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The stochastic Kronecker graph model introduced by Leskovec et
al. is a random graph with vertex set Zn

2 , where two vertices u and v
are connected with probability αu·vγ(1−u)·(1−v)βn−u·v−(1−u)·(1−v)

independently of the presence or absence of any other edge, for
fixed parameters 0 < α, β, γ < 1. Leskovec et al. have shown em-
pirically that the degree sequence resembles a power law degree
distribution. In this paper we show that the stochastic Kronecker
graph a.a.s. does not feature a power law degree distribution for
any parameters 0 < α, β, γ < 1. In addition, we analyze the num-
ber of subgraphs present in the stochastic Kronecker graph and
study the typical neighborhood of any given vertex.
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1. Introduction

Kronecker graphs were introduced by Leskovec, Chakrabarti, Kleinberg and
Faloutsos [9] in order to model real world networks. First they considered a
deterministic model based on Kronecker multiplication which creates graphs
exhibiting several properties of real world networks like heavy tailed degree
distribution and average degree that grows as a power law with the size of
the graph. They also introduced the random version of this model, called
the stochastic Kronecker graph.

Let n ∈ N and 0 < α, β, γ < 1 be probabilities and define

P =

(
α β
β γ

)
.
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The stochastic Kronecker graph K(n, P ) is a graph whose vertex set is given
by the set Zn

2 of all binary strings of length n. For any vertex u we denote
by uk its k-th digit. Then the probability that a pair of vertices {u, v} are
connected by an edge is

pu,v =

n∏
k=1

Puk,vk

independently of the presence or absence of any other edge. Without loss of
generality we may assume that γ ≤ α.

The stochastic Kronecker graph extends the binomial random graph
model G2n,p, where every edge is inserted with probability p, independently
of the presence or absence of any other edge, because selecting α = β = γ
in the stochastic Kronecker graph ensures that every edge is inserted with
the same probability p = αn.

Stochastic Kronecker graphs have been considered when α, β, γ are fixed
constants not depending on n. Mahdian and Xu [10] considered the graph
when α ≥ β ≥ γ. They have shown that the diameter of the stochastic
Kronecker graph is bounded from above by a constant when it is connected.
The appearance of the giant component in this graph has also been investi-
gated. Horn and Radcliffe [6] extending the result of Mahdian and Xu [10]
showed that (α+β)(β+γ) > 1 is a necessary and sufficient condition for the
appearance of a unique giant component. They also determined the number
of vertices in the giant component. Radcliffe and Young [11] analyzed the
connectivity and the size of the giant component in a generalized version of
the stochastic Kronecker graph. Their results imply that the threshold for
connectivity in stochastic Kronecker graphs is β + γ = 1.

Leskovec, Chakrabarti, Kleinberg and Faloutsos [9] have shown empiri-
cally that stochastic Kronecker graphs resemble several real world networks
and claimed that the model exhibits a power law degree distribution. Later,
Leskovec, Chakrabarti, Kleinberg, Faloutsos and Ghahramani [8] fitted the
model to several real world networks such as the Internet, citation graphs
and online social networks.

The R-MAT model, introduced by Chakrabarti, Zhan and Faloutsos [3],
is closely related. The vertex set of this model is also Z

n
2 and this model

also has parameters α, β, γ. However, in this case one needs the additional
condition that α + 2β + γ = 1. In this model one generates m vertex pairs
(u, v) in such a way that

P

(
(uk, vk) = (a, b)

)
=

⎧⎨⎩
α if a = b = 1,
γ if a = b = 0,
β else,
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independently for each digit and inserts an edge between every generated
vertex pair. The process creates a multigraph with m edges and the graph
after the multi-edges have been merged is referred to as the R-MAT model.
The advantage of the R-MAT model over the stochastic Kronecker graph
is that it can be generated significantly faster when m is small. The degree
sequence of this model has been studied by Groër, Sullivan and Poole [5]
and by Seshadhri, Pinar and Kolda [12] when m = Θ(2n), i.e. the number of
edges is linear in the number of vertices. They have shown that the degree
sequence of the model does not follow a power law distribution. However,
no rigorous proof exists for the equivalence of the two models and in the
stochastic Kronecker graph there is no restriction on the sum of the values
of α, β, γ.

1.1. Main results

In this paper we examine the asymptotic behavior of the stochastic Kro-
necker graph K(n, P ), when the entries of P are fixed constants (indepen-
dent of n). A property P holds asymptotically almost surely (in short a.a.s.)
if the probability that P holds tends to one as n → ∞. Furthermore we ig-
nore floors and ceilings. The real world networks modeled with the stochastic
Kronecker graphs are claimed to have a power law degree distribution. We
show that this does not match the asymptotic behavior of the stochastic
Kronecker graph, which a.a.s. does not follow a power law degree distribu-
tion.

Theorem 1.1. For all parameters 0 < α, β, γ < 1 the stochastic Kronecker
graph K(n, P ) a.a.s. does not have a power law degree distribution.

Recall that that the binomial random graph G2n,αn is a special case of
the stochastic Kronecker graph K(n, P ) when α = β = γ. The question con-
cerning the degree distribution and the number of subgraphs in the binomial
random graph have been thoroughly studied.

Erdős and Rényi [4] showed that the degree distribution of G2n,αn follows
a Poisson distribution when α ≤ 1/2, where the parameter of the distribution
depends on α. They also showed that if α > 1/2, then there are a.a.s. no
vertices of finite degree, in fact the degree of every vertex is a.a.s. (1 +
o(1))(2α)n.

The threshold for the appearance of subgraphs for G2n,αn has been estab-
lished by Bollobás [2]. Let G be a small graph and let v(G) and e(G) denote
the number of vertices and edges of G. The threshold for the appearance
of G is the smallest value of α such that 2v(G

′)αe(G′) ≥ 1 holds for every
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G′ ⊆ G. Additionally Alon and Spencer [1] show that if for every G′ ⊆ G
we have that 2v(G

′)αe(G′) > 1, then a.a.s. there are (1 + o(1))(2v(G)αe(G))n

labeled copies of G present in G2n,αn .
We examine the subgraphs contained in the stochastic Kronecker graph.

The first result determines the expected number of copies of a given subgraph
present in K(n, P ).

Lemma 1.2. Let G be a simple graph, let XG be the number of labeled copies
of G in K(n, P ) and let LG be the set of functions g : V (G) → Z2. Then we
have

E(XG) = (1 + o(1))

⎛⎝∑
g∈LG

∏
{u,v}∈E(G)

Pg(u),g(v)

⎞⎠n

.

We also show concentration for several classes of graphs. In particular,
when α = γ, the number of copies of a cycle of length k contained in K(n, P )
is concentrated around its mean.

Theorem 1.3. Let Ck be a cycle of length k and XCk
the number of labeled

copies of Ck in K(n, P ). Assume that α = γ. Then the threshold for the
appearance of Ck in the stochastic Kronecker graph is (α+β)k+(α−β)k = 1.
Additionally, if (α+ β)k + (α− β)k > 1, then a.a.s.

XCk
= (1 + o(1))

(
(α+ β)k + (α− β)k

)n
.

Theorem 1.3 implies that the even cycles appear in the stochastic Kro-
necker graph in order of their length (or at the same time, when α = β).
More precisely, one can find parameters α, β such that C2k−2 is a.a.s. present
in the stochastic Kronecker graph but C2k is not, and for any parameter α, β
for which C2k is a.a.s. present in the stochastic Kronecker graph then so is
C2k−2. The same holds for odd cycles when α > β, but the reverse is true
when β > α as in this case C2k+1 appears before C2k−1. This is due to
the fact that in the stochastic Kronecker graph, when α = γ, the neighbor-
hood of every vertex consists mostly of vertices that differ on approximately
βn/(α+ β) digits. In order to state this more formally denote by N(u) the
neighborhood of a vertex u in K(n, P ) and for vertices u, v in K(n, P ) let
H(u, v) be the Hamming distance between u and v. Amongst other results
we prove the following theorem in Section 4.

Theorem 1.4. Assume that α = γ and α + β > 1. Then a.a.s. for all
vertices u in K(n, P ) we have that

|N(u)| = (1 + o(1))(α+ β)n
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and ∣∣∣∣{w ∈ N(u) : H(u,w) = (1 + o(1))
β

α+ β
n

}∣∣∣∣ = (1 + o(1))(α+ β)n.

1.2. Outline of the proofs

The proof of Theorem 1.1 relies on calculating the expected number of ver-
tices of degree d. The probability that a vertex has degree d depends only on
its weight, i.e. the sum of its digits. To be more precise, the degree of a vertex
with weight w is a multinomial random variable, however it can be approx-
imated by a Poisson random variable with parameter (α + β)w(β + γ)n−w.
Therefore, the expected number of vertices of degree d is approximately

n∑
w=0

(
n

w

)
(α+ β)dw(β + γ)d(n−w)

d!
exp(−(α+ β)w(β + γ)n−w).

The real difficulty in proving Theorem 1.1 lies in determining the value of this
sum. It turns out that the parameters α, β, γ have to satisfy α+β = β+γ = 1
for this sum to be Θ(2n) for every finite value of d. However this would be a
necessary condition for the degree sequence of a graph to follow a power law
distribution. Therefore the parameters α, β, γ must satisfy α+β = β+γ = 1
for the graph to have a power law degree sequence. However, in this case
the sum simplifies to

n∑
w=0

(
n

w

)
1

ed!
= 2n

1

ed!
,

which indicates that the degree sequence follows a Poisson distribution with
parameter 1, not a power law.

In order to show concentration for subgraphs we use the second moment
method. As in Lemma 1.2, let XG denote the number of labeled copies
of G in K(n, P ). Then XG is concentrated if we can show that E(XF ) =
o((E(XG))

2) for every graph F which is the union of two edge-overlapping
copies of G. The major difficulty to overcome is that although Lemma 1.2
gives us a formula for calculating the expected number of labeled copies of
a graph it does not give us a closed formula or even a simple method to
compare the expected number of copies of two different graphs. We examine
classes of graphs where we can express E(XG) in a closed form. However, it
is still difficult to compare (E(XG))

2 to E(XF ) for most graphs F formed of
two edge-overlapping copies of G. It turns out that for the classes of graphs
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considered in this paper E(XF ) takes its maximum when the two copies of
G overlap in as many edges as possible or as few as possible. These graphs
resemble either two disjoint copies of G or a single copy of G, enabling us
to compare the expected number of copies from these graphs.

Finally, we examine the neighborhood of the vertices in the stochastic
Kronecker graph when α = γ and α + β > 1. Fix a vertex v. Under the
conditions we have that the expected number of neighbors that differ on
precisely k elements from v is(

n

k

)
αn−kβk = (α+ β)n P

(
Bin

(
n,

β

α+ β

)
= k

)
,

which implies, by summing over all k ∈ {0, . . . , n}, that the expected degree
of v is (α+ β)n. Moreover it is a well-known fact that any binomial random
variable is concentrated around its mean. Therefore we would expect that
almost all of the contribution to the degree of v comes from the terms where
k ≈ βn/(α+β). In fact this already shows us that this holds in expectation
and one can show that this holds a.a.s. using the Chernoff bound.

2. Degree sequence: proof of Theorem 1.1

In order to establish the degree sequence of the stochastic Kronecker graph
we first need to determine the expectation and the variance of the degree of
a fixed vertex.

Lemma 2.1. Let u, v be two vertices in K(n, P ). We denote by d(v) the
degree of v and by w(v) =

∑n
k=1 vk its weight. Furthermore, let Iu,v be the

event that the edge {u, v} is present in the graph. Then

E(d(v)) = (α+ β)w(v)(β + γ)n−w(v),∑
u∈Zn

2

(E(Iu,v))
2 = (α2 + β2)w(v)(β2 + γ2)n−w(v),

Var(d(v)) = (α+ β)w(v)(β + γ)n−w(v) − (α2 + β2)w(v)(β2 + γ2)n−w(v).

Proof. We assume u can be created from v by changing i ones to zeros
and j zeros to ones. Then the probability that the edge {u, v} is present is
αw(v)−iβiγn−w(v)−jβj . Thus we have

E(d(v)) =

w(v)∑
i=0

n−w(v)∑
j=0

(
w(v)

i

)(
n− w(v)

j

)
αw(v)−iβiγn−w(v)−jβj
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=

w(v)∑
i=0

(
w(v)

i

)
αw(v)−iβi

n−w(v)∑
j=0

(
n− w(v)

j

)
γn−w(v)−jβj

= (α+ β)w(v)(β + γ)n−w(v).

Similarly, we get

∑
u∈Zn

2

(E(Iu,v))
2 =

w(v)∑
i=0

n−w(v)∑
j=0

(
w(v)

i

)(
n− w(v)

j

)(
αw(v)−iβiγn−w(v)−jβj

)2

=

w(v)∑
i=0

(
w(v)

i

)
(α2)w(v)−i(β2)i

n−w(v)∑
j=0

(
n− w(v)

j

)
(γ2)n−w(v)−j(β2)j

= (α2 + β2)w(v)(β2 + γ2)n−w(v),

and these results together imply

Var(d(v)) =
∑
u∈Zn

2

Var(Iu,v) =
∑
u∈Zn

2

[
E(Iu,v)− (E(Iu,v))

2
]

= (α+ β)w(v)(β + γ)n−w(v) − (α2 + β2)w(v)(β2 + γ2)n−w(v).

In order to better understand the behavior of the random variable given
by the number of vertices of a certain degree in K(n, P ) we first examine the
distribution of the degree of a fixed vertex. We show a normal or a Poisson
approximation for the degree of a given vertex depending on its expected
degree. The existence of a normal approximation indicates that the vertices
with high expected degree are unlikely to have constant (independent of n)
degree.

Let S1, S2, ... and Z be random variables. We say that the sequence

Sn converges in distribution to Z as n → ∞, denoted by Sn
d−→ Z, if

P(Sn ≤ x) → P(Z ≤ x) for every real x that is a continuity point of
P(Z ≤ x). For the normal approximation of the vertex degree we apply
the Chen-Stein method in the form of the following Theorem, which is a
simplified version of Theorem 6.33 in Janson, �Luczak and Ruciński [7].

Theorem 2.2 (Chen-Stein method [7]). Suppose that (Sn)
∞
1 is a sequence of

random variables such that Sn =
∑

a∈An
Xn,a, where for each n,

{Xn,a}a∈An
is a family of mutually independent indicator random variables.

If

E(Sn)

(Var(Sn))3/2
→ 0,
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then
Sn − E(Sn)

Var(Sn)

d−→ N(0, 1).

Using Lemma 2.1 and Theorem 2.2 we obtain the following normal ap-
proximation for the degree of a vertex in K(n, P ).

Lemma 2.3. For any fixed vertex v ∈ V (K(n, P )) with E(d(v)) → ∞ we
have

d(v)− E(d(v))

Var(d(v))

d−→ N(0, 1).

Proof. Note that

(α2 + β2)w(v)(β2 + γ2)n−w(v)

(α+ β)w(v)(β + γ)n−w(v)
= o(1)

as α2 + β2 < α + β and β2 + γ2 < β + γ and at least one of w(v) and
n − w(v) tends to infinity. Therefore, by Lemma 2.1, we have Var(d(v)) =
(1 + o(1))E(d(v)). Thus the conditions of Theorem 2.2 are satisfied and the
statement follows.

In order to determine whether the stochastic Kronecker graph can have
a power law degree distribution we need to consider the number of vertices of
a given fixed degree. The following lemma provides a Poisson approximation
for such a random variable if some conditions on its first and second moment
are satisfied.

Lemma 2.4. Let (Xn)
∞
1 be a sequence of random variables such that Xn =∑

a∈An
Ia,n, where for each n the Ia,n’s are mutually independent indicator

random variables. Define λn = E(Xn). Further assume that the following
conditions are satisfied: ∑

a∈An

P(Ia,n = 1)2 = o(λ2
n),

max
a∈An

P(Ia,n = 1) = o(1),

λn max
a∈An

P(Ia,n = 1) = o(1).

Then for every finite k we have

P(Xn = k) = (1 + o(1))P (Po (λn) = k) .
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Proof. By the representation of Xn as the sum of the Ia,n’s we get

P(Xn = k) =
∑

A′⊆An

|A′|=k

(∏
a∈A′

P(Ia,n = 1)

)⎛⎝ ∏
a∈An\A′

P(Ia,n = 0)

⎞⎠(1)

= (1 + o(1))
∑

A′⊆An

|A′|=k

(∏
a∈A′

P(Ia,n = 1)

)( ∏
a∈An

(1− P(Ia,n = 1))

)
,

since P(Ia,n = 1) ≤ maxa′∈An
P(Ia′,n = 1) = o(1) and |A′| is finite.

Using the standard estimate exp(−x) ≥ 1−x which holds for any x ∈ R

and the fact that 1− x ≥ exp(−x(1 + x)) for any x ∈ [0, (
√
5− 1)/2], we

have

exp(−λn) ≥
∏
a∈An

(1− P(Ia,n = 1)) ≥ exp

(
−λn

(
1 + max

a∈An

P (Ia,n = 1)

))
.

and furthermore the upper and lower bound coincide asymptotically due to
the condition λnmaxa∈An

P(Ia,n = 1) = o(1), hence, we have

P (Xn = k) = (1 + o(1)) exp(−λn)Sk,An
,(2)

where we abbreviate the sum over all subsets of An with size k by

Sk,An
=

∑
A′⊆An

|A′|=k

∏
a∈A′

P(Ia,n = 1).

It remains to establish the asymptotic behavior of Sk,An
. First we obtain

an upper bound by summing over all multi-sets of size k and applying the
Multinomial Theorem

Sk,An
≤

(∑
a∈An

P(Ia,n = 1)

)k/
k! =

λk
n

k!
.

But this upper bound is asymptotically tight as seen by the following argu-
ment. Since we only added summands for multi-sets that have at least one
repetition we obtain the following upper bound for the difference

λk
n

k!
− Sk,An

≤
∑
a∈An

P(Ia,n = 1)2

(∑
a∈An

P(Ia,n = 1)

)k−2
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= λk−2
n

∑
a∈An

P(Ia,n = 1)2,

and note that this is o(λk
n) since

∑
a∈An

P(Ia,n = 1)2 = o(λ2
n). Hence, by

Equation (2) we have

P (Xn = k) = (1 + o(1)) exp(−λn)
λk
n

k!

as claimed, completing the proof.

In particular applying Lemma 2.4 to the stochastic Kronecker graph
K(n, P ) provides a formula for the expected number of vertices of a given
fixed degree.

Lemma 2.5. Fix d ∈ N and let Zd denote the number of vertices of degree
d in the stochastic Kronecker graph K(n, P ). Then we have

E(Zd) = (1+o(1))

n∑
w=0

(
n

w

)
(α+ β)dw(β + γ)d(n−w)

d!
e−(α+β)w(β+γ)n−w

+o(1).

Proof. Let η = max{α, β} and note that η−n grows exponentially with n,
since η < 1. Furthermore, let w0 be the maximal weight w ∈ {0, . . . , n} such
that

(3) (α+ β)w(β + γ)n−w < η−n/ log n.

In case no such w exists, we set w0 = −1. We denote by Zd,w0
the number

of vertices of degree d which have weight at most w0. Now consider any
vertex v in K(n, P ) such that w(v) ≤ w0. First note that there is an edge
between vertices u and v with probability at most ηn = max{αn, βn} = o(1),
uniformly for all such vertex pairs. Moreover since E(d(v)) < η−n/ logn, by
Lemma 2.1 and Inequality (3), we get

E(d(v)) pu,v = o(1),

for any vertex u ∈ Z
n
2 . Moreover, by Lemma 2.1, we have that∑

u∈Zn
2

P(Iu,v = 1)2 = (α2 + β2)w(v)(β2 + γ2)n−w(v)(4)

= o
(
(α+ β)2w(v) (β + γ)2(n−w(v))

)
= o

(
(E (d (v)))2

)
.
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Hence, we can apply Lemma 2.4 to the summands of Zd,w0
and obtain

E(Zd,w0
) = (1 + o(1))

w0∑
w=0

(
n

w

)
(α+ β)dw(β + γ)d(n−w)

d!
e−(α+β)w(β+γ)n−w

.

Now for any vertex v in K(n, P ) with w(v) > w0, Inequality (3) does
not hold, which implies that the tail

n∑
w=w0+1

(
n

w

)
(α+ β)dw(β + γ)d(n−w)

d!
exp

(
−(α+ β)w(β + γ)n−w

)
is dominated by the exponential term and hence o(1). Therefore, summing
up to n instead of w0 implies only an additive error of order o(1).

To finish the proof we have to consider the contribution of vertices of
large weight. Let v be a vertex with w(v) > w0 and observe that by the
definition of w0 we have E(d(v)) → ∞ exponentially. Therefore, the Chernoff
bound yields that

P (d (v) = d) ≤ exp

(
− (1 + o(1)) (E (d (v)))2

2 [Var(d (v)) + E (d (v)) /3]

)

and furthermore, by Lemma 2.1, this implies

P (d (v) = d) ≤ exp (−E (d (v)) /3) = o
(
e−n

)
.

Consequently the expected number of vertices of degree d with weight larger
than w0 is also o(1) and the statement follows.

Next we prove an auxiliary lemma that will be used frequently in the
remainder of this section.

Lemma 2.6. Let x, y > 0. For any c < x/(x+ y) and any w0 < cn we have

w0∑
w=0

(
n

w

)
xwyn−w = Θ

((
n

w0

)
xw0yn−w0

)
,

and likewise, for any c > x/(x + y) = 1 − y/(x + y) and any w0 > cn, we
have

n∑
w=w0

(
n

w

)
xwyn−w = Θ

((
n

w0

)
xw0yn−w0

)
.
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Proof. Due to symmetry we only consider the first statement. First observe
that the following elementary inequalities hold for all 1 ≤ j ≤ w0

(5) 0 <
w0 − j + 1

n− w0 + j
≤ w0

n− w0 + 1
<

c

(1− c)
,

since w0 < cn. But this already implies that

w0∑
w=0

(
n

w

)
xwyn−w =

(
n

w0

)
xw0yn−w0

⎛⎝ w0∑
i=0

i∏
j=1

w0 − j + 1

n− w0 + j

y

x

⎞⎠
(5)

≤
(

n

w0

)
xw0yn−w0

(
w0∑
i=0

(
c

1− c

y

x

)i
)

= O

((
n

w0

)
xw0yn−w0

)
,

where the asymptotic statement holds since c < x
x+y implies c

1−c
y
x < 1 and

therefore the sum is a partial sum of a convergent geometric series. The
proof follows from the fact that

w0∑
w=0

(
n

w

)
xwyn−w >

(
n

w0

)
xw0yn−w0 .

In order to prove Theorem 1.1 we need one more lemma calculating
the asymptotic value of the expected number of vertices in the stochastic
Kronecker graph with a fixed degree.

Lemma 2.7. Let 0 < α, β, γ < 1 be arbitrary parameters of K(n, P ). For
any fixed d ∈ N denote by Zd the number of vertices of degree d in K(n, P )
as in Lemma 2.5. Then we have either

(6) E(Zd) = Θ
((

(α+ β)d + (β + γ)d
)n)

or

(7) E(Zd) = o(2n).

Proof. There are six cases, according to the choice of α, β and γ, that require
different calculations depending on the terms that dominate the expectation
of the number of vertices of degree d in K(n, P ). For this we will use the
asymptotic representation of E(Zd) given in Lemma 2.5.
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In order to shorten our notation we set

ad,w =

(
n

w

)
(α+ β)dw(β + γ)d(n−w)

d!
exp(−(α+ β)w(β + γ)n−w)

and we obtain the representation

(8) E (Zd) = (1 + o(1))

n∑
w=0

ad,w + o(1).

Case 1: β + γ < α+ β = 1.
Note that in this case

ad,w =

(
n

w

)
(β + γ)d(n−w)

d!
exp(−(β + γ)n−w).

Furthermore, since exp(−(β + γ)n−w) ≤ 1, for every 0 ≤ w ≤ n, we get

E(Zd)
(8)
= (1 + o(1))

n∑
w=0

ad,w + o(1) ≤ (1 + o(1))

(
1 + (β + γ)d

)n

d!
.

On the other hand, there is a constant ε ∈ (0, (β+γ)/(1+β+γ)) such that
for all w ≤ (1− ε)n we have exp(−(β + γ)n−w) = 1 + o(1) and thus

E(Zd)
(8)
= (1 + o(1))

n∑
w=0

ad,w + o(1)

≥ (1 + o(1))

(1−ε)n∑
w=0

(
n

w

)
(β + γ)d(n−w)

d!
+ o(1)

L.2.6
= (1 + o(1))

(
1 + (β + γ)d

)n

d!

and Statement (6) holds.

Case 2: 1 = β + γ < α+ β.
Let us first introduce two parameters:

K = log n− log logα+β log n+ (d+ 1) log(α+ β),

k = logα+β

(
K

(α+β)−1

)
.
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Observe that, asymptotically, we have

(9) K = (1 + o(1)) logn,

and thus

(10) k = logα+β log n+O(1).

Next, note that in this case for any weight w we have

ad,w =

(
n

w

)
(α+ β)dw

d!
exp (− (α+ β)w) ,

and thus, using Estimates (9) and (10), we get

ad,k = o
(
2nn−(1+o(1))(log n)d

)
= o(2n).

Therefore Statement (7) follows if we show that E(Zd) = Θ(ad,k). In fact, it

is sufficient to show that

(11)

n∑
w=0

ad,w
ad,k

= O(1),

since E(Zd) ≥ (1+ o(1))ad,k + o(1) and ad,k = ω(1). We can divide this sum

into three parts

n∑
w=0

ad,w
ad,k

=

k∑
w=1

ad,k−w

ad,k
+ 1 +

n−k∑
w=1

ad,k+w

ad,k

and analyze the parts of this sum separately. By the definition of ad,w we

get for the first part

k∑
w=1

ad,k−w

ad,k
≤ (1 + o(1))

k∑
w=1

(
k

n

)w

(α+ β)−dwe(α+β)k(1−(α+β)−w).

Furthermore, by the definition of k, we have

(α+ β)k
(
1− (α+ β)−w) = K

α+ β
· 1− (α+ β)−w

1− (α+ β)−1
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=
K

α+ β

w−1∑
i=0

(α+ β)−i

α+β>1
≤ Kw

α+ β
,

and thus, extending the range of summation, we obtain

k∑
w=1

ad,k−w

ad,k
≤ (1 + o(1))

∞∑
w=1

(
k

(α+ β)dn
exp

(
K

α+ β

))w

.

Substituting K and using Estimate (10) for k yields

k

(α+ β)dn
exp

(
K

α+ β

)
=

logα+β log n+O(1)

(α+ β)dn

(
n(α+ β)d+1

logα+β log n

)1/(α+β)

= O
(
n−α+β−1

α+β log n
)
,

and thus the first part of the sum in (11) is bounded by

k∑
w=1

ad,k−w

ad,k
≤

∞∑
w=1

(
O
(
n−α+β−1

α+β logn
))w

= O(1).

Now it remains to consider the last term in the sum in (11). The argu-

ments involved in this step are similar to the ones just used, but we include

them for sake of completeness. By the definition of ad,w we get

n−k∑
w=1

ad,k+w

ad,k
≤ (1 + o(1))

n−k∑
w=1

(n
k

)w
(α+ β)dwe−(α+β)k((α+β)w−1).

Furthermore, by the definition of k, we estimate

− (α+ β)k ((α+ β)w − 1) = −K
(α+ β)w − 1

α+ β − 1

= −K

w−1∑
i=0

(α+ β)i

α+β>1
≤ −Kw.
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Thus, extending the range of summation, substituting K, and using Esti-
mate (10) for k shows that

n−k∑
w=1

ad,k+w

ad,k
≤ (1 + o(1))

∞∑
w=1

(
n(α+ β)d

k
exp (−K)

)w

=

∞∑
w=1

(
1 + o(1)

α+ β

)w

.

Since α + β > 1 the last term is O(1) and, as stated earlier, Statement (7)
holds.

Case 3: β + γ < 1 < α+ β.
We start by defining two constants c1, c2 ∈ (0, 1): Let

c1 =
(α+ β)d

(α+ β)d + (β + γ)d

and let c2 be the unique real solution of

(α+ β)c2(β + γ)1−c2 = 1.

Recall that ad,w consists of a binomial part

bd,w =
1

d!

(
n

w

)
(α+ β)dw(β + γ)d(n−w)

and an exponential part

ed,w = exp
(
− (α+ β)w (β + γ)n−w)

with ad,w = bd,wed,w. The choice of c1 and c2 allows us to analyze ad,w more
systematically, due to the following two observations: When
w > (1 + o(1))c1n, then the binomial term bd,w starts decreasing signifi-
cantly, and similarly when w > c2n, then the exponential term ed,w starts
decreasing at a significant rate. We need different arguments depending on
the relation between c1 and c2, thus we consider three cases.

(i) If c1 < c2, by application of the Binomial Theorem and since ed,w ≤ 1,
we have that

E(Zd)
(8)

≤ (1 + o(1))

(
(α+ β)d + (β + γ)d

)n

d!
.
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On the other hand, set c = c1+c2
2 ∈ (c1, c2) and observe that

(12) ad,cn = o
((

(α+ β)d + (β + γ)d
)n)

.

Moreover, we have for all w ≤ cn that

(α+ β)w(β + γ)n−w = o(1),

and therefore the exponential term satisfies ed,w = 1+ o(1). Thus, by drop-

ping some summands, it follows that

E(Zd)
(8)

≥ (1 + o(1))

cn∑
w=0

(
n

w

)
(α+ β)dw(β + γ)d(n−w)

d!

≥ (1 + o(1))

(
(α+ β)d + (β + γ)d

)n
d!

by application of Lemma 2.6 and Estimate (12). Hence Statement (6) is

satisfied.

(ii) If c1 = c2, we split the sum into three parts

(13)

E(Zd)
(8)
= (1+o(1))

⎛⎝c1n−log n∑
w=0

ad,w +

c1n+log n∑
w=c1n−logn

ad,w +

n∑
w=c1n+logn

ad,w

⎞⎠+o(1).

Now note that we can express the binomial part bd,w of the summand ad,w
with the help of a binomially distributed random variable

(14) bd,w =
1

d!

(
(α+ β)d + (β + γ)d

)n
P (Bin (n, c1) = w) .

Using the normal approximation of the binomial distribution we will be able

to estimate the three parts of the sum in Equation (13). First of all, since

ed,w ≤ 1, we can estimate the second term

c1n+log n∑
w=c1n−logn

ad,w
(14)
= O

[
1

d!

(
(α+ β)d + (β + γ)d

)n
P

(
|N(0, 1)| ≤ log n

c1(1− c1)n

)]
= o

((
(α+ β)d + (β + γ)d

)n)
.
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Similarly, since ed,w = o(1) for the summands of the last term, we also have

n∑
w=c1n+log n

ad,w
(14)
= o

[
1

d!

(
(α+ β)d + (β + γ)d

)n
P

(
N(0, 1) ≥ logn

c1(1− c1)n

)]
= o

((
(α+ β)d + (β + γ)d

)n)
.

Finally, we have ed,w = 1 + o(1) for the summands in the first term, hence
we get

c1n−logn∑
w=0

ad,w
(14)
= (1 + o(1))

1

d!

(
(α+ β)d + (β + γ)d

)n
P (N (0, 1) ≤ 0)

= (1 + o(1))
1

2d!

(
(α+ β)d + (β + γ)d

)n
,

and thus Statement (6) holds.

(iii) If c1 > c2, the sum can be split into two parts,

(15) E(Zd)
(8)
= (1 + o(1))

(
c2n+ι∑
w=0

ad,w +

n∑
w=c2n+ι+1

ad,w

)
+ o(1),

where ι is some constant which will be determined later. Our goal is to
show E(Zd) = Θ(ad,c2n+ι). This implies E(Zd) = o(2n), i.e. Statement (7)
holds, since by the definition of c2 and Stirling’s approximation for binomial
coefficients we know that

ad,c2n+ι ≤ bd,c2n+ι =
1

d!

(
n

c2n+ ι

)
= o(2n).

We begin the analysis with the second sum of (15). Note that due to our
choice of c2, we have that for any m ≥ 0

ad,c2n+m = (α+ β)dc2n(β + γ)dc2n
(
α+ β

β + γ

)dm

· exp
(
−(α+ β)c2n(β + γ)c2n

(
α+ β

β + γ

)m)
=

(
α+ β

β + γ

)dm

exp

(
−
(
α+ β

β + γ

)m)
.
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If we consider the quotient of two successive summands we obtain

ad,c2n+m+1

ad,c2n+m
=

(
α+ β

β + γ

)d

exp

((
1− α+ β

β + γ

)(
α+ β

β + γ

)m)
and since (α + β)/(β + γ) > 1 the sequence of these quotients is monotone

decreasing in m. Now define ι as the smallest positive integer such that

ζd,ι :=

(
α+ β

β + γ

)d

exp

((
1− α+ β

β + γ

)(
α+ β

β + γ

)ι)
< 1

and note that the value of ι does not depend on n. Therefore

n∑
w=c2n+ι+1

ad,w ≤ ad,c2n+ι

n−c2n−ι∑
i=1

(ζd,ι)
i ,

and since the sum can be bounded from above by a convergent geometric

series this is O(ad,c2n+ι).

On the other hand for the first summand in (15) we have that

c2n+ι∑
w=0

ad,w ≤
c2n+ι∑
w=0

bd,w.

Since c2n+ ι = (1 + o(1))c2n and c2 < c1 thus Lemma 2.6 implies that

c2n+ι∑
w=0

bd,w = O(bd,c2n+ι).

Also ι does not depend on n thus ed,c2n+ι is a constant and therefore

bd,c2n+ι = O(ad,c2n+ι) completing Case 3(iii).

Case 4: β + γ ≤ α+ β < 1.

Note in this case that in this case ed,w = (1 + o(1)) uniformly and thus

E(Zd)
(8)
=

(1 + o(1))

d!

n∑
w=0

(
n

w

)
(α+ β)dw(β + γ)d(n−w) + o(1)

= (1 + o(1))

(
(α+ β)d + (β + γ)d

)n
d!

+ o(1).
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Hence Statement (6) holds.

Case 5: 1 < β + γ ≤ α+ β.
Observe that we get

E (Zd)
(8)

≤ (1 + o(1)) exp (−(β + γ)n)
(
(α+ β)d + (β + γ)d

)n
+ o(1) = o(1),

and Statement (7) holds.

Case 6: β + γ = α+ β = 1.
We get

E (Zd)
(8)
= (1 + o(1))

2n

ed!
,

thus Statement (6) holds and thereby we complete the proof of
Lemma 2.7.

With the help of these preliminary results we can now prove Theo-
rem 1.1.

Proof of Theorem 1.1. In order for a graph to have a power law degree distri-
bution it is necessary that the number of vertices of degree d is approximately
cd−β |V |; in particular, for every finite d the expected number of vertices with
degree d has to be a linear fraction of all vertices. In Lemma 2.7 we have
shown that either

E(Zd) = Θ(((α+ β)d + (β + γ)d)n),

or

E (Zd) = o (2n) .

If E(Zd) = o(2n), then Markov’s inequality implies that the stochastic Kro-
necker graph a.a.s. does not follow a power law degree distribution. Clearly,
the only parameter choice which can satisfy E(Zd) = Θ(2n) for every fi-
nite d is when (α + β)d + (β + γ)d = 2. However, this can hold only if
α+ β = β + γ = 1. A closer examination of this case gives us that

(16) E (Zd) = (1 + o(1))
2n

ed!
= (1 + o(1))

1

ed!
|V |,

which indicates that the degree distribution follows a Poisson distribution
with parameter 1 and not a power law degree distribution. In fact, we will
show that a.a.s.

Zd = (1 + o(1))E(Zd).
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Recall that for a vertex u we denote by N(u) the set of its neighbors and

by d(u) = |N(u)| its degree. Conditioning on the edge {u, v} being present

or not, we can estimate

P (d (u) = d)− pu,v ≤ P (|N (u) \v| = d) ≤ P (d (u) = d) + pu,v,

and thus we have

(17) P (|N (u) \v| = d) = (1 + o(1))P (d (u) = d) = (1 + o(1))e−1/d! .

Since the events |N(u)\v| = d and |N(v)\u| = d are independent, the second

moment of Zd satisfies

E
(
Z2
d

)
=

∑
u∈V

P (d (u) = d) +
∑

u,v∈V
u�=v

P (d (u) = d (v) = d)

≤ E (Zd) +
∑

u,v∈V
u�=v

[
P (|N (u) \v| = d)P (|N (v) \u| = d) + pu,v

]

(17)
= (1 + o(1))4n

(
e−1

d!

)2
(16)
= (1 + o(1)) (E (Zd))

2 .

The statement follows by applying Chebyshev’s inequality.

3. Small subgraphs: proofs of Lemma 1.2 and Theorem 1.3

Let G be a fixed simple graph and label the vertices of G with 1, . . . , |V (G)|.
Denote by XG the number of labeled copies of G in the stochastic Kronecker

graph K(n, P ). Let LG be the set of functions g : V (G) → Z2. Define the

base value of a graph to be

BG =
∑
g∈LG

∏
{u,v}∈E(G)

Pg(u),g(v)

and for any fixed function g ∈ LG let its contribution to the base value of G

be

bG(g) =
∏

{u,v}∈E(G)

Pg(u),g(v).

We now establish the expectation of the number of subgraphs inK(n, P ).
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Proof of Lemma 1.2. First we express XG as a sum of indicator random
variables, one for each injective function of the vertex set V (G) into the
vertex set Z

n
2 of the stochastic Kronecker graph K(n, P ). Then we obtain

an upper bound UG for the expectation of the number of copies of G in
K(n, P ) by summing over all mappings from V (G) into Z

n
2 .

E(XG) =
∑

ϕ:V (G)→Z
n
2

ϕ inj.

∏
{u,v}∈E(G)

pϕ(u),ϕ(v) ≤
∑

ϕ:V (G)→Z
n
2

∏
{u,v}∈E(G)

pϕ(u),ϕ(v) = UG.

Using the digit-wise representation of the probabilities pϕ(i),ϕ(j) we get

UG =
∑

ϕ:V (G)→Z
n
2

∏
{u,v}∈E(G)

n∏
k=1

Pϕ(u)k,ϕ(v)k .

Furthermore, note that, for any k ∈ [n] and any function ϕ : V (G) → Z
n
2 ,

restricting ϕ to the k-th digit defines a function gk ∈ LG with gk(w) = ϕ(w)k
for all vertices w ∈ V (G). Therefore by changing the order of summation we
can express the upper bound UG in terms of the base value BG

UG =

n∏
k=1

∑
gk∈LG

∏
{u,v}∈E(G)

Pgk(u),gk(v) =

⎛⎝∑
g∈LG

∏
{u,v}∈E(G)

Pg(u),g(v)

⎞⎠n

= (BG)
n .

It remains to show that this upper bound is asymptotically tight. There-
fore let us consider the error-term

(BG)
n − E(XG) =

∑
ϕ:V (G)→Z

n
2

∏
{u,v}∈E(G)

pϕ(u),ϕ(v) −
∑

ϕ:V (G)→Z
n
2

ϕ inj.

∏
{u,v}∈E(G)

pϕ(u),ϕ(v)

and note that the proof is complete if we show that it is o((BG)
n).

Fix a pair of vertices {w1, w2} ⊂ V (G) with w1 �= w2 and note that by
a similar argument we have

∑
ϕ:V (G)→Z

n
2

ϕ(w1)=ϕ(w2)

∏
{u,v}∈E(G)

pϕ(u),ϕ(v) =

⎛⎜⎜⎝ ∑
g∈LG

g(w1)=g(w2)

∏
{u,v}∈E(G)

Pg(u),g(v)

⎞⎟⎟⎠
n

.

Since all entries of the probability matrix P are positive, in other words
α, β, γ > 0, every g ∈ LG has a positive contribution bG(g) > 0 to the base
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value of G and thus we have for every factor

ϑ :=
∑
g∈LG

g(w1)=g(w2)

∏
{u,v}∈E(G)

Pg(u),g(v) <
∑
g∈LG

∏
{u,v}∈E(G)

Pg(u),g(v) = BG.

Hence, as neither ϑ nor BG depend on n we have that ϑn = o((BG)
n)

completing the proof.

In order to show concentration for XG we will apply the second moment
method. This means that we want to compare the variance of XG with its
expectation. By expressing XG as a sum of indicator random variables we
shall calculate the covariance for any two of the indicator random variables
that are not independent. Therefore we have to consider any fixed graph F
formed by two edge-overlapping copies of G and determine the expectation
of XF , i.e. the expected number of copies of F contained in K(n, P ).

To this end, we characterize the set of graphs consisting of two overlap-
ping copies of a fixed graph with the help of graph homomorphisms. But
first note that, given two graphs H1 and H2, any graph homomorphism
ψ : V (H1) → V (H2) canonically extends to a function ψ̂ : E(H1) → E(H2),

ψ̂({u, v}) = {ψ(u), ψ(v)}, which we call edge function.

Definition 3.1. Define FG as the set of graphs F such that there exist
injective homomorphisms f1, f2 : V (G) → V (F ) such that the following
holds.

• V (F ) = f1(V (G)) ∪ f2(V (G));

• E(F ) = f̂1(E(G)) ∪ f̂2(E(G));

• f̂1(E(G)) �= f̂2(E(G));

• f̂1(E(G)) ∩ f̂2(E(G)) �= ∅.

With this notation, the following concentration lemma is a direct appli-
cation of Chebyshev’s inequality.

Lemma 3.1 ([7]). Let G be a fixed graph. If for every graph F ∈ FG we
have that E(XF ) = o((E(XG))

2), then a.a.s. XG = (1 + o(1))E(XG).

Therefore, we shall compare the base values of two graphs H1 and H2.
The following Lemma will prove to be a useful tool for this.

Lemma 3.2. Let H1 and H2 be simple graphs. If there exists a surjective
homomorphism φ : V (H1) → V (H2) such that φ̂ is injective, then

BH1
≥ BH2

.
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Proof. Define a function Φ : LH2
→ LH1

by setting Φ(h2)(v) = h2(φ(v)) for

every v ∈ V (H1) and h2 ∈ LH2
. Note that Φ is injective since φ is surjective,

providing a bijection

(18) Φ (LH2
) � LH2

,

and similarly, since φ̂ is also injective, a bijection

(19) φ̂ (E (H1)) � E (H1) .

Thus, we have

BH2
=

∑
h2∈LH2

∏
{u,v}∈E(H2)

Ph2(u),h2(v)

≤
∑

h2∈LH2

∏
{u,v}∈φ̂(E(H1))

Ph2(u),h2(v)

(19)
=

∑
h2∈LH2

∏
{u,v}∈E(H1)

Ph2(φ(u)),h2(φ(v))

=
∑

h2∈LH2

∏
{u,v}∈E(H1)

PΦ(h2)(u),Φ(h2)(v)

(18)
=

∑
h1∈Φ(LH2)

∏
{u,v}∈E(H1)

Ph1(u),h1(v)

≤
∑

h1∈LH1

∏
{u,v}∈E(H1)

Ph1(u),h1(v) = BH1
.

The standard application of Lemma 3.2 is the following: for any graph

H and any two vertices u, v ∈ V (H), we create a graph H ′ from H by

identifying u and v, i.e. removing v and all of the edges adjacent to v and

inserting an edge {u,w} when {v, w} ∈ E(H) and w �= v. If this does not

create any multiple edges, i.e. if H ′ is a simple graph, then Lemma 3.2

implies that BH′ ≤ BH .

With the help of this we will now study the thresholds for the appearance

of some classes of subgraphs and we start with stars.

Theorem 3.3. Let k ∈ N. The threshold for the appearance of K1,k in

the stochastic Kronecker graph is (α + β)k + (β + γ)k = 1. Additionally, if

(α+β)k+(β+γ)k > 1, then a.a.s. XK1,k
= (1+o(1))((α+β)k+(β+γ)k)n.
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Proof. Assume that in a labeling g ∈ LK1,k
the central vertex is labeled

with 1 and exactly i of the remaining vertices are labeled 1. Then we have
bK1,k

(g) = αiβk−i. Note that there are
(
k
i

)
ways to create such a labeling.

Similarly, if the central vertex is labeled 0 and exactly i of the remaining
vertices is labeled 0, then bK1,k

(g) = γiβk−i and there are
(
k
i

)
ways to create

such a labeling. Thus, we have

BK1,k
=

k∑
i=0

(
k

i

)
αiβk−i +

k∑
i=0

(
k

i

)
γiβk−i = (α+ β)k + (β + γ)k,

and therefore, if (α+ β)k + (β + γ)k < 1, we get

E
(
XK1,k

)
= (1 + o(1))

(
BK1,k

)n
= o(1).

In particular a.a.s. there is no copy of K1,k contained in K(n, P ).
Now for the rest of the proof we assume (α + β)k + (β + γ)k > 1. Note

that, by Lemma 3.1, it is sufficient to show that for every F ∈ FK1,k
we have

BF < (BK1,k
)2. Fix a graph F ∈ FK1,k

and let f1 and f2 be as in Definition
3.1. Let u denote the central vertex of the star K1,k. There are two options:
either the central vertices of the copies match, i.e. f1(u) = f2(u), or they do
not. If f1(u) = f2(u), then we have that F is a star, namely F = K1,k+	 for
some 0 < � < k.

On the other hand, if f1(u) �= f2(u), then the two copies of K1,k found in

F overlap in exactly one edge, i.e. |f̂1(E(K1,k))∩ f̂2(E(K1,k))| = 1. Now let
F ∗ ∈ FK1,k

be the graph such that f1(u) �= f2(u) and the two graphs overlap
only in the two end-vertices of the edge, i.e. f1(V (K1,k)) ∩ f2(V (K1,k)) =
{f1(u)∪f2(u)}. Lemma 3.2 implies that for every graph F ′ ∈ FK1,k

such that
the central vertices of the copies of K1,k do not match, we have BF ′ ≤ BF ∗

(see Figure 1).
Calculating the base value BF ∗ explicitly yields

BF ∗ = α(α+ β)2k−2 + 2β(α+ β)k−1(β + γ)k−1 + γ(β + γ)2(k−1)

≤ (α+ β)2k−1 + (β + γ)2k−1 = BK1,2k−1
.

Thus, we only have to show that BK1,k+�
< (BK1,k

)2 for 0 < � < k. If
α+ β ≤ 1, we get, using (α+ β)k + (β + γ)k > 1, that(

BK1,k

)2
= ((α+ β)k + (β + γ)k)2 > (α+ β)k + (β + γ)k

≥ (α+ β)	
(
(α+ β)k + (β + γ)k

)
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Figure 1: Edge-overlapping copies of two K1,5. Solid lines indicate overlap-
ping edges, dashed and dotted lines indicate non-overlapping edges of the
individual copies. A particular vertex labeling (numbers) is given for F ∗

which is not transferable to F ′ in the sense that it cannot be decided what
the label of the identified vertex (f1(v1) = f2(v2)) should be, as the labels
for f1(v1) and f2(v2) differ.

≥ (α+ β)k+	 + (β + γ)k+	 = BK1,k+�
.

On the other hand, if (α+ β) > 1, then we have(
BK1,k

)2
= ((α+ β)k + (β + γ)k)2 > (α+ β)2k + (α+ β)k(β + γ)k

≥ (α+ β)2k + (α+ β)k−	(β + γ)k+	

= (α+ β)k−	((α+ β)k+	 + (β + γ)k+	)

≥ (α+ β)k+	 + (β + γ)k+	 = BK1,k+�
.

Next we will show similar concentration results for trees and cycles, but

only in the case when α = γ. The arguments simplify if we examine edge

labelings of a simple graph G, i.e. functions ĝ ∈ L̂G := {ĝ : E(G) → {0, 1}},
instead of vertex labelings of G. For this we define a function Ψ : LG → L̂G

by setting Ψ(g)({u, v}) = |g(u)−g(v)| for all edges {u, v} ∈ E(G) and vertex

labelings g ∈ LG. Note that, if G is connected, then there exist exactly two

labelings g1, g2 ∈ LG such that Ψ(g1) = Ψ(g2). However, depending on

G there might exist edge labelings, for which no equivalent vertex labelings

exist, e.g. labeling every edge of an odd cycle with 1. We call an edge labeling

ĝ valid, if Ψ−1(ĝ) �= ∅. The set of all valid edge labelings of G is denoted by

Ψ(LG) ⊂ L̂G. We will once again be interested in the base value of G but

now will calculate by summing over all valid edge labelings.

Now let α = γ.We define bG(ĝ) := α|ĝ−1(0)|β|ĝ−1(1)| to be the contribution
to the base value of G of a fixed edge labeling ĝ ∈ Ψ(LG) and thus we get
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for every connected graph G that its base value satisfies

(20) BG =
∑
g∈LG

bG(g) = 2
∑

ĝ∈Ψ(LG)

α|ĝ−1(0)|β|ĝ−1(1)| .

With the help of this observation we now establish concentration results
for trees and cycles.

Theorem 3.4. Let T be a tree and assume that α = γ. The threshold for
the appearance of T in the stochastic Kronecker graph is 2(α + β)e(T ) = 1.
Additionally, if 2(α+β)e(T ) > 1, then a.a.s. XT = (1+o(1))(2(α+β)e(T ))n.

Proof. Note that for a tree T, every labeling is valid and Equation (20)
implies that

E(XT ) = (1 + o(1))(2(α+ β)e(T ))n,

and the first statement follows by Markov’s inequality.

Now assume BT > 1. We will again use the second moment method in
form of Lemma 3.3. Let F ′ ∈ FT and let F be a tree such that e(F ) = e(F ′).
Since every labeling of the edges of F is valid but, on the other hand, some
labelings of F ′ may not be valid, we have BF ≥ BF ′ . Therefore, it is enough
to show that for every tree F such that e(T ) < e(F ) < 2e(T ) we have that
BF < (BT )

2. If α+ β ≤ 1, we have

(BT )
2 = (2(α+ β)e(T ))2 > 2(α+ β)e(T ) ≥ 2(α+ β)e(F ) = BF .

On the other hand, if α+ β > 1, we have

(BT )
2 = (2(α+ β)e(T ))2 = 4(α+ β)2e(T ) > 2(α+ β)e(F ) = BF ,

completing the proof.

We conclude this section with the proof of Theorem 1.3 concerning the
threshold for the appearance of cycles in K(n, P ).

Proof of Theorem 1.3. Unlike in the case of trees, the edge labelings of Ck

are not necessarily valid. However, note that the only reason for a label-
ing not be valid is because it contains an odd number of ones. Therefore,
Equation (20) implies that

BCk
= 2

	k/2
∑
i=0

(
k

2i

)
β2iαk−2i = (α+ β)k + (α− β)k,
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and thereby the first statement of Theorem 1.3 holds due to Markov’s in-
equality.

So now assume BCk
> 1 and proceed analogously to the proof of Theo-

rem 3.4. First, for every F ′ ∈ FCk
, we will determine a graph F such that

e(F ) = e(F ′) and BF ≥ BF ′ .
Let F	 be the graph created from two overlapping k-cycles such that

the two cycles overlap in exactly � consecutive edges. Equivalently, F	 is a
pair of vertices u, v which are connected by 3 vertex disjoint paths, where
one consists of � edges and the other two consist of k− � edges. Note that a
labeling of F	 is valid if and only if the parity of the number of ones assigned
to each of these paths is equal. Therefore, by Equation (20) we have

BF�
= 2

⎛⎝	(k−	)/2
∑
i=0

(
k − �

2i

)
αk−	−2iβ2i

⎞⎠2⎛⎝		/2
∑
i=0

(
�

2i

)
α	−2iβ2i

⎞⎠
+ 2

⎛⎝�(k−	)/2�∑
i=1

(
k − �

2i− 1

)
αk−	−(2i−1)β2i−1

⎞⎠2⎛⎝�	/2�∑
i=1

(
�

2i− 1

)
α	−2i+1β2i−1

⎞⎠
= 2

(
(α+ β)k−	 + (α− β)k−	

2

)2(
(α+ β)	 + (α− β)	

2

)
+ 2

(
(α+ β)k−	 − (α− β)k−	

2

)2(
(α+ β)	 − (α− β)	

2

)
,

where the second equality holds by several applications of the Binomial
Theorem. Furthermore, this simplifies to

BF�
=
1

2

(
(α+ β)2k−	 + (α+ β)	(α− β)2k−2	 + 2(α+ β)k−	(α− β)k

)
(21)

=
1

2
(α+ β)2k−	

(
1 +

(
α− β

α+ β

)2k−2	

+ 2

(
α− β

α+ β

)k
)
.(22)

Now let F ′ ∈ FCk
such that e(F ′) = 2k − � and let f ′

1, f
′
2 be the corre-

sponding functions as in Definition 3.1. The edges of F ′ can be partitioned
into three sets:

E0 := f̂ ′
1(E(Ck)) ∩ f̂ ′

2(E(Ck)),

E1 := f̂ ′
1(E(Ck))\f̂ ′

2(E(Ck)),

E2 := f̂ ′
2(E(Ck))\f̂ ′

1(E(Ck)).
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Figure 2: Two copies of C8 which overlap in four edges. Solid lines indicate
overlapping edges (E0), dashed and dotted lines indicate non-overlapping
edges of the individual copies (E1, E2). Labeling every edge with 1 is a valid
labeling for F4. However, since F ′ contains an odd cycle, this labeling is not
valid for F ′.

Note that for a labeling of edges to be valid the number of ones assigned
to each of these sets must have the same parity. Therefore, the previous
calculation for BF�

already implies BF�
≥ BF ′ , as we may sum over at most

as many terms as before (see Figure 2).
Now, by Lemma 3.3 it is sufficient to show that BF�

< (BCk
)2 for 0 <

� < k − 1. Observe that by Equation (22) we have that BF�
≥ BF�−1

if and
only if

1 +

(
α− β

α+ β

)2k−2	

+ 2

(
α− β

α+ β

)k

(23)

≥ (α+ β)

(
1 +

(
α− β

α+ β

)2k−2	+2

+ 2

(
α− β

α+ β

)k
)
,

or equivalently(
1− (α− β)2

α+ β

)(
α− β

α+ β

)2k−2	

≥ (α+ β − 1)

(
1 + 2

(
α− β

α+ β

)k
)
.(24)

Note that the left hand side of Inequality (24) increases as � increases, while
the right hand side does not depend on �. Thus it is enough to show that
BF1

< (BCk
)2 and BFk−2

< (BCk
)2. We will distinguish three cases for this.

1. If α+ β ≤ 1, then we obtain

BF�

(22)
=

1

2
(α+ β)2k−	

(
1 +

(
α− β

α+ β

)2k−2	

+ 2

(
α− β

α+ β

)k
)
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≤ 1

2
(α+ β)k

(
1 +

(
α− β

α+ β

)2k−2	

+ 2

(
α− β

α+ β

)k
)

< (α+ β)k

(
1 +

(
α− β

α+ β

)k
)

= (α+ β)k + (α− β)k = BCk
,

where the last inequality follows from |α−β| < |α+β|. Since BCk
> 1

the claim follows.

2. If α+ β > 1 and α ≥ β or α+ β > 1 and k is even, then we have

BF�

(22)
=

1

2
(α+ β)2k−	

(
1 +

(
α− β

α+ β

)2k−2	

+ 2

(
α− β

α+ β

)k
)

<
1

2
(α+ β)2k

(
1 + 1 + 2

(
α− β

α+ β

)2k

+ 4

(
α− β

α+ β

)k
)

=
(
(α+ β)k + (α− βk)

)2
= (BCk

)2 .

3. If α + β > 1, β > α and k is odd. Note that under these conditions

(α− β)k < 0 and therefore

(25) (α+ β)2(α− β)k ≤ (α− β)k+4

(α+ β)2
,

implying

BFk−2

(21)
=

1

2

(
(α+ β)k+2 + (α+ β)k−2(α− β)4 + 2(α+ β)2(α− β)k

)
(25)

≤ 1

2

(
(α+ β)k + (α− β)k

)(
(α+ β)2 +

(α− β)4

(α+ β)2

)
.

Furthermore note that for every odd i ∈ N we have

(α+ β)i + (α− β)i < (α+ β)i+2 + (α− β)i+2,

and therefore BFk−2
< (BCk

)2 follows if we can show

1

2

(
(α+ β)2 +

(α− β)4

(α+ β)2

)
< (α+ β)3 + (α− β)3.
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On the one hand, if α ≥ 1/5 we have

1

2
((α+ β)4 + (α− β)4) = α4 + 6α2β2 + β4

< (2α+ 5β)α4 + 10(α+ β)α2β2 + 5αβ4

≤ (α+ β)5 + α5 − β5

≤ (α+ β)5 + (α+ β)2(α− β)3.

On the other hand, if α < 1/3, then we have

1

2

(
(α+ β)2 +

(α− β)4

(α+ β)2

)
=

α4 + 6α2β2 + β4

α2 + 2αβ + β2
< 1 ,

since α4 < α2, β4 < β2 and 6α2β2 < 2αβ.
Hence, all that is left is to show that BF1

< (BCk
)2. Assume

(α+ β)k−1 ≤ 2. Then we have

BF1
=

1

2
(α+ β)k−1((α+ β)k + (α− β)k)

+
1

2
(α+ β)(α− β)k((α+ β)k−2 + (α− β)k−2)

≤ 1

2
(α+ β)k−1((α+ β)k + (α− β)k)

≤ (α+ β)k + (α− β)k = BCk
< (BCk

)2 .

However, if (α+ β)k−1 > 2, then we have(
α− β

α+ β

)2k−2

− 2

(
α− β

α+ β

)k

=
(α− β)2k−2 − 2(α+ β)k−2(α− β)k

(α+ β)2k−2

≤ 1− 2(α2 − β2)k−2(α− β)2

(α+ β)2k−2

≤ 1 + 2(α− β)2

(α+ β)2k−2
≤ 3

4
< 1.

Thus we have, as desired,

BF1
=

1

2
(α+ β)2k−1

(
1 +

(
α− β

α+ β

)2k−2

+ 2

(
α− β

α+ β

)k
)

<
1

2
(α+ β)2k−1

(
2 + 4

(
α− β

α+ β

)k
)
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<
1

2
(α+ β)2k

(
2 + 2

(
α− β

α+ β

)2k

+ 4

(
α− β

α+ β

)k
)

= (BCk
)2 .

4. Structural properties: proof of Theorem 1.4

In this section we study the stochastic Kronecker graph when α = γ and

α + β > 1. In particular, we are interested in the neighborhood N(u) of a

vertex u and its degree d(u) = |N(u)|. We prove Theorem 1.4 stating that

all vertices have the same degree and for almost all edges the end points

have asymptotically the same Hamming distance from one another.

Proof of Theorem 1.4. Recall that for every vertex u we have

E(d(u)) = (1 + o(1))(α+ β)n

and

Var (d (v)) = (1 + o(1))E (d (v)) ,

by Lemma 2.1. Thus, for a fixed vertex u the Chernoff bound implies that

P

(
|d(u)− E(d(u))| > logn

√
nE(d(u))

)
= o(exp(−n)).

The first statement follows by applying the union bound.

In order to prove the second statement we now define for each k ∈
{0, . . . , n} a random variable Yu,k that counts the number of neighbors of

u at Hamming distance k and recall that by representing Yu,k as a sum of

indicator variables we get

(26) E (Yu,k) =

(
n

k

)
αn−kβk = (α+ β)n P

(
Bin

(
n,

β

α+ β

)
= k

)
.

Now we define a subset of the natural numbers

(27) J =

{
k ∈ {0, . . . , n} :

∣∣∣∣k − β

α+ β
n

∣∣∣∣ >
√

2
β

α+ β
log n

√
n

}
,

and call a neighbor w of u bad if

H(w, u) ∈ J ,
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i.e. w is either too far or too close in Hamming distance to u. Then we set

Yu =
∑
k∈J

Yu,k,

i.e. Yu is the random variable that counts the number of bad neighbors of
u. By linearity of expectation we get

E (Yu) =
∑
k∈J

E (Yu,k)
(26)
= (α+ β)n P

(
Bin

(
n,

β

α+ β

)
∈ J

)
.

Moreover, by Definition (27), the Chernoff bound provides the following
upper bound for this probability

P

(∣∣∣∣Bin(n, β

α+ β

)
− β

α+ β
n

∣∣∣∣ >
√

2
β

α+ β
log n

√
n

)
≤ 2e−(1+o(1)) log2 n,

and thus we get for the expected number of bad neighbors of u

E(Yu) ≤ 2 exp
(
−(1 + o(1)) log2 n

)
(α+ β)n.

Furthermore, note that the random variable Yu is the sum of independent
Bernoulli random variables, hence Var(Yu) ≤ E(Yu), and thus the Chernoff
bound implies

P

(
Yu >

(α+ β)n

n

)
< exp

(
−(1 + o(1))(α+ β)2n exp((1 + o(1)) log2 n)

3n2(α+ β)n

)
= o(exp(−n)).

Hence, with probability at least 1−o(exp(−n)), almost all neighbors of u are
not bad, i.e. their Hamming distance is not “too far” from β

α+βn. Applying
the union bound completes the proof.

We have just proved that for every vertex u in the stochastic Kronecker
graph K(n, P ), with α = γ and α + β > 1, that almost all of its neighbors
have asymptotically the same Hamming distance from u. Intuitively, for
“small enough” α > 0 a.a.s. there should not even be a single edge between
two vertices with a “small” Hamming distance, since the probability of hav-
ing a fixed edge of that sort decreases rapidly with α → 0. More precisely, we
will now show that if α < 1/2 then a.a.s. there are no edges between vertices
that have Hamming distance at most cn for some 0 < c < β/(α + β) < 1.
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Similarly if β < 1/2 then a.a.s. there are no edges between vertices that have
Hamming distance at least cn for some 0 < β/(α+β) < c < 1. In fact these
constants c can be determined as the solutions of the following equation.

Lemma 4.1. Assume that α + β > 1. Then there is at most one solution
c ∈ (0, 1) of the equation (

β

c

)c( α

1− c

)1−c

=
1

2
.

In addition, if α < 1/2, then there is exactly one solution and

0 < c < β/(α+ β) < 1.

However, if β < 1/2, then there is exactly one solution and

0 < β/(α+ β) < c < 1.

Proof. Let us define a function ψ : (0, 1) → R by setting

ψ(c) =

(
β

c

)c( α

1− c

)1−c

and note that ψ is continuous on (0, 1). Furthermore, ψ is differentiable on
(0, 1) and we have that

ψ′(c) = ln

(
β(1− c)

αc

)(
β

c

)c( α

1− c

)1−c

.

Note that ψ′(c) < 0 if and only if β(1−c) < αc, or equivalently c > β/(α+β),
and ψ′(c) > 0 if and only if β(1 − c) > αc or equivalently c < β/(α + β).
Therefore ψ(c) strictly increases on (0, β/(α + β)) and strictly decreases
on (β/(α + β), 1). Furthermore ψ(c) → α as c → 0, ψ(c) → β as c → 1.
Let c0 = β/(α + β), i.e. c0 is the point where ψ attains its unique, global
maximum and note that we have

ψ (c0) =

(
β

c0

)c0 ( α

1− c0

)1−c0

= (α+ β)c0(α+ β)1−c0 = (α+ β) > 1.

Therefore, if α < 1/2, then there is a solution to ψ(c) = 1/2 on (0, β/(α+β))
and if β < 1/2 there is a solution on (α/(α + β), 1). The statement follows
from the fact that at most one of α, β can be < 1/2.
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From Theorem 1.4 and by application of Lemma 2.6 we deduce the
following theorem.

Theorem 4.2. Assume that α = γ and α+ β > 1. Let c ∈ (0, 1) satisfy(
β

c

)c( α

1− c

)1−c

=
1

2
.

Then, if α < 1/2, a.a.s. no vertex u has a neighbor w such that

H(u,w) < cn.

However, if β < 1/2, then a.a.s. no vertex u has a neighbor w such that

H(u,w) > cn.

Proof. Assume that α < 1/2. The expected number of neighbors of vertex
u at distance at most cn is

cn∑
i=0

(
n

i

)
αn−iβi.

Lemma 4.1 implies that c < β/(α+ β). Therefore, according to Lemma 2.6
we have

cn∑
i=0

(
n

i

)
αn−iβi L.2.6

= O

((
n

cn

)
α(1−c)nβcn

)
= o

((
α1−cβc

cc(1− c)1−c

)n)
L.4.1
= o(2−n).

The result follows by applying the union bound to the 2n vertices and
Markov’s inequality. The case when β < 1/2 is analogous.

Furthermore, the constant c in Theorem 4.2 is optimal in the following
sense.

Theorem 4.3. Assume that α = γ and α+ β > 1. Let c ∈ (0, 1) satisfy(
β

c

)c( α

1− c

)1−c

=
1

2
.
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Then, if α < 1/2, a.a.s. there is an edge connecting two vertices u, v such
that

H(u,w) = cn+ log2 n,

and if β < 1/2, then a.a.s. there is an edge connecting two vertices u, v such
that

H(u,w) = cn− log2 n.

Proof. Assume α < 1/2 and note that this implies that α < β. The proba-
bility q that no two vertices at distance cn+ log2 n are connected satisfies

q =

(
1 −α(1−c)nβcn

(
β

α

)log2 n
)2n−1( n

cn+log2 n)

≤ exp

(
−α(1−c)nβcn

(
β

α

)log2 n

2n−1(1 + o(1))

(
n

cn

))

≤ exp

(
−Θ

(
1√
n

)(
2

α(1−c)βc

cc(1− c)1−c

)n(
β

α

)log2 n
)

= o(1),

as β > 1/2 > α. Hence, a.a.s. there is an edge between two vertices at
distance cn+ log2 n. The case β < 1/2 is analogous.
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