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The effect of vertex or edge deletion on the metric
dimension of graphs

Linda Eroh, Paul Feit, Cong X. Kang, and Eunjeong Yi

The metric dimension dim(G) of a graph G is the minimum car-
dinality of a set of vertices such that every vertex of G is uniquely
determined by its vector of distances to the chosen vertices. Let
v and e respectively denote a vertex and an edge of a graph G.
We show that, for any integer k, there exists a graph G such
that dim(G − v) − dim(G) = k. For an arbitrary edge e of any
graph G, we prove that dim(G − e) ≤ dim(G) + 2. We also prove
that dim(G − e) ≥ dim(G) − 1 for G belonging to a rather gen-
eral class of graphs. Moreover, we give an example showing that
dim(G)− dim(G− e) can be arbitrarily large.
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1. Introduction

Let G = (V (G), E(G)) be a simple, undirected, connected, and nontrivial
graph with order |V (G)|. The degree of a vertex v in G, denoted by degG(v),
is the number of edges that are incident to v in G; an end-vertex is a vertex
of degree one. We denote by Kn, Cn, and Pn the complete graph, the cycle,
and the path on n vertices, respectively. The distance between two vertices
v, w ∈ V (G) is denoted by dG(v, w); we drop G if it is clear in the context.
For other terminologies in graph theory, we refer to [4].

A vertex x ∈ V (G) resolves a pair of vertices u, v ∈ V (G) if d(u, x) �=
d(v, x). A set of vertices S ⊆ V (G) resolves G if every pair of distinct
vertices of G is resolved by a vertex in S; then S is called a resolving set
of G. For an ordered set S = {u1, u2, . . . , uk} ⊆ V (G) of distinct vertices,
the metric code (or code, for short) of v ∈ V (G) with respect to S is the
k-vector codeS(v) = (d(v, u1), d(v, u2), . . . , d(v, uk)). The metric dimension
of G, denoted by dim(G), is the minimum of |S| as S varies over all resolving
sets of G.

Slater [14, 15] introduced the concept of a resolving set for a connected
graph under the term locating set ; he referred to a minimum resolving set as
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a reference set, and the cardinality of a minimum resolving set as the loca-
tion number of a graph. Independently, Harary and Melter [8] studied these
concepts under the term metric dimension. Metric dimension as a graph pa-
rameter has numerous applications, among them are robot navigation [10],
sonar [14], combinatorial optimization [12], and pharmaceutical chemistry
[3]. It was noted in [7] that determining the metric dimension of a graph
is an NP-hard problem. Metric dimension has been heavily studied. For a
survey on metric dimension and some variations, see [5] by Chartrand and
Zhang. For a comparative study of metric dimension and graph parameters
of more algebraic flavor, see [1] by Bailey and Cameron.

The question as to the effect of the deletion of a vertex or of an edge
on the metric dimension of a graph was raised as a fundamental question
in graph theory by Chartrand and Zhang in [5]. We address the question as
follows: We show graphs G such that dim(G−v) is arbitrarily large (or small)
relative to dim(G). For e ∈ E(G), we prove that dim(G−e) ≤ dim(G)+2 for
any graphG, and we prove that dim(G−e) ≥ dim(G)−1 for G belonging to a
rather general class of graphs. In general, we show that dim(G)−dim(G−e)
can be arbitrarily large.

2. The effect of vertex deletion on metric dimension of
graphs

We first recall some basic facts on metric dimension for background.

Theorem 2.1. [3] For a connected graph G of order n ≥ 2 and diameter d,

f(n, d) ≤ dim(G) ≤ n− d,

where f(n, d) is the least positive integer k for which k + dk ≥ n.

A generalization of Theorem 2.1 has been given in [9] by Hernando et al.

Theorem 2.2. [9] Let G be a graph of order n, diameter d ≥ 2, and metric
dimension k. Then

n ≤
(⌊

2d

3

⌋
+ 1

)k

+ k

� d

3
�∑

i=1

(2i− 1)k−1.

Theorem 2.3. [3] Let G be a connected graph of order n ≥ 2. Then

(a) dim(G) = 1 if and only if G = Pn,
(b) dim(G) = n− 1 if and only if G = Kn,
(c) for n ≥ 4, dim(G) = n − 2 if and only if G = Ks,t (s, t ≥ 1), G =

Ks+Kt (s ≥ 1, t ≥ 2), or G = Ks+(K1 ∪Kt) (s, t ≥ 1); here, A+B
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Figure 1: A graph G such that dim(G)−dim(G−v) can be arbitrarily large.

denotes the graph obtained from the disjoint union of graphs A and B
by joining every vertex of A with every vertex of B, and C denotes the
complement of a graph C.

The following definitions are stated in [3]. Fix a graph G. A vertex of
degree at least three is called a major vertex. An end-vertex u is called
a terminal vertex of a major vertex v if d(u, v) < d(u,w) for every other
major vertex w. The terminal degree of a major vertex v is the number of
terminal vertices of v. A major vertex v is an exterior major vertex if it has
positive terminal degree. Let σ(G) denote the sum of terminal degrees of
all major vertices of G, and let ex(G) denote the number of exterior major
vertices of G. Two vertices u, v ∈ V (G) are called twins if N(u) − {v} =
N(v)− {u}, where N(u) is the set of all vertices adjacent to u in G. Notice
that S ∩ {u, v} �= ∅ if S is a resolving set and u, v are twins for any graph.
We now recall two theorems useful in the two examples which follow.

Theorem 2.4. [3, 10, 11] If T is a tree that is not a path, then dim(T ) =
σ(T )− ex(T ).

Theorem 2.5. [2, 13] For n ≥ 3, let W1,n = Cn + K1 be the wheel graph
on n+ 1 vertices. Then

dim(W1,n) =

{
3 if n = 3 or n = 6,


2n+2
5 � otherwise.

The following example appeared in [2].

Example 2.6. There exists a graph G such that dim(G)− dim(G− v) can
be arbitrarily large; take G = W1,n for n ≥ 7 and let v be the central vertex
of degree n in G (see Figure 1). Notice that dim(G−v) = 2 since G−v ∼= Cn,
whereas dim(G) = 
2n+2

5 � by Theorem 2.5.

Example 2.7. There exists a graph G such that dim(G− v)− dim(G) can
be arbitrarily large. For k ≥ 6, let G − v be a tree with k exterior major
vertices, u1, u2, . . . , uk, and three terminal vertices �i,1, �i,2, �i,3 for each ui,
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Figure 2: A graph G such that dim(G−v)−dim(G) can be arbitrarily large.

where 1 ≤ i ≤ k; let G be the graph obtained by joining �1,1, �2,1, . . . , �k,1 to a
new vertex v (see Figure 2). By Theorem 2.4, dim(G−v) = 2k. We will show
that dim(G) = k. Since �i,2 and �i,3 are twins for each i (1 ≤ i ≤ k) in G,
dim(G) ≥ k. On the other hand, dG(�i,3, v) = 3 implies that dG(�i,3, �i+3,1) =
4 and dG(�i,3, �i+3,2) = 5. So, if k ≥ 6, then {�i,3 | 1 ≤ i ≤ k} forms a
resolving set for G; thus dim(G) ≤ k.

3. The effect of edge deletion on metric dimension of graphs

Next, we consider how the metric dimension of a graph changes upon dele-
tion of an edge. The following theorem is stated in [3], with a correct proof
given in [6].

Theorem 3.1. [3, 6] Let T be a tree of order at least three. If e ∈ E(T ),
then

dim(T )− 2 ≤ dim(T + e) ≤ dim(T ) + 1.

It turns out that the lower bound in the preceding theorem holds for all
graphs.

Theorem 3.2. For any graph G and any edge e ∈ E(G), we have

dim(G− e) ≤ dim(G) + 2.

Proof. Let S be a minimum resolving set for G, and let u and v be the
endpoints of the edge e. We will show that S′ = S ∪ {u, v} is a resolving set
for G − e. Let x and y be distinct vertices in V (G − e) = V (G) which, in
the graph G, are resolved by z ∈ S. Suppose x and y, in the graph G − e,
are not resolved by z; then dG−e(x, z) = dG−e(y, z). We consider two cases.

Case I. For one of x and y, say y, the distance to z is not changed by remov-
ing edge e; so dG−e(y, z) = dG(y, z). In this case, dG(y, z) = dG−e(y, z) =
dG−e(x, z) > dG(x, z) and the edge e must lie on every x− z geodesic in G.
Thus, up to transposing the labels u and v, we have dG(x, u) + dG(u, v) +
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Figure 3: A graph G with dim(G− e) = dim(G) + 2.

dG(v, z) = dG(x, z). Notice that dG(x, u) = dG−e(x, u), since there is an
x − u geodesic in G that does not use edge e. Since dG(x, u) + dG(u, z) =
dG(x, z) < dG(y, z) ≤ dG(y, u)+dG(u, z), we must have dG(x, u) < dG(y, u).
But then dG−e(x, u) = dG(x, u) < dG(y, u) ≤ dG−e(y, u), so u ∈ S′ resolves
x and y.

Case II. For both x and y, the distance to z is increased by removing the
edge e. In this case, the edge e must lie on every x−z geodesic and on every
y− z geodesic in G. Notice that if a geodesic from some vertex a to another
vertex c traverses the edge e in the order u, v (as opposed to v, u), then
a geodesic containing e from any vertex b to c must also traverse e in the
order u, v: For the sake of contradiction, let an a− c geodesic have the form
a, . . . , u, v, . . . , c and let some b− c geodesic have the form b, . . . , v, u, . . . , c.
The presence of the a − c geodesic implies that d(u, v) + d(v, c) = d(u, c),
and the presence of the b− c geodesic implies that d(v, u)+d(u, c) = d(v, c).
The sum of the two equations simplifies to d(u, v) = 0, a contradiction.
Suppose that u is traversed before v by a x−z geodesic and a y−z geodesic
(directed towards z) in G, then a x−u geodesic and a y−u geodesic, neither
containing the edge e, are obtained by truncating a common u− z geodesic
in G; thus, u resolves x and y in G− e. To complete the proof, simply swap
the letters u and v in the preceding sentence.

Example 3.3. For the sharpness of the upper bound of Theorem 3.2, see
Figure 3. Notice that dim(G) = 4 (the solid vertices in Figure 3 form a
minimum resolving set of G). By Theorem 2.4, dim(G − e) = 6, and hence
dim(G− e) = dim(G) + 2.

Next, we consider how small the metric dimension of G could become
upon deleting an edge of G. The following theorem is really an example;
we are calling it a theorem in deference to its importance and the effort
expended in its discovery!

Theorem 3.4. There exists a graph G such that dim(G) − dim(G − e)
can be arbitrarily large. Let G be the graph in Figure 4 for k ≥ 2, and let
e = AB ∈ E(G). Then dim(G) = 2k and dim(G− e) = k + 1.
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Figure 4: A graph G such that dim(G) − dim(G − e) can be arbitrarily
large.

Proof. Let S be a minimum resolving set for G, and let S′ be a minimum
resolving set forG′ = G−e. Notice that, for each i (1 ≤ i ≤ k), |S∩{ci, di}| ≥
1 since ci and di are twin vertices in G; similarly, |S′∩{ci, di}| ≥ 1. Without
loss of generality, we may assume S0 = {ci | 1 ≤ i ≤ k} ⊆ S ∩ S′. For the
sake of complete clarity, let codeS(x,G) denote the code vector of x with
respect to the set of vertices S in the graph G.

First, we show that dim(G) = 2k. Notice that, for each i (1 ≤ i ≤ k),
codeS0

(xi, G) = codeS0
(yi, G). Further, if S ∩ Ei = ∅ for some i, then

codeS(xi, G) = codeS(yi, G), contradicting the assumption that S is a re-
solving set for G, and thus |S ∩ Ei| ≥ 1 for each i (1 ≤ i ≤ k). So,
dim(G) ≥ 2k. Since the solid vertices of G in Figure 4 form a resolving
set for G, dim(G) = 2k.

Next, we show that dim(G′) = k+1. Since, for instance, codeS0
(v1, G

′) =
codeS0

(v2, G
′), we have |S′ − S0| ≥ 1, implying that dim(G′) ≥ k + 1. Since

{A} ∪ S0 forms a resolving set for G′, dim(G′) = k + 1.

In [6], it’s proved that dim(G + e) ≤ dim(G) + 1 when G is a tree; a
key idea used there is the notion of “strong resolution”, identified but not
named in the paper [11] by Poisson and Zhang: we say vertices u and v are
strongly resolved by a set of vertices W if codeW (u)− codeW (v) �= (a, . . . , a)
for any a ∈ Z. In fact, the proof in [6] shows that dim(G+ e) ≤ dim(G) + 1
holds for a more general class of graphs than just trees.

Theorem 3.5. Suppose there exists an induced cycle C in G + e which
contains the edge e, with the vertices of C cyclically labeled as c0, . . . , cn−1.
Let Gi be the subgraph of G+e rooted at ci; i.e., Gi is the maximal subgraph
of G+ e such that ci ∈ V (Gi) and E(Gi) ∩ {ci−1ci, cici+1} = ∅ (the indices
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Figure 5: The set {u, v, θ} resolves the subgraphs Gi’s, i ∈ {u, v, θ}, from
each other, where two of {u0, v0, θ0} ⊆ {c0, c1, . . . , cn−1} attain the diameter
of the cycle C.

of vertices being taken modulo n). Suppose further that V (Gi) ∩ V (Gj) = ∅
for i �= j. Then dim(G+ e) ≤ dim(G) + 1 (see Figure 5).

Proof. Exactly as in [6]; see Appendix A.

Definition 3.6. We say a “graph G has no even cycles” if, whenever there
exists a (not necessarily induced) subgraph of G isomorphic to a cycle Cn,
n must be an odd integer.

Lemma 3.7. Suppose G has no even cycles; then any two (odd) cycles of
G intersect in at most one vertex.

Proof. Suppose two cycles A′ and B′ share two distinct vertices u and v.
Then there exist two cycles A and B and a fixed u − v path P 2 such that
A is the concatenation of a path P 1 with P 2 and B is the concatenation of
a path P 3 with P 2. Since the length of A is odd, the length of P 1 and the
length of P 2 must have opposite parity. Thus, either the concatenation of
P 3 with P 1 or the concatenation of P 3 with P 2 forms an even cycle, and we
have a contradiction.

Thus, we have the following

Corollary 3.8. Suppose that a connected graph G has no even cycles; then
the following results hold: (1) Every cycle occurring as a subgraph of G
occurs as an induced subgraph of G; (2) There is a unique geodesic between
any pair of vertices of G; (3) dim(G− e) ≥ dim(G)− 1.

Proof. Parts (1) and (2) readily follow from Lemma 3.7. To obtain part (3),
apply part (1) of the present corollary, Lemma 3.7, and Theorem 3.5 to
G.
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Appendix A. Proof of Theorem 3.5

The following is an excerpt from reference [6] (by Eroh, Kang,
and Yi; arXiv:1408.5943); we post it herewith so that the present
paper is self-contained.

The cycle rank of a graph G, denoted by r(G), is defined as |E(G)| −
|V (G)| + 1. For a tree T , r(T ) = 0. If a graph G has r(G) = 1, we call
it a unicyclic graph. By T + e, we shall mean a unicyclic graph obtained
from a tree T by attaching a new edge e ∈ E(T ). In [11], the notion of a
resolving set W with the property codeW (u)−codeW (v) �= (a, . . . , a) for any
a ∈ Z was identified and shown to be very useful. We will say that “G is
strongly resolved by W” if codeW (u)− codeW (v) �= (a, . . . , a) for any a ∈ Z

and any u, v ∈ V (G). Still following [11], observe that u∼W v if and only
if codeW (u) − codeW (v) = (a, . . . , a) for some a ∈ Z defines an equivalence
relation ∼W on V (G); let [u]W denote the equivalence class of u under this
relation.

Theorem A.1. [3] If T is a tree of order at least three and e is an edge
of T , then

dim(T + e) ≤ dim(T ) + 1.

Proof (as in [6]). The claim holds when T is a path Pn, as the two end-
vertices of Pn form a basis (minimum resolving set) for Pn + e: If e = vivj
where i < j, then vi and vj , being adjacent vertices, resolve vertices on
the unique cycle C of Pn + e among themselves (whence we say “vi and
vj resolve C”). But then W = {v1, vn} resolves C since for any v ∈ V (C),
codeW ′(v) = codeW (v) + (a1, a2), where W ′ = {vi, vj} and (a1, a2) is a fixed
vector. Further, v1 and vn obviously resolve vertices in V (Pn + e) − V (C)
among themselves and from V (C).

So, let T be a tree which is not a path, and thus dim(T ) ≥ 2. Cyclically
label the vertices lying on the unique cycle C of T + e (e ∈ E(T )) by
u1, . . . uk (k ≥ 3). Denote by Ti the subtree rooted at ui (in other words,
the component of (T + e)−E(C) which contains ui). Given any basis B of
T , partition B into the disjoint union of sub-bases Bi, where Bi ⊆ V (Ti),
1 ≤ i ≤ k; assume, without loss of generality, that B1 �= ∅. If Bi = ∅ for
each i �= 1, then T − T1 must be a path (for B to be a basis of T ); in this
case, either B ∪ {u2} or B ∪ {uk} is a resolving set for T + e.

So, assume there exists 1 < i ≤ k such that Bi �= ∅. If there exist two
non-empty sub-bases Bi and Bj such that dT+e(ui, uj) = m = 
k2�, then let
b0 ∈ V (C) − {ui, uj} and put B0 = {bi, bj , b0} (also put B′

0 = {ui, uj , b0})
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Figure 6: The set {u, v, θ} resolves the subtrees Ti’s from each other.

where bi ∈ Bi and bj ∈ Bj ; otherwise, let b0 = um+1 and put B0 = {b1, b0, bs}
(also put B′

0 = {u1, b0, us}), where b1 ∈ B1 and bs ∈ Bs �= ∅ for some
s �= 1,m + 1. (The point here is to arrange a resolving set for T + e that
contains elements in three subtrees (the Ti’s), two of which having roots
(the ui’s) attaining the diameter of the cycle C.) We will show that the set
B̃ = B ∪ {b0} is a resolving set for T + e. Notice that B0 ⊆ B̃.

By Lemma A.2, we have codeB0
(xi) �= codeB0

(xj) and, a fortiori,
codeB̃(xi) �= codeB̃(xj) for xi ∈ V (Ti) and xj ∈ V (Tj), when i �= j. It
thus suffices to show that ∀x, y ∈ V (Ti) where 1 ≤ i ≤ k, codeB̃(x) �=
codeB̃(y). Accordingly, let x, y ∈ V (Ti) be given for a fixed i. It’s clear that
if dT (x, b) �= dT (y, b) for some b ∈ Bi, then dT+e(x, b) �= dT+e(y, b); so, let
b ∈ Bj for some j �= i. Notice that there exists a fixed a ∈ N such that
∀x ∈ V (Ti), dT+e(x, b) = dT (x, b) − a. Thus, dT (x, b) �= dT (y, b) implies
dT+e(x, b) �= dT+e(y, b) for b /∈ Bi as well.

We have thus proved the theorem.

The following lemma shows that subtrees are distinguished by the B0

chosen above; see Figure 6 for an illustration of the situation under consid-
eration.

Lemma A.2. Let B0 and B′
0 be chosen as in the Proof of Theorem A.1;

explicitly, let B0 = {u, v, θ} and B′
0 = {u0, v0, θ0} ⊆ V (C), where d(u0, v0) =

diam(C) and u (v, θ, respectively) is a vertex on the subtree rooted at u0
(v0, θ0, respectively). Then, we have codeB0

(x) �= codeB0
(y) for vertices x

and y belonging to distinct subtrees rooted at vertices of the unique cycle C
of T + e.

Proof. Observe that B′
0 strongly resolves the unique cycle C of T + e, be-

cause no vertex of C can have shorter distance, by the same value, to
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all vertices of B′
0 than another vertex of C. Thus, B0 strongly resolves

C, because there exists a fixed vector (a1, a2, a3) such that ∀x ∈ V (C),
codeB0

(x) = codeB′
0
(x) + (a1, a2, a3). If x ∈ V (Ti) where V (Ti) ∩ B0 = ∅,

then [x]B0
= [x0]B0

, where x0 is the root of Ti: this is because any path
from x of such a subtree Ti to a vertex in B0 must go through x0. Thus
[x]B0

�= [y]B0
and, a fortiori, codeB0

(x) �= codeB0
(y) for x and y belonging

to distinct subtrees which have empty intersection with B0. If B0 = B′
0,

then the same reasoning applies to the subtrees containing elements of B0.
Otherwise, if suffices to check codeB0

(x) �= codeB0
(y) (1) for x ∈ V (Ti)

and y ∈ V (Tu), (2) for x ∈ V (Ti) and y ∈ V (Tθ), (3) for x ∈ V (Tu) and
y ∈ V (Tv), and (4) for x ∈ V (Tu) and y ∈ V (Tθ); here Tu, Tv, Tθ, and Ti are
the subtrees containing u, v, θ, and none of B0, respectively. Since the same
argument works for all four inequalities, we will only explicitly verify (1).

Suppose, for the sake of contradiction, codeB0
(y) = codeB0

(x); i.e.,
(d(y, u), d(y, v), d(y, θ)) = (d(x, u), d(x, v), d(x, θ)) for vertices y ∈ V (Tu)
and x ∈ V (Ti). Equating the first two coordinates and expanding, we get
d(y, u) = d(x, x0) + d(x0, u0) + d(u0, u) and d(y, u0) + d(u0, v0) + d(v0, v) =
d(x, x0) + d(x0, v0) + d(v0, v), where x0 is the root of the subtree con-
taining x. Subtracting the two equations and rearranging terms, we get
d(y, u) = d(y, u0) + d(x0, u0) + d(u0, u) + d(u0, v0) − d(x0, v0). Now, since
d(u0, v0) = diam(C), we have d(u0, v0)− d(x0, v0) = d(u0, x0). And we have
d(y, u) = d(y, u0) + d(u0, u) + 2d(u0, x0). Since x ∈ V (Ti) and Ti �= Tu,
d(u0, x0) > 0, and we have d(y, u) > d(y, u0) + d(u0, u), violating the trian-
gle inequality which d(·, ·) must satisfy as a metric.

Remark A.3. Notice that Lemma A.2 still holds if each “subtree Ti rooted
at ui” is replaced by “subgraph Gi rooted at ui” with Gi and Gj disjoint
for i �= j.
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