The effect of vertex or edge deletion on the metric dimension of graphs

LINDA EROH, PAUL FEIT, CONG X. KANG, AND EUNJEONG YI

The metric dimension $\dim(G)$ of a graph G is the minimum cardinality of a set of vertices such that every vertex of G is uniquely determined by its vector of distances to the chosen vertices. Let v and e respectively denote a vertex and an edge of a graph G. We show that, for any integer k, there exists a graph G such that $\dim(G-v)-\dim(G)=k$. For an arbitrary edge e of any graph G, we prove that $\dim(G-e)\leq \dim(G)+2$. We also prove that $\dim(G-e)\geq \dim(G)-1$ for G belonging to a rather general class of graphs. Moreover, we give an example showing that $\dim(G)-\dim(G-e)$ can be arbitrarily large.

KEYWORDS AND PHRASES: Distance, resolving set, metric dimension, vertex deletion, edge deletion.

AMS 2000 Subject Classifications: 05C12.

1. Introduction

Let G = (V(G), E(G)) be a simple, undirected, connected, and nontrivial graph with order |V(G)|. The degree of a vertex v in G, denoted by $\deg_G(v)$, is the number of edges that are incident to v in G; an end-vertex is a vertex of degree one. We denote by K_n , C_n , and P_n the complete graph, the cycle, and the path on n vertices, respectively. The distance between two vertices $v, w \in V(G)$ is denoted by $d_G(v, w)$; we drop G if it is clear in the context. For other terminologies in graph theory, we refer to [4].

A vertex $x \in V(G)$ resolves a pair of vertices $u, v \in V(G)$ if $d(u, x) \neq d(v, x)$. A set of vertices $S \subseteq V(G)$ resolves G if every pair of distinct vertices of G is resolved by a vertex in S; then S is called a resolving set of G. For an ordered set $S = \{u_1, u_2, \ldots, u_k\} \subseteq V(G)$ of distinct vertices, the metric code (or code, for short) of $v \in V(G)$ with respect to S is the k-vector $code_S(v) = (d(v, u_1), d(v, u_2), \ldots, d(v, u_k))$. The metric dimension of G, denoted by $\dim(G)$, is the minimum of |S| as S varies over all resolving sets of G.

Slater [14, 15] introduced the concept of a resolving set for a connected graph under the term *locating set*; he referred to a minimum resolving set as

a reference set, and the cardinality of a minimum resolving set as the location number of a graph. Independently, Harary and Melter [8] studied these concepts under the term metric dimension. Metric dimension as a graph parameter has numerous applications, among them are robot navigation [10], sonar [14], combinatorial optimization [12], and pharmaceutical chemistry [3]. It was noted in [7] that determining the metric dimension of a graph is an NP-hard problem. Metric dimension has been heavily studied. For a survey on metric dimension and some variations, see [5] by Chartrand and Zhang. For a comparative study of metric dimension and graph parameters of more algebraic flavor, see [1] by Bailey and Cameron.

The question as to the effect of the deletion of a vertex or of an edge on the metric dimension of a graph was raised as a fundamental question in graph theory by Chartrand and Zhang in [5]. We address the question as follows: We show graphs G such that $\dim(G-v)$ is arbitrarily large (or small) relative to $\dim(G)$. For $e \in E(G)$, we prove that $\dim(G-e) \leq \dim(G) + 2$ for any graph G, and we prove that $\dim(G-e) \geq \dim(G) - 1$ for G belonging to a rather general class of graphs. In general, we show that $\dim(G) - \dim(G-e)$ can be arbitrarily large.

2. The effect of vertex deletion on metric dimension of graphs

We first recall some basic facts on metric dimension for background.

Theorem 2.1. [3] For a connected graph G of order $n \geq 2$ and diameter d,

$$f(n,d) \le \dim(G) \le n - d,$$

where f(n,d) is the least positive integer k for which $k+d^k \geq n$.

A generalization of Theorem 2.1 has been given in [9] by Hernando et al.

Theorem 2.2. [9] Let G be a graph of order n, diameter $d \geq 2$, and metric dimension k. Then

$$n \le \left(\left\lfloor \frac{2d}{3} \right\rfloor + 1 \right)^k + k \sum_{i=1}^{\left\lceil \frac{d}{3} \right\rceil} (2i - 1)^{k - 1}.$$

Theorem 2.3. [3] Let G be a connected graph of order $n \geq 2$. Then

- (a) $\dim(G) = 1$ if and only if $G = P_n$,
- (b) $\dim(G) = n 1$ if and only if $G = K_n$,
- (c) for $n \ge 4$, dim(G) = n 2 if and only if $G = K_{s,t}$ $(s, t \ge 1)$, $G = K_s + \overline{K}_t$ $(s \ge 1, t \ge 2)$, or $G = K_s + (K_1 \cup K_t)$ $(s, t \ge 1)$; here, A + B

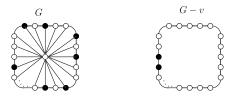


Figure 1: A graph G such that $\dim(G) - \dim(G - v)$ can be arbitrarily large.

denotes the graph obtained from the disjoint union of graphs A and B by joining every vertex of A with every vertex of B, and \overline{C} denotes the complement of a graph C.

The following definitions are stated in [3]. Fix a graph G. A vertex of degree at least three is called a major vertex. An end-vertex u is called a terminal vertex of a major vertex v if d(u,v) < d(u,w) for every other major vertex w. The terminal degree of a major vertex v is the number of terminal vertices of v. A major vertex v is an exterior major vertex if it has positive terminal degree. Let $\sigma(G)$ denote the sum of terminal degrees of all major vertices of G, and let ex(G) denote the number of exterior major vertices of G. Two vertices $u, v \in V(G)$ are called twins if $N(u) - \{v\} = N(v) - \{u\}$, where N(u) is the set of all vertices adjacent to u in G. Notice that $S \cap \{u, v\} \neq \emptyset$ if S is a resolving set and u, v are twins for any graph. We now recall two theorems useful in the two examples which follow.

Theorem 2.4. [3, 10, 11] If T is a tree that is not a path, then $\dim(T) = \sigma(T) - ex(T)$.

Theorem 2.5. [2, 13] For $n \geq 3$, let $W_{1,n} = C_n + K_1$ be the wheel graph on n+1 vertices. Then

$$\dim(W_{1,n}) = \begin{cases} 3 & \text{if } n = 3 \text{ or } n = 6, \\ \lfloor \frac{2n+2}{5} \rfloor & \text{otherwise.} \end{cases}$$

The following example appeared in [2].

Example 2.6. There exists a graph G such that $\dim(G) - \dim(G - v)$ can be arbitrarily large; take $G = W_{1,n}$ for $n \geq 7$ and let v be the central vertex of degree n in G (see Figure 1). Notice that $\dim(G-v) = 2$ since $G-v \cong C_n$, whereas $\dim(G) = \lfloor \frac{2n+2}{5} \rfloor$ by Theorem 2.5.

Example 2.7. There exists a graph G such that $\dim(G-v) - \dim(G)$ can be arbitrarily large. For $k \geq 6$, let G-v be a tree with k exterior major vertices, u_1, u_2, \ldots, u_k , and three terminal vertices $\ell_{i,1}, \ell_{i,2}, \ell_{i,3}$ for each u_i ,

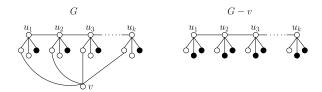


Figure 2: A graph G such that $\dim(G-v) - \dim(G)$ can be arbitrarily large.

where $1 \leq i \leq k$; let G be the graph obtained by joining $\ell_{1,1}, \ell_{2,1}, \ldots, \ell_{k,1}$ to a new vertex v (see Figure 2). By Theorem 2.4, $\dim(G-v)=2k$. We will show that $\dim(G)=k$. Since $\ell_{i,2}$ and $\ell_{i,3}$ are twins for each i $(1 \leq i \leq k)$ in G, $\dim(G) \geq k$. On the other hand, $d_G(\ell_{i,3}, v)=3$ implies that $d_G(\ell_{i,3}, \ell_{i+3,1})=4$ and $d_G(\ell_{i,3}, \ell_{i+3,2})=5$. So, if $k \geq 6$, then $\{\ell_{i,3} \mid 1 \leq i \leq k\}$ forms a resolving set for G; thus $\dim(G) \leq k$.

3. The effect of edge deletion on metric dimension of graphs

Next, we consider how the metric dimension of a graph changes upon deletion of an edge. The following theorem is stated in [3], with a correct proof given in [6].

Theorem 3.1. [3, 6] Let T be a tree of order at least three. If $e \in E(\overline{T})$, then

$$\dim(T) - 2 \le \dim(T + e) \le \dim(T) + 1.$$

It turns out that the lower bound in the preceding theorem holds for all graphs.

Theorem 3.2. For any graph G and any edge $e \in E(G)$, we have

$$\dim(G - e) \le \dim(G) + 2.$$

Proof. Let S be a minimum resolving set for G, and let u and v be the endpoints of the edge e. We will show that $S' = S \cup \{u, v\}$ is a resolving set for G - e. Let x and y be distinct vertices in V(G - e) = V(G) which, in the graph G, are resolved by $z \in S$. Suppose x and y, in the graph G - e, are not resolved by z; then $d_{G-e}(x, z) = d_{G-e}(y, z)$. We consider two cases.

Case I. For one of x and y, say y, the distance to z is not changed by removing edge e; so $d_{G-e}(y,z) = d_G(y,z)$. In this case, $d_G(y,z) = d_{G-e}(y,z) = d_{G-e}(x,z) > d_G(x,z)$ and the edge e must lie on every x-z geodesic in G. Thus, up to transposing the labels u and v, we have $d_G(x,u) + d_G(u,v) + d_G(u,v) + d_G(u,v) = d_{G-e}(x,z)$

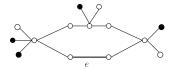


Figure 3: A graph G with $\dim(G - e) = \dim(G) + 2$.

 $d_G(v,z) = d_G(x,z)$. Notice that $d_G(x,u) = d_{G-e}(x,u)$, since there is an x-u geodesic in G that does not use edge e. Since $d_G(x,u) + d_G(u,z) = d_G(x,z) < d_G(y,z) \le d_G(y,u) + d_G(u,z)$, we must have $d_G(x,u) < d_G(y,u)$. But then $d_{G-e}(x,u) = d_G(x,u) < d_G(y,u) \le d_{G-e}(y,u)$, so $u \in S'$ resolves x and y.

Case II. For both x and y, the distance to z is increased by removing the edge e. In this case, the edge e must lie on every x-z geodesic and on every y-z geodesic in G. Notice that if a geodesic from some vertex a to another vertex c traverses the edge e in the order u, v (as opposed to v, u), then a geodesic containing e from any vertex b to c must also traverse e in the order u, v: For the sake of contradiction, let an a-c geodesic have the form $a, \ldots, u, v, \ldots, c$ and let some b-c geodesic have the form $b, \ldots, v, u, \ldots, c$. The presence of the a-c geodesic implies that d(u,v)+d(v,c)=d(v,c), and the presence of the b-c geodesic implies that d(v,u)+d(u,c)=d(v,c). The sum of the two equations simplifies to d(u,v)=0, a contradiction. Suppose that u is traversed before v by a x-z geodesic and a y-z geodesic (directed towards z) in G, then a x-u geodesic and a y-u geodesic, neither containing the edge e, are obtained by truncating a common u-z geodesic in G; thus, u resolves x and y in G-e. To complete the proof, simply swap the letters u and v in the preceding sentence.

Example 3.3. For the sharpness of the upper bound of Theorem 3.2, see Figure 3. Notice that $\dim(G) = 4$ (the solid vertices in Figure 3 form a minimum resolving set of G). By Theorem 2.4, $\dim(G - e) = 6$, and hence $\dim(G - e) = \dim(G) + 2$.

Next, we consider how small the metric dimension of G could become upon deleting an edge of G. The following theorem is really an example; we are calling it a theorem in deference to its importance and the effort expended in its discovery!

Theorem 3.4. There exists a graph G such that $\dim(G) - \dim(G - e)$ can be arbitrarily large. Let G be the graph in Figure 4 for $k \geq 2$, and let $e = AB \in E(G)$. Then $\dim(G) = 2k$ and $\dim(G - e) = k + 1$.

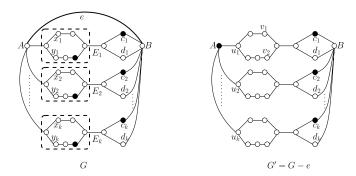


Figure 4: A graph G such that $\dim(G) - \dim(G - e)$ can be arbitrarily large.

Proof. Let S be a minimum resolving set for G, and let S' be a minimum resolving set for G' = G - e. Notice that, for each i $(1 \le i \le k)$, $|S \cap \{c_i, d_i\}| \ge 1$ since c_i and d_i are twin vertices in G; similarly, $|S' \cap \{c_i, d_i\}| \ge 1$. Without loss of generality, we may assume $S_0 = \{c_i \mid 1 \le i \le k\} \subseteq S \cap S'$. For the sake of complete clarity, let $code_S(x, G)$ denote the code vector of x with respect to the set of vertices S in the graph G.

First, we show that $\dim(G) = 2k$. Notice that, for each i $(1 \le i \le k)$, $code_{S_0}(x_i, G) = code_{S_0}(y_i, G)$. Further, if $S \cap E_i = \emptyset$ for some i, then $code_S(x_i, G) = code_S(y_i, G)$, contradicting the assumption that S is a resolving set for G, and thus $|S \cap E_i| \ge 1$ for each i $(1 \le i \le k)$. So, $\dim(G) \ge 2k$. Since the solid vertices of G in Figure 4 form a resolving set for G, $\dim(G) = 2k$.

Next, we show that $\dim(G') = k+1$. Since, for instance, $code_{S_0}(v_1, G') = code_{S_0}(v_2, G')$, we have $|S' - S_0| \ge 1$, implying that $\dim(G') \ge k+1$. Since $\{A\} \cup S_0$ forms a resolving set for G', $\dim(G') = k+1$.

In [6], it's proved that $\dim(G+e) \leq \dim(G) + 1$ when G is a tree; a key idea used there is the notion of "strong resolution", identified but not named in the paper [11] by Poisson and Zhang: we say vertices u and v are strongly resolved by a set of vertices W if $code_W(u) - code_W(v) \neq (a, \ldots, a)$ for any $a \in \mathbb{Z}$. In fact, the proof in [6] shows that $\dim(G+e) \leq \dim(G) + 1$ holds for a more general class of graphs than just trees.

Theorem 3.5. Suppose there exists an induced cycle C in G + e which contains the edge e, with the vertices of C cyclically labeled as c_0, \ldots, c_{n-1} . Let G_i be the subgraph of G + e rooted at c_i ; i.e., G_i is the maximal subgraph of G + e such that $c_i \in V(G_i)$ and $E(G_i) \cap \{c_{i-1}c_i, c_ic_{i+1}\} = \emptyset$ (the indices

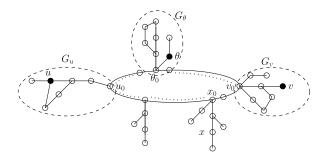


Figure 5: The set $\{u, v, \theta\}$ resolves the subgraphs G_i 's, $i \in \{u, v, \theta\}$, from each other, where two of $\{u_0, v_0, \theta_0\} \subseteq \{c_0, c_1, \dots, c_{n-1}\}$ attain the diameter of the cycle C.

of vertices being taken modulo n). Suppose further that $V(G_i) \cap V(G_j) = \emptyset$ for $i \neq j$. Then $\dim(G + e) \leq \dim(G) + 1$ (see Figure 5).

Proof. Exactly as in [6]; see Appendix A.

Definition 3.6. We say a "graph G has no even cycles" if, whenever there exists a (not necessarily induced) subgraph of G isomorphic to a cycle C_n , n must be an odd integer.

Lemma 3.7. Suppose G has no even cycles; then any two (odd) cycles of G intersect in at most one vertex.

Proof. Suppose two cycles A' and B' share two distinct vertices u and v. Then there exist two cycles A and B and a fixed u-v path P^2 such that A is the concatenation of a path P^1 with P^2 and B is the concatenation of a path P^3 with P^2 . Since the length of A is odd, the length of P^1 and the length of P^2 must have opposite parity. Thus, either the concatenation of P^3 with P^1 or the concatenation of P^3 with P^2 forms an even cycle, and we have a contradiction.

Thus, we have the following

Corollary 3.8. Suppose that a connected graph G has no even cycles; then the following results hold: (1) Every cycle occurring as a subgraph of G occurs as an induced subgraph of G; (2) There is a unique geodesic between any pair of vertices of G; (3) $\dim(G - e) \ge \dim(G) - 1$.

Proof. Parts (1) and (2) readily follow from Lemma 3.7. To obtain part (3), apply part (1) of the present corollary, Lemma 3.7, and Theorem 3.5 to G.

Appendix A. Proof of Theorem 3.5

The following is an excerpt from reference [6] (by Eroh, Kang, and Yi; arXiv:1408.5943); we post it herewith so that the present paper is self-contained.

The cycle rank of a graph G, denoted by r(G), is defined as |E(G)| - |V(G)| + 1. For a tree T, r(T) = 0. If a graph G has r(G) = 1, we call it a unicyclic graph. By T + e, we shall mean a unicyclic graph obtained from a tree T by attaching a new edge $e \in E(\overline{T})$. In [11], the notion of a resolving set W with the property $code_W(u) - code_W(v) \neq (a, \ldots, a)$ for any $a \in \mathbb{Z}$ was identified and shown to be very useful. We will say that "G is strongly resolved by W" if $code_W(u) - code_W(v) \neq (a, \ldots, a)$ for any $a \in \mathbb{Z}$ and any $u, v \in V(G)$. Still following [11], observe that $u \sim_W v$ if and only if $code_W(u) - code_W(v) = (a, \ldots, a)$ for some $a \in \mathbb{Z}$ defines an equivalence relation \sim_W on V(G); let $[u]_W$ denote the equivalence class of u under this relation.

Theorem A.1. [3] If T is a tree of order at least three and e is an edge of \overline{T} , then

$$\dim(T+e) \le \dim(T) + 1.$$

Proof (as in [6]). The claim holds when T is a path P_n , as the two endvertices of P_n form a basis (minimum resolving set) for $P_n + e$: If $e = v_i v_j$ where i < j, then v_i and v_j , being adjacent vertices, resolve vertices on the unique cycle C of $P_n + e$ among themselves (whence we say " v_i and v_j resolve C"). But then $W = \{v_1, v_n\}$ resolves C since for any $v \in V(C)$, $code_{W'}(v) = code_{W}(v) + (a_1, a_2)$, where $W' = \{v_i, v_j\}$ and (a_1, a_2) is a fixed vector. Further, v_1 and v_n obviously resolve vertices in $V(P_n + e) - V(C)$ among themselves and from V(C).

So, let T be a tree which is not a path, and thus $\dim(T) \geq 2$. Cyclically label the vertices lying on the unique cycle C of T + e $(e \in E(\overline{T}))$ by $u_1, \ldots u_k$ $(k \geq 3)$. Denote by T_i the subtree rooted at u_i (in other words, the component of (T + e) - E(C) which contains u_i). Given any basis B of T, partition B into the disjoint union of sub-bases B_i , where $B_i \subseteq V(T_i)$, $1 \leq i \leq k$; assume, without loss of generality, that $B_1 \neq \emptyset$. If $B_i = \emptyset$ for each $i \neq 1$, then $T - T_1$ must be a path (for B to be a basis of T); in this case, either $B \cup \{u_2\}$ or $B \cup \{u_k\}$ is a resolving set for T + e.

So, assume there exists $1 < i \le k$ such that $B_i \ne \emptyset$. If there exist two non-empty sub-bases B_i and B_j such that $d_{T+e}(u_i, u_j) = m = \lfloor \frac{k}{2} \rfloor$, then let $b_0 \in V(C) - \{u_i, u_j\}$ and put $B_0 = \{b_i, b_j, b_0\}$ (also put $B'_0 = \{u_i, u_j, b_0\}$)

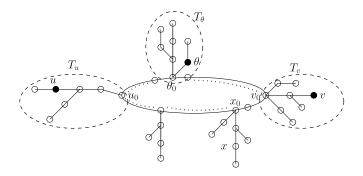


Figure 6: The set $\{u, v, \theta\}$ resolves the subtrees T_i 's from each other.

where $b_i \in B_i$ and $b_j \in B_j$; otherwise, let $b_0 = u_{m+1}$ and put $B_0 = \{b_1, b_0, b_s\}$ (also put $B'_0 = \{u_1, b_0, u_s\}$), where $b_1 \in B_1$ and $b_s \in B_s \neq \emptyset$ for some $s \neq 1, m+1$. (The point here is to arrange a resolving set for T+e that contains elements in three subtrees (the T_i 's), two of which having roots (the u_i 's) attaining the diameter of the cycle C.) We will show that the set $\widetilde{B} = B \cup \{b_0\}$ is a resolving set for T + e. Notice that $B_0 \subseteq \widetilde{B}$.

By Lemma A.2, we have $code_{B_0}(x_i) \neq code_{B_0}(x_j)$ and, a fortiori, $code_{\widetilde{B}}(x_i) \neq code_{\widetilde{B}}(x_j)$ for $x_i \in V(T_i)$ and $x_j \in V(T_j)$, when $i \neq j$. It thus suffices to show that $\forall x, y \in V(T_i)$ where $1 \leq i \leq k$, $code_{\widetilde{B}}(x) \neq code_{\widetilde{B}}(y)$. Accordingly, let $x, y \in V(T_i)$ be given for a fixed i. It's clear that if $d_T(x,b) \neq d_T(y,b)$ for some $b \in B_i$, then $d_{T+e}(x,b) \neq d_{T+e}(y,b)$; so, let $b \in B_j$ for some $j \neq i$. Notice that there exists a fixed $a \in \mathbb{N}$ such that $\forall x \in V(T_i), d_{T+e}(x,b) = d_T(x,b) - a$. Thus, $d_T(x,b) \neq d_T(y,b)$ implies $d_{T+e}(x,b) \neq d_{T+e}(y,b)$ for $b \notin B_i$ as well.

We have thus proved the theorem.

The following lemma shows that subtrees are distinguished by the B_0 chosen above; see Figure 6 for an illustration of the situation under consideration.

Lemma A.2. Let B_0 and B'_0 be chosen as in the Proof of Theorem A.1; explicitly, let $B_0 = \{u, v, \theta\}$ and $B'_0 = \{u_0, v_0, \theta_0\} \subseteq V(C)$, where $d(u_0, v_0) = diam(C)$ and u (v, θ) , respectively) is a vertex on the subtree rooted at u_0 (v_0, θ_0) , respectively). Then, we have $code_{B_0}(x) \neq code_{B_0}(y)$ for vertices x and y belonging to distinct subtrees rooted at vertices of the unique cycle C of T + e.

Proof. Observe that B'_0 strongly resolves the unique cycle C of T + e, because no vertex of C can have shorter distance, by the same value, to

all vertices of B'_0 than another vertex of C. Thus, B_0 strongly resolves C, because there exists a fixed vector (a_1, a_2, a_3) such that $\forall x \in V(C)$, $code_{B_0}(x) = code_{B'_0}(x) + (a_1, a_2, a_3)$. If $x \in V(T_i)$ where $V(T_i) \cap B_0 = \emptyset$, then $[x]_{B_0} = [x_0]_{B_0}$, where x_0 is the root of T_i : this is because any path from x of such a subtree T_i to a vertex in B_0 must go through x_0 . Thus $[x]_{B_0} \neq [y]_{B_0}$ and, a fortiori, $code_{B_0}(x) \neq code_{B_0}(y)$ for x and y belonging to distinct subtrees which have empty intersection with B_0 . If $B_0 = B'_0$, then the same reasoning applies to the subtrees containing elements of B_0 . Otherwise, if suffices to check $code_{B_0}(x) \neq code_{B_0}(y)$ (1) for $x \in V(T_i)$ and $y \in V(T_u)$, (2) for $x \in V(T_i)$ and $y \in V(T_0)$, (3) for $x \in V(T_u)$ and $y \in V(T_v)$, and (4) for $x \in V(T_u)$ and $y \in V(T_0)$; here T_u, T_v, T_θ , and T_i are the subtrees containing u, v, θ , and none of B_0 , respectively. Since the same argument works for all four inequalities, we will only explicitly verify (1).

Suppose, for the sake of contradiction, $code_{B_0}(y) = code_{B_0}(x)$; i.e., $(d(y,u),d(y,v),d(y,\theta)) = (d(x,u),d(x,v),d(x,\theta))$ for vertices $y \in V(T_u)$ and $x \in V(T_i)$. Equating the first two coordinates and expanding, we get $d(y,u) = d(x,x_0) + d(x_0,u_0) + d(u_0,u)$ and $d(y,u_0) + d(u_0,v_0) + d(v_0,v) = d(x,x_0) + d(x_0,v_0) + d(v_0,v)$, where x_0 is the root of the subtree containing x. Subtracting the two equations and rearranging terms, we get $d(y,u) = d(y,u_0) + d(x_0,u_0) + d(u_0,u) + d(u_0,v_0) - d(x_0,v_0)$. Now, since $d(u_0,v_0) = diam(C)$, we have $d(u_0,v_0) - d(x_0,v_0) = d(u_0,x_0)$. And we have $d(y,u) = d(y,u_0) + d(u_0,u) + 2d(u_0,x_0)$. Since $x \in V(T_i)$ and $T_i \neq T_u$, $d(u_0,x_0) > 0$, and we have $d(y,u) > d(y,u_0) + d(u_0,u)$, violating the triangle inequality which $d(\cdot,\cdot)$ must satisfy as a metric.

Remark A.3. Notice that Lemma A.2 still holds if each "subtree T_i rooted at u_i " is replaced by "subgraph G_i rooted at u_i " with G_i and G_j disjoint for $i \neq j$.

References

- [1] R. F. Bailey and P. J. Cameron (2011). Base size, metric dimension and other invariants of groups and graphs. *Bull. London Math. Soc.* **43(2)** 209–242. MR2781204
- P. S. Buczkowski, G. Chartrand, C. Poisson and P. Zhang (2003). On k-dimensional graphs and their bases. *Period. Math. Hungar.* 46(1) 9–15. MR1975342
- [3] G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann (2000). Resolvability in graphs and the metric dimension of a graph. *Discrete Appl. Math.* **105** 99–113. MR1780464

- [4] G. Chartrand and P. Zhang (2004). *Introduction to graph theory*. McGraw-Hill, Kalamazoo, MI.
- [5] G. Chartrand and P. Zhang (2003). The theory and applications of resolvability in graphs. A Survey. Congr. Numer. 160 47–68. MR2049102
- [6] L. Eroh, C. X. Kang and E. Yi. A Comparison between the Metric Dimension and Zero Forcing Number of Trees and Unicyclic Graphs. arXiv:1408.5943.
- [7] M. R. Garey and D. S. Johnson (1979). Computers and intractability: A guide to the theory of NP-completeness. Freeman, New York. MR0519066
- [8] F. Harary and R. A. Melter (1976). On the metric dimension of a graph. Ars Combin. 2 191–195. MR0457289
- [9] C. Hernando, M. Mora, I. M. Pelayo, C. Seara and D. R. Wood (2010). Extremal graph theory for metric dimension and diameter. *Electron. J. Combin.* 17(1) #R30. MR2595490
- [10] S. Khuller, B. Raghavachari and A. Rosenfeld (1996). Landmarks in graphs. Discrete Appl. Math. 70 217–229. MR1410574
- [11] C. Poisson and P. Zhang (2002). The metric dimension of unicyclic graphs. J. Combin. Math. Combin. Comput. 40 17–32. MR1887964
- [12] A. Sebö and E. Tannier (2004). On metric generators of graphs. *Math. Oper. Res.* 29 383–393. MR2065985
- [13] B. Shanmukha, B. Sooryanarayana and K. S. Harinath (2002). Metric dimension of wheels. Far East J. Appl. Math. 8(3) 217–229. MR1944130
- [14] P. J. Slater (1975). Leaves of trees. Congress. Numer. 14 549–559. MR0422062
- [15] P. J. Slater (1998). Dominating and reference sets in a graph. J. Math. Phys. Sci. 22 445–455. MR0966610

LINDA EROH UNIVERSITY OF WISCONSIN OSHKOSH OSHKOSH, WI 54901 USA

E-mail address: eroh@uwosh.edu

Paul Feit

The University of Texas of the Permian Basin Odessa, TX 79762

USA

 $E\text{-}mail\ address: \verb"feit_p@utpb.edu"$

Cong X. Kang

TEXAS A&M UNIVERSITY AT GALVESTON

Galveston, TX 77553

USA

E-mail address: kangc@tamug.edu

Eunjeong Yi

TEXAS A&M UNIVERSITY AT GALVESTON

Galveston, TX 77553

USA

E-mail address: yie@tamug.edu

RECEIVED 22 AUGUST 2012