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A linear Cheeger inequality using eigenvector norms

Franklin H. J. Kenter

The Cheeger constant, hG, is a measure of expansion within a
graph. The classical Cheeger Inequality states: λ1/2 ≤ hG ≤

√
2λ1

where λ1 is the first nontrivial eigenvalue of the normalized Lapla-
cian matrix. Hence, hG is tightly controlled by λ1 to within a
quadratic factor.

We give an alternative Cheeger Inequality where we consider
the ∞-norm of the corresponding eigenvector in addition to λ1.
This inequality controls hG to within a linear factor of λ1 thereby
providing an improvement to the previous quadratic bounds. An
additional advantage of our result is that while the original Cheeger
Inequality makes it clear that hG → 0 as λ1 → 0, our result shows
that hG → 1/2 as λ1 → 1.
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1. Introduction

Let G = (V,E) be an undirected graph on n vertices with no isolated ver-

tices. Let A be the adjacency matrix of G and L := I −D−1/2AD−1/2 be

the normalized Laplacian matrix with eigenvalues 0 = λ0 ≤ λ1 ≤ . . . ≤ λn.

It is a basic result in spectral graph theory that 0 is a simple eigenvalue

of L if and only if the graph G is connected. More generally, the number of

connected components of G is equal to the multiplicity of 0 as an eigenvalue

of L [5]. Further, loosely speaking, if λ1 ≈ 0, then G is nearly disconnected.

This is made formal by the Cheeger ratio and the Cheeger Inequality. The

Cheeger constant, hG, of a graph, G, is defined

(1) hG := min
S⊂V

0<vol S≤vol G/2

E(S, S̄)

vol S
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where dv is the degree of a vertex v, vol S :=
∑

v∈S dv the volume of S ⊂
V , and E(S, S̄) is the number of edges between S and its complement, S̄.
The fundamental connection between hG and L is the classical Cheeger
Inequality:

Theorem 1 (Cheeger’s Inequality, see for example [1, 5]). Let G be an
undirected graph and λ1 be the second smallest eigenvalue of the normalized
Laplacian matrix of G. Then,

λ1

2
≤ hG ≤

√
2λ1.

Hence, hG → 0 as λ1 → 0 and vice versa.
The main technique to prove Cheeger’s Inequality, notably the upper

bound, is to generate a spectral-based algorithm to provide a set S with
the corresponding small Cheeger ratio. In particular, a “sweep” algorithm
is used whereby the components of the eigenvector corresponding to λ1 are
ordered. From this ordering, the set S is chosen by taking all components
less than some real number α followed by “sweeping” through all possible
(i.e., optimizing) α. See, for example, [5].

The original concept of the Cheeger constant originates from the idea
in differential geometry relating the isoperimetric problem to the spectrum
of the Laplacian on manifolds [3]. For graphs, the Cheeger constant is a
measure of edge expansion within a graph with spectral results tracing back
to Alon and Milman [1]. Much work on the Cheeger constant has been done
by Chung [4, 5]. In addition, there have been many recent improvements
and adaptations considering other eigenvalues [7, 6].

Our main result is the following:

Theorem 2 (Linear Cheeger Inequality with eigenvector norms). Let G
be an undirected graph on n vertices with maximum degree Δ and Δ

vol G =

o(n−2/3). Let λ1 be the second minimum eigenvalue of the normalized Lapla-
cian with eigenvector D1/2v (i.e., v is a harmonic eigenvector) and
‖D1/2v‖2 = 1. Then, the Cheeger constant hG obeys:

1

2
− 1− λ1

2
≤ hG ≤

(
1

2
− 1− λ1

2‖v‖2∞vol G

)
(1 + o(1)).

We present the theorem in this manner (most notably the left-hand
side) in order to emphasize that the Cheeger constant in actuality measures

how much the ratio E(S,S̄)
vol S can be improved from 1/2. Specifically, under

the mild conditions indicated, choosing the set S randomly demonstrates
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hG < 1/2 · (1 + o(1)). In fact, as part of the proof to Theorem 2 we provide
an alternative randomized “sweep” which produces these alternative guar-
antees. This randomized “sweep” uses the eigenvector as a seed from which
to determine various probabilities to construct the set S.

This result provides several additional contributions. First, while the
original Cheeger Inequality shows that hG → 0 as λ1 → 0, this result shows
that under mild conditions, hG → 1/2 as λ1 → 1. Hence, the original Cheeger
Inequality and the “sweep” algorithm are not necessarily effective when
λ1 > 1/8. Finally, the result demonstrates that the quadratic factor in the
original Cheeger Inequality can be elegantly replaced with a linear factor at
the expense of the additional norm term.

We should remark that the denominator of ‖v‖2∞vol G may seem quite
poor, as vol G can be as large as O(n2). However, ‖v‖∞ can be as low as
1/
√
vol G. In this case, the result is asymptotically tight on both sides.
This paper is organized as follows: In Section 2 we give basic notation

and preliminaries. We give the proof to Theorem 2 in Section 3 and provide
a generalization for higher eigenvalues in Section 4. Finally, we discuss our
conclusions and lines for future work in Section 6.

2. Preliminaries

We consider simple unweighted graphs, G = (V,E), where V and E are the
set of vertices and edges respectively. Throughout, n will denote the number
of vertices, |V |. Given sets S, T ⊂ V , we let E(S, T ) denote the number of
edges between S and T , with any edge within S ∩ T counted twice. The
degree of a vertex v ∈ V , denoted dv is simply E({v}, V ). A graph is called
d-regular whenever all vertices have degree d. For a subset S ⊂ V within
an undirected graph G, the volume of S, denoted vol S, is the sum of the
degrees: vol S :=

∑
s∈S ds.

For a matrix M, we let M∗ denote the conjugate transpose of M. We use
I and J to denote the identity and all-ones matrices, respectively. In addition,
we will use 1 to denote the all-one vector, 1S to denote the indicator function
of a set S, and 1A to denote the indicator function of an event A.

For v ∈ Rn, we utilize the vector norms ‖v‖2, and ‖v‖∞. Recall ‖v‖2 =√∑
i v

2
i , and ‖v‖∞ = maxi |vi|.

Let D be the diagonal degree matrix where Dii = di. Our focus will
be upon the normalized Laplacian Matrix, denoted L where L := I −
D−1/2AD−1/2. (By convention, D

−1/2
ii = 0 whenever i is an isolated ver-

tex.) In the case that D1/2y is an eigenvector of L, we call y the harmonic
eigenvector. More information can be found in [5].
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We can interpret the quadratic form of L as follows:

Fact 1. For two subsets of vertices, S and T , the following holds:

(D1/21S)
∗(I− L)(D1/21T ) = E(S, T ).

Throughout the paper, we make use of probability. For a random variable
X, we let EX denote the expected value of X, and for an event A, we let
PA denote the probability of A. One of the main techniques we apply is
the random quadratic form of a random complex vector x over a given
matrix A. We let μ := Ex denote the entry-wise expectation of x with
variance-covariance matrix Σ := E[(μ − x)(μ − x)∗]. In this case, we have
the following:

Proposition 1 (Expectation of Random Quadratic Forms, see for example
[8]). Let x ∈ Cn be a random vector with Ex = μ and variance-covariance
matrix Σ. Then for an n× n real-symmetric matrix A,

E[x∗Ax] = μ∗Aμ+Tr(ΣA)

where Tr(·) indicates the trace of the matrix.

We will use a stronger form of the previous proposition:

Lemma 1. Let x ∈ Cn be a random vector whose entries are pairwise
independent. Let Ex = μ. Then for an n×n real-symmetric matrix A, with
Aii = 0 for all i,

E[x∗Ax] = μ∗Aμ.

Proof. It suffices to show that Tr(ΣA) = 0.

Tr(ΣA) =

n∑
i,j=1

ΣijAji

=
∑
i �=j

ΣijAji +

n∑
i=1

ΣiiAii

=
∑
i �=j

0 ∗Aji +

n∑
i=1

Σii ∗ 0

= 0

A random variable X has the Bernoulli distribution with parameter p
if X = 1 with probability p and X = 0 otherwise. In this case, we write,
X ∼ Bernoulli(p).
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In addition, we will make use of the Chernoff bound, a classical concen-
tration inequality:

Proposition 2 (Chernoff Bound, see [2]). For i = 1, . . . k, let Xi be inde-
pendent random variables with 0 ≤ Xi ≤ Δ. Define S =

∑
iXi with ES = μ.

Then, for any ε > 0,

P[|μ− S| > εμ] ≤ 2 exp

(
−ε2μ

3Δ

)
.

We will make use of “Big O” and “little-o” asymptotic notation. We say

g(n) = O(f(n)) if lim supn→∞
g(n)
f(n) is bounded, and g(n) = o(f(n)) means

limn→∞
g(n)
f(n) = 0. For our purposes, we emphasize that for asymptotics all

other parameters besides n, the number of vertices, are fixed.

3. Proof of the linear Cheeger inequality

In this section, we prove Theorem 2. Our main strategy will be to use a
harmonic eigenvector corresponding to λ1, the second smallest eigenvalue
of L, in order to choose effective probabilities for each vertex. Then using
Lemma 1, we calculate the corresponding Cheeger ratio.

Proof of Theorem 2. The lower bound follows from the classical Cheeger
Inequality; hence, we will focus on the upper bound.

Let x be a random vector where xi ∼ Bernoulli(1−2δ
2 + vi

2‖v‖∞
) where

each entry is independent of the others; δ is to be chosen later. Let S be the
support of x, and let μ = E[vol S]. Observe that since v is orthogonal to 1,

we have μ = vol G(1−2δ)
2 . Let A be the event: (1 − ε)μ < vol S < (1 + ε)μ,

and let Ā denote the complement event with ε to be chosen later.

E [E(S, S)] = E [E(S, S)1A + E(S, S)1Ā]

≤ E [E(S, S)1A] + vol G

(
2 exp

(
−ε2μ

3Δ

))
(2)

= E

[
E(S, S̄) + E(S, S)− E(S, S̄)

vol S
(vol S)1A

]
(3)

+ vol G

(
2 exp

(
−ε2μ

3Δ

))

= E

[
vol S − E(S, S̄)

vol S
(vol S)1A

]
+ vol G

(
2 exp

(
−ε2μ

3Δ

))
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≤ E [(1− hG)(vol S)1A] + vol G

(
2 exp

(
−ε2μ

3Δ

))
(4)

≤ (1− hG)(1 + ε)μ+ vol G

(
2 exp

(
−ε2μ

3Δ

))
(5)

where line 2 follows from the Chernoff Bound, line 4 follows from the defini-
tion of hG, and line 5 follows from the upper bound on μ under the event A.

Altogether, we have,

E(S, S) ≤ (1− hG)(1 + ε)μ+ (vol G)

(
2 exp

(
−ε2μ

3Δ

))
.

Recall that by Lemma 1,

E

[
(xD1/2)∗(I− L)(xD1/2)

]

=

(
1− 2δ

2
1+

v

2‖v‖∞

)∗
D1/2(I− L)D1/2

(
1− 2δ

2
1+

v

2‖v‖∞

)

=
(1− 2δ)2(vol G)

4
+

1− λ1

4‖v‖2∞
.

Further, since (D1/2x)∗(I− L)(D1/2x) = E(S, S), we have:

(1− 2δ)2vol (G)

4
+

1− λ1

4‖v‖2∞
≤ (1− hG)(1 + ε)μ+ (vol G)

(
2 exp

(
−ε2μ

3Δ

))
.

In choosing δ = ε = n−1/3, we have:

(1− 2n−1/3)2(vol G)

4
+

1− λ1

4‖v‖2∞
≤ (1− hG)(1 + n−1/3)

1− 2n−1/3

2
(vol G)

+ 2(vol G) exp

(
−ε2μ

3Δ

)

1

4
(1− o(1)) +

1− λ1

4(vol G)‖v‖2∞
≤ (1− hG)

1

2
(1 + o(1)) + o(1)(6)

1

2
(1− o(1)) +

1− λ1

2(vol G)‖v‖2∞
≤ 1− hG

hG ≤
(
1

2
− 1− λ1

2(vol G)‖v‖2∞

)
(1 + o(1)).

Above, line 6 follows from the hypothesis that Δ/vol G = o(n−2/3).
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In the case of regular graphs, Theorem 2 becomes:

Corollary 1 (Cheeger Inequality with eigenvector norms for regular graphs).
Let G be an undirected d-regular graph. Let λ2 be the second maximum
eigenvalue of the adjacency matrix of G with unit eigenvector v. Then, the
Cheeger constant hG obeys:

1

2
− λ2

2d
≤ hG ≤

(
1

2
− λ2

2dn‖v‖2∞

)
(1 + o(1)).

The proof is omitted as it follows from Theorem 2 and the facts for a
d-regular graph: D = dI and L = I− A

d .

4. Linear Cheeger inequality with an arbitrary vector

One of the great aspects of the proof of Theorem 2 is that the choice of the
vector v is not restricted to the eigenvector corresponding to λ1. In fact, any
vector orthogonal to the principle harmonic eigenspace (e.g., v∗D1 = 0) can
be chosen; however this comes at the cost of a different term in the numerator
in the lower bound depending upon the eigenspace decomposition of D1/2v.
In particular, we prove the following:

Theorem 3 (Cheeger Inequality with vector norms of an arbitrary vec-
tor). Let G be an undirected graph with maximum degree Δ and Δ

vol G =

o(n−2/3). Let L be the normalized Laplacian matrix of G with eigenvalues
0 = λmin ≤ λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . with corresponding harmonic eigenvec-
tors v0,v1,v2,v3, . . . ,vk, . . .. Let v be a vector which is a linear combination
of v1,v2, . . . ,vk for any k > 0 with ‖D1/2v‖2 = 1. and ‖v‖∞ ≤ 1

2 . Then,
the Cheeger constant, hG, obeys:

1

2
− 1− λ1

2
≤ hG ≤ 1

2
− 1− λk

2‖v‖2∞vol G
(1 + o(1)).

Proof. We follow the proof of the preceding theorem. Since ‖v‖∞ ≤ 1/2,
11
2 +v still provides a probability distribution for each vertex. Let D1/2v =∑k
i=1 α

2
iD

1/2vi be the the eigenvalue decomposition of D1/2v. Note that

since ‖D1/2v‖2 = 1,
∑k

i=1 α
2
i = 1. We follow the proof of Theorem 2 until

line (6). At this point, we have:

E

[
(xD1/2)∗(I− L)(xD1/2)

]

=

(
1− 2δ

2
1+

v

2‖v‖∞

)∗
D1/2(I− L)D1/2

(
1− 2δ

2
1+

v

2‖v‖∞

)



292 Franklin H. J. Kenter

=
(1− 2δ)2(vol G)

4
+

1−
∑k

i=2 α
2
iλi

4‖v‖2∞

≤ (1− 2δ)2(vol G)

4
+

1− λk

4‖v‖2∞

From there, the proof follows normally where λ1 from Theorem 2 is
replaced with λk.

5. A preliminary test

We perform a preliminary test to support this concept for an alternative
algorithm. We reference the Wolfram database for a library of graphs, and
perform the randomized “sweep” algorithm as in the proof to Theorem 2 on
all 5529 graphs within that have between 10 and 1500 vertices. Specifically,
for each graph, to find a cut set, S, we choose to include the vertex i with a
probability 1/2+ vi

‖v‖2
∞

(independent of other vertices). We find n−1 random

cut sets and compare the best one to the best of the n−1 cuts using the clas-
sical deterministic algorithm. The random “sweep” performed just as well,
or better, as the classical “sweep” for more than 34% of the graphs tested,
and showed improvement, in some cases significant, for 3.9% of the graphs.

Additionally, we implement the random algorithm with n2 random
sweeps on all such graphs between 10 and 50 vertices, and the results im-
prove tremendously. In this case, more than 51% of the tested graphs had
a partition just as good, if not better, than the classical sweep, and more
than 19% showed an improvement.

The results of this test are summarized in Figures 1 and 2.

6. Conclusions and future work

We have given an alternative Cheeger Inequality using eigenvector norms.
The proof of the result suggests an alternative randomized “sweep” algo-
rithm when λ1 > 1/8 (as that is when the upper bound of the classical
Cheeger Inequality exceeds 1/2). In particular, when the spectral gap is suf-
ficiently large, it may be better to take a randomized partition based on
the harmonic eigenvector v as opposed to taking deterministic partitions.
Further, we demonstrate the validity of the concept of such of an algorithm,
demonstrating that in many (but not all) cases, the random sweep outper-
forms the original sweep.

Finally, the notion that “eigenvector norms matter” in spectral graph
theory is certainly interesting and evokes the question: For which other
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Figure 1: A plot of Δh, the Cheeger ratio when using the random Cheeger
sweep (using the best of n−1 random sweeps) minus that of classical Cheeger
sweep, against λ1 for over 5500 named graphs. The dashed line is the line
λ1 = 1/8.

Figure 2: A plot of Δh, the Cheeger ratio when using the random Cheeger
sweep (using the best of n2 sweeps) minus that of classical Cheeger sweep,
against λ1 for all named graphs with between 10 and 50 vertices. The dashed
line is the line λ1 = 1/8.
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graph-theoretic parameters can spectral bounds be improved by considering
eigenvector norms in addition to the eigenvalues?

This research was partially supported by NSF CMMI-1300477 and
CMMI-1404864.
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