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Connectivity and giant component of stochastic
Kronecker graphs

Mary Radcliffe and Stephen J. Young

Stochastic Kronecker graphs are a model for complex networks
where each edge is present independently according to the Kro-
necker (tensor) product of a fixed matrix P ∈ [0, 1]k×k. We de-
velop a novel correspondence between the adjacencies in a general
stochastic Kronecker graph and the action of a fixed Markov chain.
Using this correspondence we are able to generalize the arguments
of Horn and Radcliffe on the emergence of the giant component
from the case where k = 2 to arbitrary k. We are also able to
use this correspondence to completely analyze the connectivity of
a general stochastic Kronecker graph.

1. Introduction

In many ways the study of random graphs traces its history back to the
seminal work of Erdős and Rényi showing that there exists a rapid tran-
sition between the regimes of a random graph consisting of many small
components, a random graph having one “giant” component, and a random
graph being connected [10]. Because of their central role in the history of
random graphs these phase transitions have been extensively studied, see
for instance [1, 2, 3, 4, 9, 12, 16], among numerous others. We contribute
to this ongoing discussion by providing a sharp transition for the emergence
of both the giant component and connectivity for the stochastic Kronecker
graph, a generalization of the standard Erdős-Rényi binomial random graph
model, G(n, p).

More formally, recall that the Kronecker or tensor product of two ma-
trices A ∈ R

m×n and B ∈ R
p×q is a matrix A ⊗ B = C ∈ R

mp×nq. For
i ∈ [m], j ∈ [n], s ∈ [p], and t ∈ [q] the entry C(i−1)m+s,(j−1)n+t is AijBst,
that is

A⊗B = C =

⎡
⎢⎢⎢⎣
A1,1B A1,2B · · · A1,nB
A2,1B A2,2B · · · A2,nB

. . . . . .
. . . . . .

Am,1B Am,2B · · · Am,nB

⎤
⎥⎥⎥⎦ .

arXiv: 1310.7652

457

http://www.intlpress.com/JOC/
http://arxiv.org/abs/1310.7652


458 Mary Radcliffe and Stephen J. Young

Letting P ∈ [0, 1]k×k be a symmetric matrix, the tth-order stochastic
Kronecker graph generated by P is formed by taking the t-fold Kronecker
product of P , denoted P⊗t, and using this as the probability matrix for a
graph with independent edges. That is, each edge {i, j} is present indepen-
dently with probability P⊗t

ij = P⊗t
ji .

The stochastic Kronecker graph was originally proposed as a model for
the network structure of the internet with the property that it could be
easily fit to real world data, especially in the case where the generating ma-

trix was
[
α β
β γ

]
where 0 < γ ≤ β ≤ α < 1 [14]. As such, there have been

several papers analyzing structural properties of the stochastic Kronecker
graph when the generating matrix is a 2 × 2 matrix [14, 15, 17, 19]. Most
relevant to this current work are the results of Mahdian and Xu [17] who
anaylzed the connectivity, diameter, and the emergence of the giant compo-
nent with 0 < γ ≤ β ≤ α < 1, and the work of the first author and Horn
who analyzed the emergence and size of the giant component for arbitrary
α, β, γ ∈ (0, 1) [19]. In this work we consider the case of an arbitrarily sized
generating matrix, and develop necessary and sufficient conditions for the
emergence of the giant component and connectivity. The key tool to ana-
lyzing these graphs is to tie the structure of the graph to a fixed Markov
chain on the underlying generating matrix. Using this underlying structure,
one can analyze the graph structure more completely than with traditional
tools.

Given a tth-order stochastic Kronecker graph with generating matrix P ,
we define W (P ) to be the weighted graph on [k], where weights are as given
in P . We will occasionally refer to W as the underlying graph of G. We also
define the backbone graph of the matrix P , B(P ), as the subgraph of W (P )
consisting of the edges assigned weight 1. That is, B(P ) is a graph on the
vertices [k] where {i, j} is an edge if and only if Pij = Pji = 1. When the
matrix P is clear, we will neglect the dependence on P and write simply W
and B.

Our primary results can be summarized as follows.

Theorem 1. Let G be a tth-order stochastic Kronecker graph generated by a
symmetric matrix P ∈ [0, 1]k×k which has column sums c1 ≤ c2 ≤ · · · ≤ ck.
Let n = kt be the number of vertices of G.

1. If W is disconnected or bipartite, then the largest component of G has
size O

(
(k − 1)t

)
∈ o(n) .

2. If W is connected and non-bipartite and
∏

i ci < 1, then there is some
0 < α < 1 such that with probability at least 1 − e−Θ(nα) there are at
least n−O(nα) isolated vertices in G.
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3. If W is connected and non-bipartite,
∏

i ci = 1, and the ci’s are not
identically one, then there is a positive constant α such that with prob-
ability at least 1− e−Θ(nα), the largest component of G has size Θ(n),
that is, G has a giant component.

4. If W is connected and non-bipartite, and
∏

i ci > 1, then there is a
positive constant α such that with probability at least 1 − e−Θ(nα) the
largest component of G has size Θ(n).

5. If W is connected and non-bipartite, and c1 < 1, then there is a positive
constant α such that G has at least ln(n)(1−o(1)) ln ln(n) isolated vertices
with probability at least 1−O(n−α).

6. If W is connected and non-bipartite, c1 = 1, and B has a vertex of
degree zero, then there is some positive constant α such that G has
at least ln(n)(1−o(1)) ln ln ln(n) isolated vertices with probability at least
1−O(n−α).

7. If W is connected and non-bipartite, c1 = 1, and B has no vertices of
degree zero, then there is a constant α > 0 such that G is connected
with probability at least 1− e−(1−o(1))nα

.
8. If W is connected and non-bipartite and c1 > 1, then there is a constant

α > 0 such that G is connected with probability at least 1−e−(1−o(1))nα

.

We note that item (8) above is typical for the emergence of connectivity;
that is, the graph is connected asymptotically almost surely precisely when
asymptotically almost surely the minimum degree is at least 1. In fact, taking
(5), (6), (7), and (8) together we can see that a stochastic Kronecker graph
is connected precisely when the minimum degree is at least 1 asymptotically
almost surely. From this viewpoint, the slightly unnatural seeming condition
on the backbone graph B is simply the condition needed to assure that G
has no isolated vertices.

The folklore in the study of random graphs asserts that, in general,
the giant component should emerge when the average expected degree is
1, see for instance [2, 7, 10, 11]. As the average expected degree in a tth-
order stochastic Kronecker graph is k−t (c1 + · · ·+ ck)

t, this suggests that
the transition occurs when 1

k (c1 + · · ·+ ck) > 1. However, as parts (2) and

(4) of Theorem 1 show, the transition actually occurs when (
∏

i ci)
1

k > 1.
Noting that the expected degrees in stochastic Kronecker graphs follow a
multinomial distribution (see Section 2), this condition can be seen as equiv-
alent (asymptotically) to the condition that median expected degree is at
least one. Thus our results may suggest that the average expected degree is
not as deeply connected to the emergence of the giant component as previ-
ously thought, because in many of the standard random graph models, such
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as the Erdős-Rényi random graph, the average and the median expected
degree agree. That is, it may be that the median is truly the determining
factor for such structures. It is also worth noting that Spencer has conjec-
tured based in part on [5, 6], that the correct intuition is that the emergence
of the giant component is tied to the second order average degree [23].

To prove Theorem 1, we will develop several general results on G, and
then apply these results to the specific situations above. In particular, we
are able to tie the adjacency structure of G to a finite state Markov chain
on W . Using this association, we can take advantage of the finite structure
of W to build theory regarding the asymptotically growing structure G.

2. Definitions and tools

Given a stochastic Kronecker graphG generated by P , let A be the adjacency
matrix of G and D the diagonal matrix of degrees in G. Let c1 ≤ c2 ≤
· · · ≤ ck be the column sums of P (note that we can assume these are
nondecreasing without loss of generality), and let C be the diagonal matrix
of column sums in P .

We note that there are multiple means of describing the entries of the
probability matrix P⊗t to take advantage of the Kronecker product struc-
ture. One point of view that is particularly helpful is to define a bijection
w : V (G) → [k]t, so that each vertex of G is represented by a word of length
t in [k]. We will often identify the vertex to its corresponding word, and
write v = (v1, v2, . . . , vt). Given an appropriate choice of bijection, for any
two vertices u and v, the probability that u and v are adjacent is

puv =

t∏
i=1

Puivi
.

That is to say, we take the product of entries of the generating matrix P ,
where entries correspond to the pairs of components in the words repre-
senting u and v. We will sometimes use the notation P⊗t

u,v to refer to the
w(u), w(v) position in P⊗t, where we index the matrix by the ordered words
obtained via the Kronecker product, and we note that puv = P⊗t

u,v.
We shall use the notation u ∼ v to indicate that u is adjacent to v. When

ambiguous, we write u ∼G v to indicate that u is adjacent to v in the graph
G.

Now, suppose that w(v) has a1 coordinates equal to 1, a2 coordinates
equal to 2, and so on. It is straightforward to calculate that

E[deg(v)] = ca1

1 ca2

2 . . . cak

k .



Connectivity and giant component of stochastic Kronecker graphs 461

From this we can see that the stochastic Kronecker graph is defined precisely
so that the expected adjacency matrix Ā = P⊗t, and the expected degree
matrix D̄ = C⊗t. At times we will wish to emphasize the graph structure
of P⊗t, and thus will use W⊗t to refer to the weighted complete graph with
weights given by P⊗t.

Moreover, it will frequently be of interest to know the number of coordi-
nates in w(v) equal to each symbol in [k]. To that end, we define the signature
of v to be σ(v) = (σ1, σ2, · · · , σk), where σi is the proportion of symbols in
w(v) equal to i. For example, if k = 5 and w(v) = 121251, we would have
σ(v) = (12 ,

1
3 , 0, 0,

1
6). We will denote by S = {(σ1, . . . , σk) | σi ≥ 0,

∑
i σi=1}

the space of possible signatures. Often we will establish an underlying sig-
nature for a vertex and then take t to infinity; this will generally result in
noninteger values for the number of letters of a particular value in w(v). This
can be overlooked, however, as rounding to the next integer appropriately
will not change the asymptotic features of the vertices, and so we will often
assume that a vertex can take any signature.

Let L = (ln(c1), ln(c2), · · · , ln(ck)). We will make frequent use of the
simple observation that

ln (E[deg(v)]) = t 〈σ(v), L〉 ,

where 〈·, ·〉 represents the standard dot product.

2.1. Markov chains in G and W

Let W⊗t be the weighted complete graph on V (G), with the weight of
edge uv equal to P⊗t

u,v. Let v be a vertex in W⊗t with signature σ =

(σ1, σ2, . . . , σk). Define Z(v) to be a random variable that takes values in
S, where Z(v) is the signature of a randomly chosen neighbor of v according
to the probability distribution defined by the weights of the edges. That is,

P(Z(v) = τ) =
∑

σ(u)=τ

P⊗t
u,v

degW⊗t(v)
.

That is to say, Z(v) is the signature of the vertex obtained after taking one
step in the uniform random walk on W⊗t.

For each i ∈ [k], let X(i) be the random variable that takes values in [k],

with P(X(i) = j) = Pij

ci
. Note that for v = (v1, v2, . . . , vt) fixed, we have

P(X(v1) ×X(v2) × · · · ×X(vt) = (u1, u2, . . . , ut)) =

t∏
i=1

Pviui

cvi

=
P⊗t
u,v

degW⊗t(v)
.
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Thus we can consider Z(v) as giving the signature of a randomly chosen
neighbor of v, chosen according to the product distribution X(v1) ×X(v2) ×
· · · × X(vt). As the signature is independent of order, for the purposes of
analyzing Z(v), we may write this distribution as (X(1))σ1t × (X(2))σ2t ×
· · · × (X(k))σkt. Therefore, for all i ∈ [k], letting Z

(v)
i be the ith component

of the signature Z(v), we have

E

[
Z

(v)
i

]
=

1

t

k∑
j=1

(σjt)P(X
(j) = i) =

k∑
j=1

σj
Pij

cj
.

On the other hand, let M = C−1P , the transition probability matrix for
the uniform random walk on W , and notice that the matrix product σM
has ith coordinate

((σ1, σ2, . . . , σk)M)i =

k∑
j=1

σjMij =

k∑
j=1

σj
Pij

cj
= E

[
Z

(v)
i

]

Thus, σM = E
[
Z(v)

]
.

Therefore, we can think of the distribution of a random walk on W
as the expected signature of a vertex in a random walk on W⊗t. Let π =
(π1, π2, . . . , πk) be the stationary distribution of the random walk on W , so
πM = π. It is a simple exercise to verify that πi =

ci∑
j cj

. We will show in

Section 3 that the collection of signatures close to π will in fact, asymp-
totically almost surely, form a connected subgraph in G, and further, by
leveraging the convergence of the Markov chain on W , we can assure a giant
component.

2.2. Tools and notation

For a given graph G, the normalized Laplacian matrix for G is the matrix
L (G) = I −D−1/2AD−1/2. We denote the eigenvalues of L (G) by 0 = λ0 ≤
λ1 ≤ · · · ≤ λn−1. If there is any ambiguity, we write λi(L (G)) to specify
that the eigenvalues are from the normalized Laplacian, and more generally
λi(M) to denote the ith smallest eigenvalue of a Hermitian matrix M . We
sometimes refer to these as the Laplacian eigenvalues of G. We shall use the
following standard facts from spectral graph theory.

Theorem 2 (see, for example, [8]). Let G be a graph with Laplacian eigen-
values 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. Then
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1. G is connected if and only if λ1 > 0.

2. If G is connected, then the diameter D(G) of G satisfies D(G) ≤⌈
ln(n−1)

ln(1/(1−λ1))

⌉
.

3. Let D−1A denote the probability transition matrix of a random walk

on G. Then λ is an eigenvalue of L (G) with eigenvector v if and only

if 1− λ is an eigenvalue of D−1A with eigenvector v.

Among our key tools will be the following theorem from Chung and the

first author [18] that gives spectral concentration in the normalized Lapla-

cian of a general random graph.

Theorem 3 ([18]). Let G be a random graph with independent edges gen-

erated according to the matrix P. Let D be the diagonal matrix of expected

degrees and let δ denote the minimum expected degree. If δ ≥ 3 ln
(
4n
ε

)
, then

with probability at least 1− ε, for all i

∣∣∣λi (L (G))− λi

(
I −D−1/2PD−1/2

)∣∣∣ ≤ 3

√
3 ln
(
4n
ε

)
δ

.

We also make use of standard tools in spectral graph theory, chief among

them the Cheeger Inequality. For two sets S, T of vertices in a graphG, define

eG(S, T ) to be the number of edges (or, in a weighted graph, the total weight

of edges) for which one endpoint is in S and the other in T . Note that an

edge with both endpoints in S ∩T is counted twice in this definition. Define

VolG(S) =
∑

v∈S deg(v). When the underlying graph is clear, we drop the

subscript G in the notation.

The Cheeger constant of a set S with Vol(S) ≤ 1
2 Vol(G) is defined to

be h(S) = e(S,V \S)/Vol(S) and Cheeger constant of G is

hG = min
S⊂V

Vol(S)≤ 1

2
Vol(G)

h(S).

The spectrum of a graph is related to the Cheeger constant via the Cheeger

Inequality [21, 22].

Cheeger Inequality. For G any graph, let λ1 be the smallest nontrivial

eigenvalue of L(G). Then

1

2
h2G ≤ λ1 ≤ 2hG.
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As we will frequently be discussing Markov chains, we will pass regularly
between considering row vectors and column vectors. We will always treat
the signature of a vertex v as a row vector, as well as the vector L. The all-
ones vector, 1, will be considered a row vector as well. However, eigenvectors
of a matrix are typically assumed to be right eigenvectors, and are thus
column vectors. Any other usages should be made clear by context.

In order to understand the rate of convergence of a Markov chain we
will use the relative pointwise distance. If π is the limiting distribution of
the Markov chain, the relative pointwise distance of a distribution σ from π
is

ΔRP (σ) = max
i

|σi − πi|
πi

.

As we are interested in an overall rate of convergence we define

Δ(s) = sup
σ∈S

ΔRP (σM s) .

It is well known that the rate of decay of the relative pointwise distance can
be controlled by the spectral information of the Markov chain as given in
the following theorem, see for instance [8].

Theorem 4. Let 1 = λ0 ≥ λ1 ≥ · · · ≥ λn−1 be the eigenvalues of the
transition probability matrix of a uniform random walk on a connected, non-
bipartite (weighted) graph G. Set λ = max {|1− λ1| , |λn−1 − 1|}. For any

s >
1

λ
ln

(
Vol(G)

εδG

)
,

we have Δ(s) < ε, where δG denotes the minimum degree in G.

The phrase asymptotically almost surely in this paper will always refer
to asymptotics with respect to t, unless otherwise noted. The norm ‖v‖ will
refer to the �∞-norm unless otherwise noted.

3. Key results

To prove the thresholds for connectivity and emergence of the giant compo-
nent in a stochastic Kronecker graph G (Theorem 1, items (4) and (8)), we
will use the following structure. First, we show that G contains a small set of
vertices that is connected asymptotically almost surely, in particular, those
vertices that are close to stationarity under the Markov chain described in
Section 2.1. We shall refer to this set as the “connected core” of the graph.
Although this will not be enough vertices to form a giant component, we can
then show that under certain conditions, a positive fraction of the vertices in
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G can be connected by a path to the connected core. The thresholds given
are precisely those conditions needed to ensure that a positive fraction of
the vertices exhibit this behavior. In retrospect, the arguments used by Horn
and the first author in [19] to show the emergence of the giant component in
the case where the generating matrix is 2×2 can be viewed as a special case
of our technique. Specifically, as the underlying Markov chain has only two
states, the degree of each vertex is controlled by a single parameter, which
significantly simplifies the argument. As a consequence, the authors in [19]
were able to analyze the giant component directly via counting techniques,
without appealing to the underlying Markov chain.

In this section, we develop much of the underlying structure in G via
the random walk on W . We begin with some elementary observations on the
vertex degrees in G and W⊗t.

Lemma 5. Let v be a vertex with signature σ in a tth-order stochastic Kro-
necker graph G, such that 〈σ, L〉 > 0. Let d = e〈σ,L〉. For any δ > 0, we
have

1. v has at least dt(1− 2ke−2δ2t) neighbors in W⊗t with signature τ such
that

∥∥τ − E
[
Z(v)

]∥∥ ≤ δ.

2. with probability at least 1−exp(−dt

8 (1−2ke−2δ2t)), v has at least 1
2d

t(1−
2ke−2δ2t) neighbors in G with signature τ such that

∥∥τ − E
[
Z(v)

]∥∥ ≤ δ.

Proof. By the Hoeffding inequality, we have that for any i,

P

(
t
∣∣∣Z(v)

i − E

[
Z

(v)
i

]∣∣∣ > δt
)
≤ 2e−2δ2t

for any δ > 0. Therefore, by the union bound, we have

P

(
∃i ∈ [k] such that t

∣∣∣Z(v)
i − E

[
Z

(v)
i

]∣∣∣ > δt
)
≤ 2ke−2δ2t.

This verifies item (1).
For item (2), note that by (1), we have that the expected number of

neighbors of v with signature τ in the desired range is at least dt(1 −
2ke−2δ2t). By Chernoff bounds, then, with probability at least 1−exp(−dt

8 (1−
2ke−2δ2t)), we have at least 1

2d
t(1 − 2ke−2δ2t) neighbors with such a signa-

ture τ .

As an immediate corollary of this result we have the following.

Corollary 6. Let v be a vertex with signature σ in a tth-order stochastic
Kronecker graph G, such that 〈σ, L〉 > 0. Let d = e〈σ,L〉 > 1. With probability

at least 1−e−
dt

12 , v has at least dt

3 neighbors u with ‖σ(u)− σM‖ ≤
√

ln(6k)
2t .
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Recall from Section 2.1 that π = (π1, π2, . . . , πk) is the stationary distri-
bution of the random walk on W , with πi =

ci
Vol(W ) for all i. Given ε > 0,

define Sε = {v ∈ G | ∀i ∈ [k], σi(v) > (1 − ε)πi}. Notice that if v ∈ Sε with
signature σ, then we have, for all i,

(σM)i =

k∑
j=1

σjMij ≥ (1− ε)

k∑
j=1

πjMij = (1− ε)πi

by stationarity of π. Hence, if v ∈ Sε, then E
[
Z(v)

]
is also in Sε. We will

show that under appropriate conditions, this set of vertices Sε is connected
asymptotically almost surely, forming the small connected core described
above. To do this, we will show that vertices in Sε have exponentially large
degree in t, and then use Theorem 3 to show the first eigenvalue in Sε is
bounded away from zero. We first must address the degree of vertices in Sε.
To that end, we have the following lemma:

Lemma 7. Let G be a tth-order stochastic Kronecker graph generated by P
and let ε > 0 be fixed, and assume W is connected and nonbipartite. For
sufficiently large t there is a constant a > 0, depending only on P and ε,
such that for all v ∈ Sε, P

(
Z(v) ∈ Sε

)
≥ a.

To prove this lemma, we make use of the following standard observation
about binomial random variables.

Observation 8. Let α1 > α2 be fixed constants and let p ∈ (0, 1). There
exist constants c and n0, depending on α1, α2, and p such that if n > n0,
then

P(Bin (n, p) ∈ [np− α1
√
np, np− α2

√
np]) > c.

Proof of Lemma 7. Let v be an arbitrary vertex in Sε. Consider a collection
of independent, identically distributed random variables, X1, . . . , Xt, taking
on values in {1, . . . , k} each with probability pi, where pi ≥ p > 0 for
all i. Let Zi be the count of the number of i’s in these variables, that is,
Zi =

∑
j 1Xj=i. For c > 0, let Ei be the event that pit−2c

√
t ≤ Zi ≤ pit−c

√
t.

We then have that, for all j �= i,

E[Zj | Ei] ≥
(
t−
(
pit− c

√
t
)) pj

1− pi

=
(
(1− pi)t+ c

√
t
) pj
1− pi

= pjt+
cpj

1− pi

√
t

≥ pjt+ cp
√
t.
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To apply this observation to the context of Z(v) we first consider the

unweighted graph W ′ on [k] where i ∼ j if and only if there is an unweighted

walk of length 2 between i and j in W . Since W is connected and non-

bipartite, W ′ is connected and thus there exists a breadth-first traversal of

W ′. As noted above, by the definition of Sε, for every i we have (σM)i ≥
(1 − ε)πi. Further, by the pigeonhole principle, there is some index i such

that (σM)i ≥ πi(1 − ε) + ε
k . Let s1 be one such index and let s1, . . . , sk be

a breadth-first traversal of W ′ starting at s1.

Recall that we may analyze Z(v) from the point of view of the product

distribution
(
X(1)

)σ1t × · · · ×
(
X(k)

)σkt
where each X(i) is an independent

random variable that takes values in the set of neighbors of i in W . Let the

random variables Zij be the number of times that X(i) takes on the value

j. We note that we can ignore the indices that X(i) cannot take on, and

so define pi = minj,pij 
=0
pij

ci
. We recursively define the events A1, . . . ,Ak as

follows. The event A1 is the event that for all u ∼W s1, E[Zus1 ]− 2α1

√
t ≤

Zus1 ≤ E[Zus1 ]− α1

√
t. For all 1 < i ≤ k the event Ai is the event that for

all u ∼W si,

(1) E

[
Zusi | ∩i−1

j=1Aj

]
− 2αi

√
t ≤ Zusi ≤ E

[
Zusi | ∩i−1

j=1Aj

]
− αi

√
t,

where the αi’s are fixed constants to be chosen later. We note that by Ob-

servation 8, as Zusi is a sum of independent indicator variables, each with

probability pi, each of these events occurs with positive probability. Thus it

suffices to show that ∩k
i=1Ai is contained in the event Z(v) ∈ Sε.

For sufficiently large t the event A1 assures that Z
(v)
s1 ≥ (1− ε)πs1 by the

choice of s1, specifically that E
[
Z

(v)
s1

]
≥ (1− ε)πs1 +

ε
k .

Since the sequence si is a breadth-first search of W ′, we have that for all
i > 1, there exists index j < i such that si ∼W ′ sj . Thus there is some vertex

u that is a neighbor to both si and sj in W . Now consider the effect of the

conditioning on the event Aj on Zusi . By (1) and the definition of Aj we

have that E

[
Zusi | ∩i−1

j=1Aj

]
≥ E[Zusi ] + αi−1pu

√
t ≥ E[Zusi ] + αi−1pmin

√
t

where pmin = mini∈[k] pi. Furthermore, this gives that tE
[
Z

(v)
si | ∩i−1

j=1Aj

]
≥

(1 − ε)πsit + αi−1pmin

√
t. Thus choosing αi =

(
2k
pmin

)k−i
suffices to assure

that the event ∩k
i=1Ai is contained in Sε, as desired.

Theorem 9. Let G be a tth-order stochastic Kronecker graph generated by

a matrix P ∈ [0, 1]k×k such that W is connected and non-bipartite. Further
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suppose that
∑

i ci ln(ci) > 0 and fix

0 < ε <

∑
ci ln(ci)∑

ci ln(ci)−Vol(W ) ln(c1)
,

if
∑

ci ln ci �= Vol(W ) ln(c1), and ε > 0 if
∑

ci ln ci = Vol(W ) ln(c1).

Let H be the subgraph of G induced by Sε. For t sufficiently large, there

is a constant d > 1, depending on P and ε, such that H is connected with

diameter O(ln |Sε|) with probability at least 1− e−Θ(dt).

Notice that the bound on ε is always positive (or infinite), since c1 ≤ ci
for all i, so Vol(W ) ln c1 =

∑
ci ln(c1) ≤

∑
ci ln(ci).

Proof. We will proceed by showing that there exists a constant c > 0 such

that the graph H has λ1(H) > c asymptotically almost surely. As noted in

Theorem 2, this implies that H is connected asymptotically almost surely,

with diameter O(ln(|Sε|)).
Recall that the expected degree of a vertex with signature σ is

(
cσ1

1 · · · cσk

k

)t
and thus any vertex v ∈ Sε has expected degree at least

cεt1
(
cπ1

1 · · · cπk

k

)(1−ε)t
=
(
cε1
(
cc11 · · · cckk

) 1−ε

Vol(W )

)t
= dt,

where

d = cε1
(
cc11 · · · cckk

) 1−ε

Vol(W ) .

We note that by the restriction on ε,

ln(d) = ε ln(c1) +
1− ε

Vol(W )

∑
i

ci ln(ci)

=
1

Vol(W )

∑
i

ci ln(ci) + ε

(
ln(c1)−

1

Vol(W )

∑
i

ci ln(ci)

)

> 0,

and thus d > 1. This implies that every vertex in Sε has expected degree

exponentially increasing with t.

Let H be the subgraph of W⊗t induced by Sε, so the weight of each edge

in H is the probability of that edge appearing in H. Now, by Lemma 7, there

is some constant c such that for every vertex v in H we have degH(v) ≥ cdt.
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Now for any positive constant δ, there exists some small positive constant
c′ such that

27 ln
(

4|Sε|
e−c′dt

)
cdt

≤
27 ln

(
4kt

e−c′dt

)
cdt

=
27
(
t ln(k)+ ln(4)+ c′dt

)
cdt

= o(1)+
27c′

c
≤ δ2,

and thus, by Theorem 3, in order to complete the proof it suffices to show
that H has constant spectral gap. Indeed, by Theorem 3, if there exists a
constant ζ with λ1(H) > ζ > 0, then by Theorem 3, λ1(H) ≥ λ1(H) −
27 ln

(
4|Sε|

e−c′dt

)
cdt with probability at least 1 − e−c′dt

, and by the above, we have

that λ1(H) > ζ − δ2 for any δ > 0 with probability at least 1 − e−c′dt

, as
desired.

To determine the spectral gap in H, we use the Cheeger Inequality. Let
X ⊂ Sε with VolH(X) < 1

2 VolH(Sε). Note that

hH(X) =
eH(X,Sε\X)

VolH(X)
≥ ceW⊗t(X,V \X)

VolW⊗t(X)
= c hW⊗t(X),

where the constant c is the constant provided by Lemma 7. Thus, we have

hH = min
X⊂Sε

Vol(X)< 1

2
Vol(Sε)

hH(X)

≥ c min
X⊂Sε

Vol(X)< 1

2
Vol(Sε)

hW⊗t(X)

≥ c hW⊗t .

Now, let M1 = C−1/2PC−1/2 and let 1 = μ0 ≥ μ1 ≥ · · · ≥ μk−1 be the
eigenvalues of M1. Note that I −M1 is the Laplacian matrix for W , and as
W is connected and non-bipartite, −1 < μk−1 ≤ μ1 < 1. Now, L

(
W⊗t

)
=

I −M⊗t
1 , and thus has eigenvalues 1− μa1

μa2
· · ·μat

, where a1, a2, . . . , at ∈
[k − 1] ∪ {0}. Hence, the smallest nonzero eigenvalue of L

(
W⊗t

)
is 1− μ1,

which occurs with multiplicity t. Thus by the Cheeger Inequality, hW⊗t ≥
1−μ1

2 .
Therefore, combining these results we have

λ1

(
H
)
≥ 1

2
h2
H

≥ c

2
h2W⊗t ≥ c2

8
(1− μ1)

2.

Hence λ1

(
H
)
is bounded below by a constant and H has constant spectral

gap, as desired.
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This establishes that the graphG contains a small connected core asymp-
totically almost surely provided

∑
ci ln ci > 0. We now turn our attention

to the second half of our fundamental structure. Here we wish to determine
which vertices will be connected by a path to the connected core. To that
end, define Σν = {v ∈ V (G) | 〈σ(v)M s, L〉 ≥ ν for all s ≥ 0}. We wish to
show that any vertex in Σν may be connected by a path to Sε asymptoti-
cally almost surely.

Theorem 10. Let G be a tth-order stochastic Kronecker graph generated
by a matrix P ∈ [0, 1]k×k such that W is connected and non-bipartite. Fix

0 < ε, ν. Let λ be the spectral gap of W and let s =
⌈
1
λ ln
(
2Vol(W )

c1ε

)⌉
. For t

sufficiently large, any vertex v ∈ Σν is connected to Sε by a path of length

at most s with probability at least 1− se−eνt−Θ(
√

t)
.

Proof. Let v ∈ Σν . Define v0 = v and for each 1 ≤ i ≤ s, let vi be a neighbor

of vi−1 such that ‖σ(vi)− σ(vi−1)M‖ ≤
√

ln(6k)
2t (if such a neighbor exists).

For 1 ≤ i ≤ s define ηi = σ(vi) − σ(vi−1M). Now, we note that if such a
sequence exists, then

∥∥σ(vj)− σ(v)M j
∥∥ ≤

∥∥∥∥∥
j∑

i=1

ηiM
j−i

∥∥∥∥∥ ≤
j∑

i=1

∥∥ηiM j−i
∥∥ ≤

j∑
i=1

‖ηi‖1

≤
j∑

i=1

k

√
ln(6k)

2t
= jk

√
ln(6k)

2t
,

and further

〈vj , L〉 ≥ 〈v0, L〉 − jk

√
ln(6k)

2t
‖L‖1 ≥ ν − jk

√
ln(6k)

2t
‖L‖1 .

Thus, since s is a fixed constant, we have that by Corollary 6 for sufficiently
large t such a sequence fails to exist with probability at most

se−

⎛
⎝e

ν−sk

√
ln(6k)

2t
‖L‖1

⎞
⎠

t

12 = se−
e
νt−Θ(

√
t)

12 = se−eνt−Θ(
√

t)
.

It now suffices to show that vs ∈ Sε.
By the choice of s and Theorem 4, we know that∣∣∣∣(σ(v)M s)i − πi

πi

∣∣∣∣ ≤ ε

2
,
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and thus (σ(v)M s)i ≥ (1− ε
2)πi. But then as |(vs)i − (σ(v)M s)i| ≤ sk

√
ln(6k)
2t

we have that for sufficiently large t, vs ∈ Sε.

4. Small components

We now turn to the case that the stochastic Kronecker graph has only small
components, that is, the largest component is of size at most o(n) = o(kt).
These correspond to items (1) and (2) in Theorem 1. The first of these result
follows from standard results on the component sizes of (non-stochastic)
Kronecker graphs which we include in the following lemma for completeness.

Lemma 11. If H is a disconnected or bipartite graph on k vertices, then
the largest component of H⊗t has size O

(
(k − 1)t

)
.

Proof. First, suppose H is not connected. Let v = (v1, v2, . . . , vt) be a vertex
in H⊗t. Now for any neighbor u = (u1, u2, . . . , ut) of v each coordinate ui
must be adjacent to vi in H and hence in the same component as vi. Thus,
the size of the component containing v is at most the product of the sizes of
the components in H of the vertices vi. Since H is disconnected the largest
component in H has size at most k − 1 and thus the largest component in
H⊗t has size at most (k − 1)t.

Now, suppose H is a connected bipartite graph with bipartition (A,B)
and again consider a vertex v = (v1, v2, . . . , vt) and a neighbor u of v, with
u = (u1, u2, . . . , ut). Now since vi and ui are adjacent in H, they are on
different sides of the bipartition (A,B). Thus the component containing v
and u is bipartite with u and v on different sides of the bipartition. Further-
more, the side of the bipartition containing v has |A||{i:vi∈A}| |B||{j:vj∈B}|

vertices. Thus for all 0 ≤ i ≤ t there are
(
t
i

)
components of H⊗t of size

|A|i |B|t−i+ |A|t−i |B|i. It is worth noting that this size is symmetric and so
components counted for a given i are also counted for t− i. Now maximizing
|A|i |B|t−i + |A|t−i |B|i over the choice of i, we have that the largest com-
ponent occurs where either i = 0 or i = t. As |B| = k − |A|, we maximize
with respect to |A| to obtain that the largest of component of H⊗t has size
at most (k − 1)t + 1 for k > 1.

This lemma resolves item (1) in Theorem 1 as it implies that the under-
lying graph for P⊗t is disconnected with small component sizes.

Theorem 12. Let G be a tth-order stochastic Kronecker graph generated
by P ∈ [0, 1]k×k with column sums c1 ≤ · · · ≤ ck. If W is connected, non-
bipartite, and

∏
i ci < 1, then there exists some 0 < δ < 1 such that with

probability at least 1 − e−
nδ

3 there are at least n − O
(
nδ
)
isolated vertices

in G.
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Proof. We consider two cases, according to whether ck = c1 or ck �= c1.
If ck �= c1, then as

∏
i ci < 1 we may set 0 < ε = −1

k

∑
i ln(ci), so that∑

i ln(ci) = −εk < 0. Let α be a solution to

α =
2(ε− α)2

(ln(ck)− ln(c1))
2

in the interval [0, ε]. Such an α exists as α and 2(ε−α)2

(ln(ck)−ln(c1))
2 are contin-

uous functions, 0 < 2ε2

(ln(ck)−ln(c1))
2 , and ε > 0. Let δ = 1 − α

ln(k) . Let

X = X1 + · · · + Xt where each Xi takes values independently uniformly
from {ln(c1), . . . , ln(ck)}. Note that X can be thought of as the natural log-
arithm of the expected degree of a vertex of G chosen uniformly at random.
Now by Hoeffding bounds we have that

P(X ≥ −αt) = P(X + εt ≥ (ε− α)t) ≤ e
− 2(ε−α)2

(ln(ck)−ln(c1))2
t
= e−αt.

Thus there are at most kte−αt = nδ vertices of G with expected degree larger
than e−αt. The sum of the expected degrees of vertices with expected degree
smaller than e−αt is at most kte−αt = nδ. Thus by Chernoff bounds with

probability at least 1−e−
nδ

3 there are at most 2nδ edges incident to vertices
with expected degree at most e−αt. Combining this with the vertices with
expected degree at least e−αt we have that there are at most 3nδ non-isolated
vertices in G.

For the second case, if ck = c1, then we note that c1 = c2 = · · · = ck. As∏
ci < 1, we have that c1 < 1, and the expected degree of every vertex in G

is ct1. Note then that by linearity of expectation, we have that the expected

number of edges in G is 1
2nc

t
1 = 1

2n
1+

ln c1
ln k . As ln c1 < 0, we have that the

expected number of edges in G is at most nδ for some 0 < δ < 1. By Chernoff
bounds, then, the number of edges in G is at most 3

2n
δ with probability at

least 2 exp
(
−nδ/8

)
= o(1). But then the number of non-isolated vertices in

G is at most 3nδ, and the result follows.

The preceding theorem resolves item (2) in Theorem 1.

5. Giant components

We now turn our attention to proving item (4) in Theorem 1. To prove this
result, we will use the structure outlined in Section 3, and in particular,
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Theorems 9 and 10 regarding the existence of a connected core of vertices

and the vertices that can be connected by a path to Sε. In order to apply

these theorems, however, we must verify that the conditions are met. We thus

begin with several additional lemmas addressing the case that
∏

i ci > 1.

Lemma 13. Let 0 < c1 ≤ · · · ≤ ck be such that
∏

i ci ≥ 1. Then
∑

i ci ln(ci)≥
0 with equality if and only if the ci’s are identically 1.

Proof. Define δj = cj − cj−1 ≥ 0, where c0 is defined to be 0 and define

sj =
∑k

i=j ln(ci). As
∑

i ci ln(ci) =
∑

i δisi, and all the δi ≥ 0, it suffices to

show that si ≥ 0 for i = 1, 2, . . . , k. We note that since the ci’s are increasing

and ln(·) is a monotonically increasing function 0 ≤
∑

i ln(ci) ≤
j−1

k−j+1sj+sj ,

and thus sj ≥ 0 for all j.

We note that if
∏

i ci > 1, then the previous argument implies that∑
i ci ln(ci) > 0. Thus suppose that

∏
i ci = 1 and yet the ci’s are not

identically 1. As this implies that ck > 1 and c1 < 1, there is some minimal

j such that cj > 1. But then as cj−1 ≤ 1, δj > 0 and sj =
∑k

i=j ln(ci) ≥
(k − j + 1) ln(cj) > 0, we have that

∑
i ci ln(ci) > 0, as desired.

Lemma 14. Let P be a symmetric matrix in [0, 1]k×k with non-identical

column sums 0 < c1 ≤ · · · ≤ ck. Further suppose that the associated weighted

graph W is connected and non-bipartite. Let f be a strictly monotonically

increasing function on R
+ and let L be the vector (f(c1), . . . , f(ck)). If M is

the transition matrix for the uniform random walk on W , then 〈1M s, L〉 >
〈1, L〉 for all s ≥ 1.

Proof. We first note that M = C−1P and consider

〈1M,L〉 − 〈1, L〉 =
〈
1C−1P,L

〉
− 〈1, L〉

=

k∑
i=1

k∑
j=1

Pij

ci
Lj −

k∑
j=1

Lj

=

k∑
i=1

k∑
j=1

Pij

ci
Lj −

k∑
j=1

k∑
i=1

Pij

cj
Lj

=

k∑
i=1

k∑
j=1

(
Pij

ci
− Pij

cj

)
Lj

=
∑
ci>cj

Pij

(
1

cj
− 1

ci

)
(Li − Lj) .
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Note that as f is strictly increasing, Li −Lj > 0 and 1
cj
− 1

ci
> 0 for ci > cj .

Further, as W is connected, Pij > 0 for some i and j with ci �= cj , giving
that 〈1M,L〉 − 〈1, L〉 > 0.

To complete the proof it would suffice to show that M s is the transition
probability matrix for the uniform random walk on some connected, non-
bipartite graph with the same degree sequence as W . To that end, fix some
s ≥ 2 and note that M s = C−1

(
PC−1

)s−1
P , and so let P ′ =

(
PC−1

)s−1
P .

It is clear that P ′ is symmetric and has the desired column sums, thus it
suffices to show that the associated graphW ′ is connected and non-bipartite.
We note that P ′

ij > 0 if and only if there is a length s walk between i and j
in W . We note that if s is odd, then the edges present in W ′ are a superset
of the edges in W , and thus W ′ is connected and non-bipartite.

Thus suppose s is even and let C be an odd length cycle in W . Consider
the walk in W ′ formed by starting at vertex v and traversing the cycle C
in steps of length s. As s is even and the length of the cycle is odd, it will
take an odd number of steps in W ′ to return to the vertex v. Thus, there is
a closed walk in W ′ of odd length and hence W ′ is non-bipartite. We note
that as s is even W ′ contains self-loops at all vertices and edges between
pairs of vertices that are connected by a walk of length 2. Thus in order to
show that W ′ is connected it suffices to show that there is an even length
walk between any two vertices in W . For any two distinct vertices u and v
in W such a walk can be constructed by taking a walk from each vertex to
the odd cycle C and then traversing C in both directions. As C is an odd
cycle, these two traversals will have opposite parity, and thus one of those
walks will have even length.

These two Lemmas immediately give part (4) of our main theorem, as
follows.

Theorem 15. Let G be a tth-order stochastic Kronecker graph generated
by a matrix P ∈ [0, 1]k×k such that W is connected and non-bipartite. If∏

i ci > 1, then there are constants s, d > 1, depending only on P , such that
for sufficiently large t, G has a giant component with probability at least
1− skte−Θ(dt).

Proof. First, if c1 = c2 = · · · = ck, we note that the minimum degree in
W⊗t is at least exponential in t, and hence by Theorem 3 together with the
spectral properties of Kronecker products used in Theorem 9, G is connected
with probability at least 1− e−Θ(dt), and the result follows immediately.

If not, then by Lemma 13, we have that
∑

i ci ln(ci) > 0. Fix

0 < ε =

∑
i ci ln(ci)

2
∑

i ci ln(ci)− 2 ln(c1)Vol(W )
<

∑
i ci ln(ci)∑

i ci ln(ci)− ln(c1)Vol(W )
.
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By Theorem 9, there is some constant d1 > 1 which depends only on P such
that Sε is connected with probability at least 1− e−Θ(dt

1).
Fix some positive constant c. Let v be an arbitrary vertex such that∥∥σ(v)− 1

k1
∥∥ ≤ c√

t
and let ηv = σ(v)− 1

k1. Noting that 〈1, L〉 = ln (
∏

i ci) >

ln(1) = 0, we have that for sufficiently large t and all s ≥ 0,

〈σ(v)M s, L〉 =
〈(

1

k
1 + ηv

)
M s, L

〉

=
1

k
〈1M s, L〉+ 〈ηvM s, L〉

≥ 1

k
〈1, L〉 − ‖ηv‖1 ‖L‖∞

≥ 1

k
〈1, L〉 − kc ‖L‖∞√

t

>
1

2k
〈1, L〉 ,

where the first inequality follows from Lemma 14. Let d2 = e
1

2k
〈1,L〉 and note

that this implies that v ∈ Σ 1

2k
〈1,L〉 and so by Theorem 10 there is a constant s

such that with probability at least 1−se−( 1

12
−o(1))dt

2 the vertex v is connected
to Sε by a path of length at most s. Observing that a constant fraction of
the vertices have the desired signature by Chernoff bounds completes the
proof.

A slight modification of this argument gives part (3) of the main theorem.

Theorem 16. Let G be a tth-order stochastic Kronecker graph generated
by a matrix P ∈ [0, 1]k×k such that W is connected and non-bipartite. If∏

i ci = 1 such that the ci’s are not all equal, then there are constants
s, d > 1, depending only on P , such that for sufficiently large t, G has a
giant component with probability at least 1− e−Θ(dt).

Proof. Since the ci’s are not all equal, we have that
∑

i ci ln(ci) > 0 by
Lemma 13. Fix ε > 0 satisfying the hypotheses of Theorem 9; we shall further
restrict ε as needed below. Then by Theorem 9 there is some constant d1 > 1
such that Sε is connected with probability at least 1− e−Θ(dt

1).

Let s =
⌈
1
λ ln
(
2Vol(W )

εc1

)⌉
and note that by Theorem 4, 1

k1M j ∈ Sε/2 for

all j ≥ s.
Note that for all i = 1, 2, . . . , k, if σ ∈ Sε/2, then we have

σi = 1−
∑
j 
=i

σj ≤ 1−
∑
j 
=i

(
1− ε

2

)
πj = 1−

(
1− ε

2

)
(1−πi) =

(
1− ε

2

)
πi+

ε

2
.
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Let l be the largest integer such that cl < 1. Then we have, for all j ≥ s,

〈
1

k
1M j , L

〉
≥

l∑
i=1

[(
1− ε

2

)
πi +

ε

2

]
ln ci +

k∑
i=l+1

(
1− ε

2

)
πi ln ci

=
∑
i

(
1− ε

2

)
πi ln ci +

ε

2

l∑
i=1

πi ln ci

≥
∑
i

(
1− ε

2

)
πi ln ci +

ε

2
k ln c1(2)

for all j ≥ s. Here we further restrict ε to be sufficiently small that the
quantity in (2) is positive. Moreover, if 1 ≤ j < s, we may apply Lemma 14
to obtain a constant μ > 0 such that

〈
1
k1M j , L

〉
≥ μ for all 1 ≤ j < s. Since

s is a fixed constant, this implies that there is some ν > 0 such that for all
j ≥ 1, we have

〈
1
k1M j , L

〉
≥ ν.

Let c be a constant to be fixed later. We notice that for t sufficiently
large all vertices v such that

∥∥σ(v)− 1
k1M

∥∥ ≤ c√
t
are contained in Σν/2.

Thus by Theorem 10 these vertices are connected to Sε/2 with probability at

least 1− e−Θ(dt
2) where d2 = e

ν/2.
At this point it suffices to show that a constant fraction of the vertices in

G are adjacent to Σν/2. To this end, let V ′ be the set of vertices v such that∣∣σj(v)− 1
k

∣∣ ≤ 1
k
√
t
for 1 ≤ j < k and

∣∣σk(v)− 1
k

∣∣ ≤ − ln(c1)

ln(ck)
√
t
. By Chernoff

bounds and Observation 8, we have that a constant fraction of the vertices
of G are in V ′. Furthermore, for every vertex v ∈ V ′, E[deg(v)] ≥ 1. Now by
part (1) of Lemma 5, for all v ∈ V ′,∑

‖σ(u)−σ(v)M‖≤
√

ln(2k)

2t

P(u ∼ v) ≥ (1− e−1)E[deg(v)] ≥ 1− e−1.

Thus, any fixed vertex in v ∈ V ′ has a neighbor u such that

‖σ(u)− σ(v)M‖ ≤
√

ln(2k)
2t with probability at least e−2(1−e−1). We fur-

ther note that any such neighbor is a member of Σν/2. Taking c ≥ 1√
2
+

max
{

1
k ,

− ln(c1)
ln(ck)

}
and applying Chernoff bounds completes the proof.

6. Connectivity

Finally, we turn to the connectivity of G. We note that part (8) of the main
theorem follows immediately from Theorem 3 by observing that the mini-
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mum degree in W⊗t is exponential in t and exploiting the spectral properties
of the Kronecker product, as mentioned in the proof of Theorem 15. How-
ever, in keeping with the theme of this paper we provide an alternative proof
which exploits the Markov chain structure.

Theorem 17. Let G be a tth-order stochastic Kronecker graph generated
by a matrix P ∈ [0, 1]k×k such that W is connected and non-bipartite. If
1 < c1 ≤ . . . ≤ ck, then there is some constant d > 1, depending only on P
such that G is connected with probability at least 1− e−Θ(dt).

Proof. We first note that as c1 > 1, ln(c1) > 0 and thus for any signature σ,
〈σ, L〉 ≥ ln(c1) > 0. Thus every vertex is in Σln(c1) and hence by Theorem
10 for every ε > 0, every vertex is connected to Sε by a path of constant

length with probability at least 1−ne−c
(1−o(1))t
1 . Thus it suffices to show that

there is some ε > 0 such that Sε is connected. But as ci > 1 for all i, this
implies that

∑
i ci ln(ci) > 0 and thus by Theorem 9 there is some constant

d̂ > 1, depending only on P , such that Sε is connected with probability at

least 1− e−Θ(d̂t).

The following two theorems address the case that c1 = 1. We note that
we will always have a giant component in this case, unless c1 = c2 = · · · =
ck = 1. However, the connectivity no longer depends entirely on the degrees
in the graph, but is determined based on how the weight is distributed among
the vertices. In particular, the backbone graph will determine the behavior.

Theorem 18. Let G be a tth-order stochastic Kronecker graph generated
by P ∈ [0, 1]k×k with column sums 1 = c1 ≤ · · · ≤ ck. If W is connected
and non-bipartite and the backbone graph B has a vertex of degree zero, then
there is a constant p ∈ (0, 1) such that with probability at least 1 − pt the
graph G has at least 1

2 t
(1−o(1)) ln ln(t) isolated vertices.

Proof. Note that as the backbone graph B has a vertex of degree 0, there
exists a vertex v ∈ G such that for all vertices u, P(u ∼ v) ≤ 1

2 . We note
that in this case we have

ln (P(deg(v) = 0)) = ln

(∏
u

1− P(u ∼ v)

)

=
∑
u

ln (1− P(u ∼ v))

≥ −
∑
u

P(u ∼ v)

1− P(u ∼ v)
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≥ −
∑
u

2P(u ∼ v)

= −2E[deg v] ,

where the last inequality comes from the upper bound on P(u ∼ v). Thus
we have that P(deg(v) = 0) ≥ e−2E[deg(v)]. Thus it suffices to find a large col-
lection of vertices in G whose degrees are independent and where E[deg(v)]
is small.

To that end suppose that there is some i such that p1i = 1, that is, the
degree of vertex 1 in B is not zero. Thus there is some j �= 1, i such that j has

degree zero in B. Now let S
(j)
tj be the set of vertices in G whose signature σ

has σj =
tj
t , σ1 = 1− tj

t , and σi = 0 for i �= 1, j. Since c1 = 1 and p1i = 1, we

know that p1j = 0 and thus the degrees of all vertices in S
(j)
tj are independent.

We note that there is a choice of constant c such that if tj = c ln ln(t) then

the expected number of isolated vertices in S
(j)
tj is t(1−o(1)) ln ln(t), and thus

by Chernoff bounds with probability at least 1− e−
t(1−o(1)) ln ln(t)

6 there are at
least 1

2 t
(1−o(1)) ln ln(t) isolated vertices in G.

Now suppose that the degree of 1 in B is zero. Choose some index j �= 1

arbitrarily and consider the set S
(j)
tj as above. As j is arbitrary there may

be some edges between vertices of S
(j)
tj . Thus we note that when 3tj ≤ t, we

have

E

[
e(S

(j)
tj , S

(j)
tj )
]
=
∑

u∈S(j)
tj

∑
v∈S(j)

tj

P(u ∼ v)

= 2

(
t

tj

) tj∑
i=0

(
tj
i

)(
t− tj
tj − i

)
p
tj−i
jj pij1p

i
1jp

t−tj−i
11

≤ 2

(
t

tj

)(
t− tj
tj

)
p
t−2tj
11

(
p11pjj + p21j

)tj
≤ 2ttj ttjp

t−2tj
11 (p11pjj + p21j)

tj .

In particular, there is a constant c′ such that E

[
e(S

(j)
tj , S

(j)
tj )
]

≤
(
c′t2
)tj pt11. As p11 < 1, this implies that the probability of an edge in

S
(j)
tj is exponentially small provided tj ∈ o

(
t

ln(t)

)
. Thus, again choosing

tj = c ln ln(t) and conditioning on e(S
(j)
tj , S

(j)
tj ) = 0 gives the desired re-

sult.
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A slight simplification of this result gives part (5) of Theorem 1.

Theorem 19. Let G be a tth-order stochastic Kronecker graph generated
by a matrix P ∈ [0, 1]k×k such that W is connected and non-bipartite. If
1 = c1 ≤ . . . ≤ ck and the backbone graph B has no vertices of degree zero,
then there is a constant d > 1 such that G is connected with probability at
least 1− e−Θ(dt).

Proof. First we note that ck > 1 as otherwise the only edges present in W
are those present in the backbone graph, and thus W is a perfect matching,
contradicting the non-bipartiteness. Thus we have that

∑
i ci ln(ci) > 0 and

thus by Theorem 9 there is some ε > 0 and d′ > 1 such that S2ε is connected
with probability at least 1− e−Θ(d′t).

Now in a similar manner as the proof of Theorem 10 it suffices to show
that asymptotically almost surely, from every vertex v = v0 there is a se-
quence v0, v1, . . . , vs such that vi ∼ vi+1 and vs ∈ Sε ⊂ S2ε. By imposing
the additional condition that ‖σ(vi)M − σ(vi+1)‖∞ ≤ ε

sk‖L‖∞
, we may take

s =
⌈
1
λ ln
(
Vol(W )

2ε

)⌉
by Theorem 4 and the Markov chain viewpoint.

To that end fix an arbitrary vertex v and consider the behavior of Z(v)

from the point of view of the product distribution
(
X(1)

)t1 × · · · ×
(
X(k)

)tk
where ti is the number of i’s in the label for v. Notice that for those in-
dicies i where ci = 1, X(i) is the identity distribution. Furthermore, these
coordinates perfectly respect the action of the Markov chain given by M .

Let j be the first index with cj > 1, so that cj−1 ≤ 1. Suppose that
tj + · · ·+ tk ≤ ε

sk‖L‖∞
t. Note then any neighbor u of v in B⊗t immediately

satisfies that ‖σ(v)M − σ(u)‖∞ ≤ ε
sk‖L‖∞

.

Otherwise, we have tj+ · · ·+ tk > ε
sk‖L‖∞

. But then E[deg(v)] ≥ c
ε

sk‖L‖∞
t

j

and cj > 1, and thus by Lemma 5, there is a constant c such that

∑
‖σ(v)M−σ(u)‖∞≤ ε

sk‖L‖∞

P(u ∼ v) ≥ cc
ε

sk‖L‖∞
t

j .

Applying Chernoff bounds to assure the existence of such a vertex completes
the proof.

7. Concluding remarks

We note that in principle these techniques can be extended to analyze the
emergence of connectivity and the giant component in generalizations of the
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stochastic Kronecker graph, such as the multiplicative attribute graph [13].
In fact, based on the work in [20], it is likely that similar transition points will
hold. That is, the multiplicative attribute graph will have a giant component
when the median expected degree is 1 and become connected when the
probability of an isolated vertex goes to zero.

Perhaps a more interesting direction would be to resolve the size of the
largest component in the case when c1 = c2 = · · · = ck = 1. By letting
P = 1

k11T we see that this regime includes the Erdős-Rényi graph G
(
kt, 1

kt

)
at criticality. Thus it seems likely that in order to understand the size of the
largest component of the stochastic Kronecker graph when c1 = c2 = · · · =
ck = 1 it will require a deeper understanding of why the branching process
for G(n, 1

n) terminates with a largest component of size Θ
(
n

2/3
)
[2].

As a possible intermediate stage, consider a d-regular, connected, non-
bipartite graph H on k vertices and let P be 1

d times the adjacency matrix
of H. What is the size of the largest component in the tth-order stochastic
Kronecker graph generated by P? From a natural coupling with G

(
dt, 1

dt

)
it is clear that it should be at least Ω

(
d

2t/3
)
. On the other hand, since the

degree of every vertex is still asymptotically Poisson with parameter 1, the
branching process point of view would indicate that the size of the largest
component should be Θ

(
k

2t/3
)
. However, we note that if H is the d-regular

graph formed by two copies of Kd−1 joined by a perfect matching, then
H⊗t consists of 2t copies of K(d−1)t with relatively few edges between them.
Furthermore, as the expected degree within each of these copies of K(d−1)t

is
(
d−1
d

)t ∈ o(1), the largest component in each of these components is
O(t), seemingly indicating that the overall size of the largest component is
relatively small. Thus, it seems likely that any resolution of the case where
c1 = c2 = · · · = ck will necessitate a deeper understanding of the branching
process at criticalility, and specifically, how the branching process interacts
with the underlying network of potential edges.
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[1] Béla Bollobás, The diameter of random graphs, Trans. Amer. Math.
Soc., 267 (1981), pp. 41–52. MR0621971
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