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On the distribution of some Fuler-Mahonian
statistics

ALEXANDER BURSTEIN

We give a direct combinatorial proof of the equidistribution of two
pairs of permutation statistics, (des,aid) and (lec,inv), which
have been previously shown to have the same joint distribution
as (exc,maj), the major index and the number of excedances of
a permutation. Moreover, the triple (pix,lec, inv) was shown to
have the same distribution as (fix, exc,maj), where fix is the
number of fixed points of a permutation. We define a new statistic
aix so that our bijection maps (pix,lec,inv) to (aix,des,aid).
We also find an Eulerian partner das for a Mahonian statistic mix
defined using mesh patterns, so that (das,mix) is equidistributed
with (des, inv).
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1. Introduction

A combinatorial statistic on a set S is a map f : S — N for some integer
m > 0. The distribution of f is the map d¢ : N™ — N with d¢(i) = [f71(i)]
for i € N™ where |f~1(i)| is the number of objects s € S such that f(s) = i.
We say that statistics f and g are equidistributed and write f ~ g if df = dg.

Let &,, be the set of permutations of [n] = {1,...,n}. The four classic
combinatorial statistics on &,,, the number of descents (des), the number
of excedances (exc), the number of inversions (inv), and the major index
(maj), are defined as follows:

Desm={i: 7(i) >n(i+1)}, desm = |Des 7|,
Excm = {i: (i) > i}, excm = |Exc 7,
Invm = {(i,j) : i <jand 7(i) >n(j)}, invm = |Invm|,

majm = Z 1.

1€Des
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The set Des 7 is called the descent set of m, and its elements are called
descents. If i is a descent of 7, then (i) and 7(i + 1) are called descent top
and descent bottom, respectively. The terminology for the other two sets,
Inv 7 and Exc 7, is similar. When the context is unambiguous, we may refer
to the pair 7(i)m(i + 1) as a descent or the pair m(i)7(j) as an inversion.

A statistic with the same distribution as des (such as exc) is called
Eulerian, and a statistic with the same distribution as inv (such as maj [8])
is called Mahonian. If eul is Eulerian and mah is Mahonian, then the pair
(eul,mah) is called an Euler-Mahonian statistic.

A problem frequently considered since [2] is as follows: given a known
Euler-Mahonian statistic (eulj,mah;) and another Eulerian (resp. Maho-
nian) statistic euls (resp. mahs), to find its Mahonian (resp. Eulerian) part-
ner mahy (resp. euls) so that (eulj,mah;) ~ (eulg,mahy). In this paper, we
will give two bijective proofs of equidistribution of two such pairs of bis-
tatistics. In Section 2, we give a direct proof of a bijection between two
statistics previously shown to have the same distribution as (exc,maj),
and in Section 3 we find an Eulerian partner das for a statistic mix re-
cently defined by Bréndén and Claesson [1] using mesh patterns so that
(das,mix) ~ (des, inv).

2. Equidistribution of (des, aid) and (lec, inv)

Of the four pairs (eul;,mah;) involving des or exc and inv or maj, the last
to be considered was the pair (exc,maj). First, Shareshian and Wachs [9]
found a Mahonian statistic aid such that (exc,maj) ~ (des, aid), and soon
afterwards Foata and Han [3] proved that (exc,maj) ~ (lec,inv) for an
Eulerian statistic lec defined earlier by Gessel [4] and related to the hook
factorization of a permutation. In fact, Foata and Han proved a more refined
result that (fix, exc,maj) ~ (pix,lec,inv), where fix 7 is the number of
fixed points of m and pix m is another statistic related to hook factorization
of .
We will now define the statistics aid, lec and pix.

Definition 2.1. An inversion (i,j) € Invw is admissible if either 7(j) <
m(j+1) or m(j) > w(k) for some i < k < j. Let Ai 7 be the set of admissible
inversions of 7, and let

aim = |Ain|, aidm = aiw +des.

Definition 2.2. A string w = wiwy...w, (r > 2), over a totally ordered
alphabet is a hook if w; > wy < w3 < -+ < w,. Every string 7 over N (and
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hence any permutation ) can be decomposed uniquely [4] as T = mo7y ... Tk
(k > 0), where 7 is a (possibly empty) nondecreasing string and each of 7;,
1 <1<k, is a hook. Then w7y ...y is called the hook factorization of .

It is easy to see that the hook factorization is unique for any 7, since
either m = my or we can recursively find the rightmost hook of 7, which
starts with the rightmost descent top of 7. The statistics lec and pix are
defined as follows:

k
lecm = g invm, pix7 = |mol,
=1

where |mg| is the length of 7.

Shareshian and Wachs [9] gave a proof of (des,aid) ~ (exc,maj) using
tools from poset topology such as lexicographic shellability. Subsequently,
Foata and Han [3] gave a two-step proof of (fix, exc,maj) ~ (pix, lec,inv).
The first step of that proof was a bijection on &,, showing the equidistri-
bution (fix,exc,maj) ~ (pix,lec,imaj) (and, in fact, a more refined re-
sult that (fix,exc,des,maj) ~ (pix,lec,ides,imaj)), where imaj(m) =
maj(7~!) and ides(w) = des(n~!), using Lyndon words and the word
analogs of Kim-Zeng [5] permutation decomposition and hook factorization.
The second step was a bijection on &,, showing that (pix,lec,imaj) ~
(pix, lec, inv).

Somewhat surprisingly, a direct bijective proof of (des, aid) ~ (lec, inv)
is simpler than any of the bijections mentioned above. We give such a proof
and, in fact, find a new statistic aix that is a fix-partner for (des, aid), i.e.
such that (aix,des,aid) ~ (pix, lec,inv) ~ (fix,exc,maj).

The statistic aix is defined as follows. Consider the set N* of all strings
in N. Given a string m € N* let m be the smallest letter in 7 and let a be
the maximal left prefix of m not containing m, so that 7 = am/p for some
string 3. Then we recursively define aix () = 0 and, for 7 # (),

(2.1a) 1+ aixf, if a=0,

(2.1b) aixm = { aixa, if a#0, 3#0,

(2.1c) 0, if a#0, 3=0.

In particular, if « = B = 0, then aix7m = aixm = 1+ aix0) = 1 +

0 = 1. Consider another example: aix(258963714) = aix(2589637) = 1 +
aix(589637) = 1+aix(5896) = 1+1+aix(896) = 1+1+0 = 2 (the smallest
letters at each step are underlined).
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Proposition 2.3. For any m € N*, we have aixm < 1+ pix7.

Proof. The value of aixw is at most the length of p, the maximal nonde-
creasing left prefix of 7. Since the leftmost hook of 7 starts either at the
leftmost descent or at the second-leftmost descent (only if it immediately
follows the leftmost descent), it follows that the length of p is either pix
or 1 4 pixm. O

We also note that computation of statistics inv, lec, pix,aid,des, aix,
involves only comparisons of values of letters or values of positions, but not
values of a letter and a position (as in the computation of exc), so that these
statistics can be extended to any string of distinct letters.

2.1. The bijection

Let S be a set of distinct letters and k ¢ S be such that S U {k} is totally
ordered. Let 7 be a permutation of S. Let m be the smallest letter in SU{k}.
Define the permutation f(k,7) of SU{k} recursively as follows: f(k,0) = k
and

(2.2a) f(k,a)mp, if 7 =ampB,k>m,a#0,8#0,
(2.2b) f(k, B)m, if T=mp,k>m,
f(k7 T) = . -
(2.2c) kma, if 7 =am,k>m,
(2.2d) kT, if k=m.

Note that both (2.2b) and (2.2¢) yield f(k,m) = km when k& > m and

a = 3 =10. Now, for 7 € &, define ¢o(7) = 0 and ¢x(r) = f(r(n — k +

1), ¢p_1(m)), k = 1,...,n. Finally, let ¢(7) = ¢, (1) € S,. It is easy to see

that for any fixed k ¢ S, f(k, ) is a bijection between permutations of S and

permutations of S U {k} starting with k. Thus, ¢ is also a bijection on &,,.
Let ini 7 = m(1). Then we have that

Theorem 2.4. (ini,aix,des,aid) ¢(7) = (ini, pix, lec, inv) 7.
We will split the proof of the theorem into several parts.
Lemma 2.5. ini ¢(m) = ini .

Proof. Note that f(k,0) = k, so by the definition of f and induction on the
size of 7 we get that f(k,7) starts with k. Thus, ¢(7) starts with 7(1). O

Given a string 7w over a totally ordered alphabet define k-suffiz of ,
sk(m), to be the block of k rightmost letters of 7. Also, define mj (resp.
Ts1) to be the subsequence of 7 consisting of letters of 7 that are less (resp.
greater) than k.
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Lemma 2.6. aid f(k,7) = aid 7 + |7<k|.

Proof. We will prove this lemma by induction on the length of 7. Clearly,
the lemma is true for 7 = (). Assume that the lemma holds for all strings
of distinct letters of length less than |7|. Let m = min 7 and consider each
case in the definition of f(k, 7).

Case (a). Suppose that 7 = amfB, k > m, a # 0, § # 0. Then f(k,7) =
f(k,a)mp, so by Lemma 2.5, f(k,amf) = kamp for some permutation &
of a. By induction (since |a| < |7]), we have

aid f(k,a) = aida + |acgl.

Consider the inversions ab in 7 that are from a to mf, i.e. those where the
inversion top is a € a and the inversion bottom is b € mf (so a > b). If b =
m, then it is followed by an ascent, and hence any inversion with inversion
bottom m is admissible (and the number of such (admissible) inversions in
Tis |a]). If b € B, then m < b and m is between a and b in 7, so the inversion
ab is admissible. Thus, all inversions from « to mf are admissible.

Since & is a permutation of «, we likewise have that all inversions in
f(k,7) from & to mfB are admissible and, in fact, are the same inversions as
the inversions from « to mf in 7. Moreover, since a > m (i.e. every letter
in « is greater than m) and f does not change the suffix mg of 7, it follows
that the number of admissible inversions in mf and the number of descents
with descent bottoms in mf are the same in 7 and f(k, 7).

Thus, the only remaining pairs left to consider are inversions from k to
mfp. As above, we see that all inversions from k to mf are admissible, and
the number of such inversions is exactly |mf<|. Therefore,

aid f(kﬂ') —aid7 = |04<k’ =+ |mﬁ<k| = |a<kmﬁ<kz| = |7-<k|7

as desired.
_ Case (b). Suppose that 7 =mf3 and k > m. Then f(k,7) = f(k, B)m =
kBm for some permutation 5 of 5. As before, we have by induction that

aid f(k, 8) = aid § + | Bkl

Since k:[g’ > m and m is last in kBm, it follows that no admissible inversion
ends on m. Thus, ai f(k, 5)m = ai f(k, 3) and des f(k, 5)m = des f(k, 5)+
1, where 1 counts the last descent to m. Finally, aid7 = aidmg = aidf
since m < 8 and hence no inversion (or descent) of 7 begins with m. There-
fore,
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(2.3) aid f(k,7) =aid f(k,B) +1=aidf + |B<k| +1
=aidmp + |mfP<k| = aid 7 + |7<k|.
Case (c). Suppose that 7 = am, k > m. Then f(k, ) = kmo. Thus, the
descents of f(k,7) are obtained from descents of 7 by replacing the descent
from the right letter of o to m with the descent km, so des f(k,7) = des .

As in Case (b), no admissible inversion of 7 ends on m, and, as in Cases (a)
and (b), all inversions from k to ma are admissible. Thus,

ai f(k,7) = ai kma = aima + |macg| = ai am + |acpm| = ai ™ + |7k,
SO
aid f(k,7) = ai f(k,7) +des f(k,7) = ai T+ |7<i| + des T = aid 7 + |7/

Case (d). If k < 7, then no inversion (or descent) of f(k,7) = k7 starts
with k, and |7<;| =0, so aid f(k,7) = aid T = aid 7 + |7<k|. This ends the
proof. O

Lemma 2.7. aid ¢(7) = invr.

Proof. Applying Lemma 2.6 repeatedly, we obtain

a1d¢ Z|¢k <m(n—k) ’

But each ¢y (7) is a permutation of si(w), so

aid ¢(m Z|5k ) <m(n—k)|-

Each summand on the right is the number of inversions of m with inversion
top m(n — k). Summing over k = 0,1...,n — 1, we get aid ¢(7) = inv(m),
as desired. O

For a string o and a letter I, write o > [ if every letter in o is greater
than . Consider the descents of 7 and f(k,7) in each case of the definition
of f. In case (2.2a), we have o > m and f(k,7) = f(k,amp) = f(k,a)mp,
so the descent bottoms in the right prefix mg of both 7 and f(k, 7) are the
same, and hence

des f(k,7) — desT = des f(k,a) — des a.

Note that in this case aix7 = aix « and aix f(k,7) = aix f(k, ).
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In case (2.2b), des7 = desmf = des 3 since =) or m < B. However,
des f(k,7) = des f(k,B)m = des f(k,3) + 1 since f(k,3) = kj3 for some
permutation § of 8 and hence f(k,3) > m. Thus,

des f(k,7) —desT =des f(k,) —des 3 + 1.

Note that in this case aix f(k,7) =0, and aix7 =1+ aix 3 > 0.

In case (2.2¢), let a be the last letter of o. Then the descents of f(k,7) =
kma, a # () are obtained from the descents of 7 = am by replacing the
descent am with the descent km. Thus, des f(k,7) = des7 = desa + 1,
and hence

des f(k,7) —desT = 0.

Note that in this case aix7 =0 and aix f(k,7) = aixk=1=1+aix7.
In case (2.2d), f(k,7) = k7, and k < 7, so des f(k,7) = desT, and
hence again

des f(k,7) —desT = 0.

Note that in this case aix f(k,7) = aix7+ 1 > 0.
Finally, des f(k,0) — des® = 0 — 0 = 0. Thus, we can see by induction
on the length of 7 that

des f(k,7) —desT >0

for any string 7 of distinct letters, and the difference stays the same or
increases by 1 with each application of rules (2.2a) or (2.2b), respectively.

Lemma 2.8. We have des f(k,7) = des7 if and only if aix f(k,7) =
aix7 + 1> 0, and des f(k,7) > des 7 if and only if aix f(k,7) = 0.

Proof. Case 1. Suppose that des f(k,7) = des 7. Then it follows from the
above argument that the computation of f(k,7) involves no application of
(2.2b), i.e. a repeated application of (2.2a) (possibly zero times) followed by
a single application of (2.2¢) or (2.2d) or f(k,0) = k. The conditions in the
case (2.2a) are the same as in the case (2.1b), so applying (2.2a) repeatedly,
we obtain either

e a prefix o/m’ of 7 such that a # 0, o/ >m/, k > m/, aix7T = aixa/m’
and aix f(k,7) = aix f(k,a'm’), or

e a prefix o of 7 such that k < o, aix7 = aixa” and aix f(k,7) =
aix f(k,a”).

In the former case, we have aixT = aixa/m’ = 0 and aix f(k,7) =
aix f(k,a'm’) = aixkm/a/ = aixk = 1 = 1 4 aix7. In the latter case,
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we have aix f(k,o”) = aixka” = 1+ aixa” = 1+ aix7. Thus, in either
case, des f(k,7) = des7 implies aix f(k,7) = aix7 + 1. The converse is
proved similarly.

Case 2. Suppose that des f(k,7) > des7. Then the computation of
f(k,T) starts with a repeated application of (2.2a) (possibly zero times)
followed by an application of (2.2b) (after which the process may still
continue). Thus, as before, after repeated application of (2.2a), we ob-
tain a prefix m’f’ of 7 such that &k > m/, m’ < ' and aix f(k,7) =
aix f(k,m'S8) = aix f(k, 8)m’. But f(k, ') = k' for some permutation £’
of 8, so f(k,B") >m/, and hence aix f(k,8’)m’ = 0, which in turn implies
that aix f(k,7) = 0, as desired. The converse is proved similarly. O

Lemma 2.9. If aix7 = 0, then for any k, we have aix f(k,7) = 1 and
des f(k,7) = desT.

Proof. The lemma is obviously true for 7 = (). Suppose 7 # (). Since aix 7 =
0, it follows that 7 = amgm1f ... m, ., where a # 0, a > mg, and if r > 1,
then 3; # 0 and m; < B; for alli = 1,...,r, and mg > my > --- > m,. If
k > myg, then applying (2.2a) repeatedly, followed by (2.2c), we obtain

f(ka T) = f(k7 amomi By .. -mrﬁr)
= f(k,amo)miBi...m.Br = kmoami By ... my 5y

so that aix f(k,7) = aixkmpa = aix k = 1. Also, all descent bottoms of 7
and f(k,7) are the same (including myg), so des f(k,7) = des 7.

Suppose that & < mg, and let j be maximal such that k& < m;. Then
k < amomifi...m;B;, so

f(kv T) = f(k7 amOmLBl . mrﬁr)
= f(k,amomiBy...m;Bj)mj 1Bj41...meB3;
= kamomiB1...m;jBimj18j11 ... MLy
= k.

Therefore, f(k,7) = k7 starts with an ascent, so des f(k,7) = deskr =
des 7 and hence aix f(k,7) =1+ aix7 = 1 by Lemma 2.8. O

Lemma 2.10. Suppose that aix f(k,7) =0 and 7 = f(l,0) for some letter
l and string o. Then des f(k,7) =1+ des f(k,0).

Proof. By Lemma 2.9, note that aix 7 > 1, since otherwise aix f(k,7) = 1.
In particular, 7 # (), so there is indeed a letter [ and a string o such that

T=f(l,0).



On the distribution of some Euler-Mahonian statistics 281

Since 7 = f(l,0), it follows that 7 starts with [. Let [ = mg > m; >
-+« > m, be the values of 7 at positions of the left-to-right minima of T (i.e.
at positions i such that 7(j) > 7(i) for j < i). Then 7 = morom171 ... M7y
with 7, > m; for all i = 0,1,...,r. We also have that 7; # () for ¢ > 1 since
otherwise aix 7 = 0. Therefore,

f(k?,T) = f(k,moTo)m1T1 e My Ty = f(k), ng)mlTl e My Ty,

so aix f(k,7) = aix f(k,lmp). If k <, then k < I7, so f(k,lry) = klmp and
aix f(k,lr9) = 1+aixlmy > 0, which contradicts our assumption. Therefore,
k>l

Since aix f(l,0) = aix7 > 0, it follows that the recursive computation
of f(l, o) involves no application of (2.2b). Thus, we have two cases:

e o =alif...lsBs, where | > 11 > - >ls,a# 0, a>1, §; # ( and
Bi>lifori=1,...,s.

o 0 =alglifB1...lsBs, where [ > lg>11 > >, a0, a>1, B3 #0
and B; > l; fort=1,...,s.

Let B =1161...158s. In the first case, we have

T = f(l,d) = f(l,aﬁ) = f(lva)/B = laﬂ =lo
f(k,7) = f(k,lap) = f(k,la)B = f(k,a)lB
f(kaa) - f(kvaﬁ) = f(k7 O()B

Note that ini 8 = I3 < [. Also note that f(k,«)l3 = kals for some per-
mutation & of «. Since « > [, it follows that & > [. Let a be the last letter
of f(k,a). Then the descents of f(k,«)l are obtained from the descents of
f(k, ) by replacing the descent al; with the descents al and ll;. Therefore,
we have des f(k,7) = des f(k,0) + 1 as desired.

In the second case, we have

7= (o) = f(I,aloB) = F(I,alo)B = llpaB
f(k,m) = f(k,llpaB) = f(k,loa)3 = f(k,1)loaB = kllpaf3
f(k,o) = f(k,aloB) = f(k,alo)B = kloas.

Since k > | > lo, it is easy to see that des f(k,7) = des f(k,o) + 1. This
ends the proof. O

Lemma 2.11. (aix,des) ¢(7) = (pix, lec) .
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Proof. The proof is by induction on the length of 7. The result is obviously
true for m = (). Define g(k,7) = k7 for a string 7 of distinct elements and an
element k not in the alphabet of 7. Then it is easy to see that the results
of Lemmas 2.8, 2.9 and 2.10 hold if we replace f with ¢, aix with pix,
and des with lec. This implies the lemma and thus finishes the proof of
Theorem 2.4. O

Remark 2.12. We note that a statistic rix similar to aix (up to an easy
transformation) has been independently defined by Z. Lin [7].

It would be interesting to construct a direct bijection on permutations
that maps (aix,des,aid) to (fix, exc,maj).

Remark 2.13. Rawlings major index rmaj is a Mahonian statistic that
interpolates between maj and inv, and is defined as follows:

Des,(m) ={i €Des(m) : 7w(i) —w(i+1) >r},
Inv,(7) = {(i,7) € Inv(m) : w(i) —7(5) < r},

rmaj(m) = Z i+ |Inv, ()|

t€Des,.()

Note that on &,,, Imaj = maj, nmaj = inv, and |Inve(7)| = ides(m) =
des(m~1). It is known [10] that (ides, 2maj) ~ (exc,maj). It would be inter-
esting to find a fix-partner 2fix for (ides,2maj) so that (fix, exc,maj) ~
(2fix, ides, 2maj). Continuing in the same vein, for 3 <r <n—1, it would
be interesting to find the interpolating statistics rfix and rexc so that
(fix,exc,maj) ~ (rfix, rexc,rmaj) ~ (pix, lec, inv).

3. Equidistribution of (das,mix) and (des, inv)

A Mahonian statistic mix counting some inversions and some noninversions
has been defined by P. Bréndén, A. Claesson [1]. Even though it was orig-
inally defined using mesh patterns, it may be easily defined without using
those. Define a left-to-right maximum of m to be a position ¢ of 7 such that
7(7) < m(7) for j < i. The statistic mix counts pairs defined on a permutation
7 as follows:

e inversions 7(i)m(j) such that ¢ is a left-to-right maximum of =, and
e non-inversions 7(i)7(j) such that there is a left-to-right-maximum &k <
i with w(k) > 7(j).

Our definition of mix is the reversal of the mix as originally defined
in [1]. However, we think that our definition is preferable, since for the
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identity permutation id, = 12...n, we have mix(id,) = 0, rather than
mix(id,) = n — 1 under the original definition.

There is also a direct bijection given in [1] that takes inv to mix. Mak-
ing the necessary minor changes to account for the difference in definitions
mentioned above, we describe it as follows.

Let M = {m; < --- < my} be the set of values of left-to-right maxima of
m, and let B; be the set of entries of 7 that are smaller than and to the right
of m;. Also, for S C [n], let ¥g(7) be the result of reversing the subword of
7 that is a permutation on S. Then define

Y =1, oYp,nB, © - 0YB, , °YB,NB,_, °©VB,-

Then we have [1] that ¢ is an involution and mix¢(7) = invz (and vice
versa).

We observe that there is a natural Eulerian partner das (a mix of de-
scents and ascents) for mix such that (das,mix) ~ (des, inv). Let das 7 be
the number of positions ¢ € [n — 1] of 7 such that

o 7(i)m(i+ 1) is a descent, and i is a left-to-right maximum of 7, or
o 7(i)m(i 4+ 1) is an ascent, and there is a left-to-right-maximum & < ¢
with (k) > n(i + 1).
Theorem 3.1. (das,mix)¢(7) = (des, inv) 7.
Proof. The proof is easily constructed by induction on k, following along the

lines of the proof of Theorem 10 in [1]. In fact, our extension of that proof
is so routine that we leave it as an exercise for the reader. O

Remark 3.2. We also note that a restriction of the map v yields Kratten-
thaler’s bijection [6] between 321-avoiding and 312-avoiding permutations
on G, using Dyck paths (modified up to the suitable reversal and comple-
mentation symmetries).
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