana numbers and the binomial coefficients.

Remark 2. If j = 0, 1, then Q̃a(n, j, 3) = 0 for a = −1, 0, 1, and equation (8)
follows immediately.

However, for j ≥ 2 there will be nonzero contributions from Q̃a(n, j, 3)
for a ≤ j − 3. For example, if j = 2 then

Q̃−1(n, 2, 3) =
∑
s≥1

(
n− 2s− 1

2− 3s+ 1

)(
n+ 2s− 1

2 + 3s− 1

)
=

(
n+ 1

4

)
,

and the right hand side of (8) becomes

1

n

(
n

3

)(
n

2

)
−
(
n+ 1

4

)
=

1

n

(
n

3

)(
n

2

)
−
(
n

4

)
−
(
n

3

)
=

(
n

3

)[
n− 1

2
− 1

]
−
(
n

4

)
= 2

(
n

3

)[
n− 3

4

]
−
(
n

4

)
=

(
n

4

)
as expected.

More generally, we can use Corollary 1 when k ≥ 2.

Theorem 8. For n ≥ 1, j ≥ 0, and k ≥ 2 we have

∑
j≥ik−1≥···≥i1≥0

(
k−1∏
m=0

(
im+2 + im
2im+1

))

= N(n, j + 1)−
[
Q̃1(n, j, k + 2)− 2Q̃0(n, j, k + 2) + Q̃−1(n, j, k + 2)

]
,

where

N(n, j + 1) =
1

n

(
n

j + 1

)(
n

j

)
,

and

Q̃a(n, j, k + 2) =
∑
s≥1

(
n− (k + 1)s− 1

j − (k + 2)s− a

)(
n+ (k + 1)s− 1

j + (k + 2)s+ a

)
.

Proof. From Corollary 2 we have

a
(k)
n,j = hk+2(n+ 1, n− j).
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The left hand side of Theorem 8 follows from Corollary 1. And the right
hand side of Theorem 8 follows from Theorem 6, noting that

Qa(n+ 1, n− j, k + 2) =
∑
s≥1

(
n− (k + 1)s− 1

n− j + s+ a− 1

)(
n+ (k + 1)s− 1

n− j − s− a− 1

)
= Q̃a(n, j, k + 2).
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