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Permutation statistics and multiple pattern
avoidance

Wuttisak Trongsiriwat

For a set of patterns Π, let F st
n (Π; q) be the st-polynomial of per-

mutations avoiding all patterns in Π. Suppose 312 ∈ Π. For some
permutation statistic st, we give a formula that expresses F st

n (Π; q)
in terms of these st-polynomials where we take some subblocks
of the patterns in Π. Using this formula, we construct examples
of nontrivial st-Wilf equivalences. In particular, this disproves a
conjecture by Dokos, Dwyer, Johnson, Sagan, and Selsor that all
inv-Wilf equivalences are trivial.

1. Introduction

Let Sn be the set of permutations of [n] := {1, 2, . . . , n} and let S =⋃
n≥0Sn, where S0 contains only one element ε − the empty permuta-

tion. For permutations π, σ ∈ S we say that the permutation σ contains π
if there is a subsequence of σ having the same relative order as π. In partic-
ular, every permutation contains ε, and every permutation except ε contains
1 ∈ S1. For consistency, we will use the letter σ to represent a permutation
and π to represent a pattern. We say that σ avoids π (or σ is π-avoiding) if
σ does not contain π. For example, the permutation 46127538 contains 3142
while the permutation 46123578 avoids 3142. We denote by Sn(π), where
π ∈ S, the set of permutations σ ∈ Sn avoiding π. More generally we de-
note by Sn(Π), where Π ⊆ S, the set of permutations avoiding each pattern
π ∈ Π simultaneously, i.e. Sn(Π) =

⋂
π∈ΠSn(π). Two sets of patterns Π

and Π′ are called Wilf equivalent, written Π ≡ Π′, if |Sn(Π)| = |Sn(Π
′)| for

all integers n ≥ 0.
Now we define q-analogues of pattern avoidance using permutation statis-

tics. A permutation statistic (or sometimes just statistic) is a function st :
S → N, where N is the set of nonnegative integers. Given a permutation
statistic st, we define the st-polynomial of Π-avoiding permutations to be

F st
n (Π) = F st

n (Π; q) :=
∑

σ∈Sn(Π)

qst(σ).
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We may drop the q if it is clear from the context. The sets of patterns Π and

Π′ are said to be st-Wilf equivalent, written Π
st≡ Π′, if F st

n (Π; q) = F st
n (Π′; q)

for all n ≥ 0.
The study of q-analogues of pattern avoidance using permutation statis-

tics and the st-Wilf equivalences began in 2002, as initiated by Robertson,
Saracino, and Zeilberger [6], with the emphasis on the number of fixed points.
Elizalde subsequently refined results of Robertson et al. by considering the
excedance statistic [2] and later extended the study to cases of multiple pat-
terns [3]. A bijective proof was later given by Elizalde and Pak [4]. Dokos
et al. [1] studied pattern avoidance on the inversion and major statistics, as
remarked by Savage and Sagan in their study of Mahonian pairs [7].

In this paper, we study multiple pattern avoidance on a class of per-
mutation statistics which includes the inversion and descent statistics. The
inversion number of σ ∈ Sn is

inv(σ) = #{(i, j) ∈ [n]2 : i < j and σ(i) > σ(j)}.

The descent number of σ ∈ Sn is

des(σ) = #{i ∈ [n− 1] : σ(i) > σ(i+ 1)}.

For example inv(3142) = #{(1, 2), (1, 4), (3, 4)} = 3 and des(3142) = #{1, 3}
= 2.

In [1], Dokos et al. conjectured that there are only essentially trivial
inv-Wilf equivalences, obtained by rotations and reflections of permutation
matrices. Let us describe these more precisely. The notations used below are
mostly taken from [1].

Given a permutation σ ∈ Sn, we represent it geometrically using the
squares (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) of the n-by-n grid, which is coor-
dinated according to the xy-plane. This will be referred as the permutation
matrix of σ. The diagram to the left in Figure 1 is the permutation matrix
of 46127538. In the diagram to the right, the red squares correspond to the
subsequence 4173, which is an occurrence of the pattern 3142.

By representing each σ ∈ S as a permutation matrix, we have an action
of the dihedral group of square D4 on S by the corresponding action on the
permutation matrices. We denote the elements of D4 by

D4 = {R0, R90, R180, R270, r−1, r0, r1, r∞},

where Rθ is the counterclockwise rotation by θ degrees and rm is the reflec-
tion in a line of slope m. We will sometimes write Πt for r−1(Π). Note that
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Figure 1: The permutation matrix of 46127538 (left) with an occurrence of
3142 colored (right).

R0, R180, r−1, and r1 preserve the inversion statistic while the others reverse
it, i.e.

inv(f(σ)) =

{
inv(σ) if f ∈ {R0, R180, r−1, r1},(
n
2

)
− inv(σ) if f ∈ {R90, R270, r0, r∞}.

It follows that Π and f(Π) are inv-Wilf equivalent for all Π ⊆ S and f ∈
{R0, R180, r−1, r1}. We call these equivalences trivial. With these notations,
the conjecture by Dokos et al. can be stated as the following.

Conjecture 1.1 ([1], conj. 2.4). Π and Π′ are inv-Wilf equivalent iff Π =
f(Π′) for some f ∈ {R0, R180, r−1, r1}.

Given permutations π = a1a2 . . . ak ∈ Sk and σ1, . . . , σk ∈ S, the in-
flation π[σ1, . . . , σk] of π by the σi is the permutation whose permutation
matrix is obtained by putting the permutation matrices of σi in the relative
order of π; for instance, 213[123,1,21] = 234165 as illustrated in Figure 2.

For convenience, we write

π∗ := 21[π, 1].

In other words, π∗ is the permutation whose permutation matrix is obtained
by adding a box to the lower right corner of the permutation matrix of π.

The next proposition is one of the main results of this paper, which
disproves the conjecture above. This is a special case of the corollary of
Theorem 2.4 in the next section.

Proposition 1.2. Let ιr be the permutation 12 . . . r ∈ Sr. Let π1, . . . , πr, π
′
1,

. . . , π′
r be permutations such that {312, πi}

inv≡ {312, π′
i} for all i. Set π =
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Figure 2: The permutation 213[123,1,21].

ιr[π1∗, . . . , πr∗] and π′ = ιr[π
′
1∗, . . . , π

′
r∗]. Then {312, π} and {312, π′} are

inv-Wilf equivalent, i.e. F inv
n (312, π) = F inv

n (312, π′) for all n.

In particular, if we set each π′
i to be either πi or π

t
i , then the conditions

{312, πi}
inv≡ {312, π′

i} are satisfied. By this construction Π′ is generally not

of the form f(Π) for any f ∈ {R0, R180, r−1, r1}. For example, the pair

Π = {312, 32415} and Π′ = {312, 24315} is an example of smallest size of

nontrivial inv-Wilf equivalences constructed this way.

2. Avoiding two patterns

In this section, we study the st-polynomials in the case when Π consists

of 312 and another permutation π. For this set of patterns Π, Mansour

and Vainshtein [5] gave a recursive formula for |Sn(Π)|. Here, we give a

recursive formula for the st-polynomials F st
n (Π), which generalizes the result

of Mansour and Vainshtein. Then we present its corollary, which gives a

construction of nontrivial st-Wilf equivalences. We note that Proposition 2.1

and Lemma 2.2 appear in [5] as small observations.

Suppose σ ∈ Sn+1(312) with σ(k + 1) = 1. Then, for every pair of

indices (i, j) with i < k + 1 < j, we must have σ(i) < σ(j); otherwise

σ(i)σ(k + 1)σ(j) is an occurrence of the pattern 312 in σ. So σ can be

written as σ = 213[σ1, 1, σ2] with σ1 ∈ Sk and σ2 ∈ Sn−k. For the rest of

the paper, we will always consider σ in this inflation form.

We also assume that the permutation statistic st : Sn → N satisfies

(†) st(σ) = f(k, n− k) + st(σ1) + st(σ2)

for some function f : N2 → N which does not depend on σ. Some examples

of such statistics are the inversion number, the descent number, and the
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number of occurrences of the consecutive pattern 213:

213(σ) = #{i ∈ [n− 2] : σ(i+ 1) < σ(i) < σ(i+ 2)}.

For these statistics, we have

inv(σ) = k + inv(σ1) + inv(σ2),

des(σ) = 1− δ0,k + des(σ1) + des(σ2),

213(σ) = (1− δ0,k)(1− δk,n) + 213(σ1) + 213(σ2),

where δ is the Kronecker delta function.

It will be more beneficial to consider the permutation patterns in their
block decomposition form as in the following proposition.

Proposition 2.1. Every 312-avoiding permutation π ∈ Sn(312) can be
written uniquely as

π = ιr[π1∗, . . . , πr∗]

where r ≥ 0 and πi ∈ S(312).

Proof. The uniqueness part is trivial. The proof of existence of π1, . . . , πr is
by induction on n. If n = 0, there is nothing to prove. Suppose the result
holds for n. Suppose that π(k+ 1) = 1. Then π = 213[π1, 1, π

′] = 12[π1∗, π′]
where π1 ∈ Sk(312) and π′ ∈ Sn−k(312). Applying the inductive hypothesis
on π′, we are done.

Suppose that π ∈ Sn(312) has the block decomposition π = ιr[π1∗, . . . ,
πr∗]. For 1 ≤ i ≤ r, we define π(i) and π(i) to be

π(i) =

{
π1 if i = 1,

ιi[π1∗, . . . , πi∗] otherwise,

and

π(i) = ιr−i+1[πi∗ , . . . , πr∗ ].

Let Π be a set of patterns containing 312. If π ∈ Π \ {312} contains the
pattern 312, then every permutation avoiding 312 will automatically avoid
π, which means F st

n (Π) = F st
n (Π\{π}). So we may assume that each pattern

besides 312 in Π avoids 312. The following lemma gives a recursive condition
for a permutation σ = 213[σ1, 1, σ2] ∈ S(312) to avoid π, in terms of σ1, σ2,
and the blocks πi∗ of π.
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Figure 3: The poset L5.

Lemma 2.2. Let σ = 213[σ1, 1, σ2], π = ιr[π1∗, . . . , πr∗] ∈ S(312). Then σ
avoids π if and only if the condition

(Ci) : σ1 avoids π(i) and σ2 avoids π(i)

holds for some i ∈ [r].

Proof. First, suppose that σ contains π. Let j be the largest number for
which σ1 contains π(j). Then σ2 must contain π(j + 1). So σ1 contains π(i)
for all i ≤ j, and σ2 contains π(i) for all i > j. Thus none of the Ci holds.

On the other hand, suppose that there is a permutation σ ∈ S(312)
that avoids π but does not satisfy any Ci. This means, for every i, either σ1
contains π(i) or σ2 contains π(i). Let j be the smallest number such that
σ1 does not contain π(j). Note that j exists and j > 1 since j = 1 implies
σ2 contains π(1) = π, a contradiction. Since σ1 does not contain π(j), σ2
must contain π(j) (by Cj). But since σ1 contains π(j − 1) by minimality of
j, we have found a copy of π in σ with π(j − 1) from σ1 and π(j) from σ2,
a contradiction. (For j = 2, the number 1 in σ together with π1 in σ1 give
π1∗.)

Before presenting the main result, we state a technical lemma regarding
the Möbius function of certain posets. See, for example, Chapter 3 of [8] for
definitions and terminologies about posets and the general treatment of the
subject.

Let r be the chain of r elements 0 < 1 < · · · < r−1. Let Lr be the poset
obtained by taking the elements of r× r of rank 0 to r− 1, i.e. the elements
of Lr are the lattice points (a, b) where a, b ≥ 0 and a+ b < r. For instance,
L5 is the poset shown in Figure 3. We denote its unique minimal element
(0, 0) by 0̂. Let L̂r be the poset Lr with the unique maximum element 1̂
adjoined.

For a poset P , we denote the Möbius function of P by μP . Note that
for every element a ∈ L̂r the up-set U(a) := {x ∈ L̂r : x ≥ a} of a is
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isomorphic to L̂r−l(a) where l(a) is the rank of a in Lr. Therefore, the problem

of computing μL̂r
(x, 1̂) for every r is equivalent to computing μL̂r

(0̂, 1̂) for

every r, which is given by the following lemma. The proof is omitted since

it is by a straightforward calculation.

Lemma 2.3. We have

μL̂r
(0̂, 1̂) =

{
(−1)r, if r = 1, 2,

0, otherwise.

We now present the main theorem of this section.

Theorem 2.4. Let Π = {312, π}. Suppose that the statistic st : S → N

satisfies the condition (†). Then F st
n (Π; q) satisfies

F st
n+1(Π; q) =

n∑
k=0

qf(k,n−k)

[
r∑

i=1

F st
k (312, π(i)) · F st

n−k(312, π(i))

−
r−1∑
i=1

F st
k (312, π(i)) · F st

n−k(312, π(i+ 1))

]
,(*)

for all n ≥ 0, where F st
0 (Π; q) = 0 if π = ε, and 1 otherwise.

Proof. For k ∈ {0, 1, . . . , n} and Σ ⊂ S, we write Sk
n+1(Σ) to denote the set

of permutations σ ∈ Sn+1(Σ) such that σ(k + 1) = 1. In particular,

Sk
n+1(312) = {σ = 213[σ1, 1, σ2] : σ1 ∈ Sk(312) and σ2 ∈ Sn−k(312)}.

Fix k, and let Ai(i ∈ [r]) be the set of permutations in Sk
n+1(312) satisfying

the condition Ci. So Sk
n+1(Π) = A1 ∪ A2 ∪ · · · ∪ Ar =: A by Lemma 2.2.

Observe that if i1 < · · · < ik then

Ai1 ∩Ai2 ∩ · · · ∩Aik = Ai1 ∩Aik =: Ai1,ik

since satisfying the conditions Ci1 , . . . , Cik is equivalent to satisfying the

conditions Ci1 and Cik .

Let P be the intersection poset of A1, . . . , Ar, where the order is given

by A ≤ B if A ⊆ B. The elements of P are A, Ai (1 ≤ i ≤ r), and Ai,j

(1 ≤ i < j ≤ r). We see that P is isomorphic to the set L̂r, so the Möbius
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function μP (T,A) for T ∈ P is given by

μP (T,A) =

⎧⎪⎨
⎪⎩
1 if T = A or Ai,i+1 for some i,

−1 if T = Ai for some i,

0 otherwise.

For T ∈ P , we define g : P → C(x : x ∈ A) by

g(T ) =
∑
x∈T

x.

The Möbius inversion formula ([8], Section 3.7) implies that

g(A) = −
∑
T<A

μP (T,A)g(T )

=

r∑
i=1

g(Ai)−
r−1∑
i=1

g(Ai ∩Ai+1).

By mapping σ �→ qst(σ) for all σ ∈ A, g(A) is sent to F st
n+1,k(Π; q) :=∑

σ∈Sk
n+1(Π) q

st(σ). Hence,

F st
n+1,k(Π; q) =

r∑
i=1

∑
σ∈Ai

qst(σ) −
r−1∑
i=1

∑
σ∈Ai∩Ai+1

qst(σ)

= qf(k,n−k)

[
r∑

i=1

∑
σ∈Ai

qst(σ1)+st(σ2) −
r−1∑
i=1

∑
σ∈Ai∩Ai+1

qst(σ1)+st(σ2)

]
,

where the second equality is obtained from the condition (†).
Note that σ ∈ Ai iff σ1 avoids π(i) and σ2 avoids π(i), and σ ∈ Ai∩Ai+1

iff σ1 avoids π(i) and σ2 avoids π(i+ 1). Thus

∑
σ∈Ai

qst(σ1)+st(σ2) = F st
k (312, π(i)) · F st

n−k(312, π(i))

and ∑
σ∈Ai∩Ai+1

qst(σ1)+st(σ2) = F st
k (312, π(i)) · F st

n−k(312, π(i+ 1)).
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Therefore

F st
n+1,k(Π; q) = qf(k,n−k)

[
r∑

i=1

F st
k (312, π(i)) · F st

n−k(312, π(i))

−
r−1∑
i=1

F st
k (312, π(i)) · F st

n−k(312, π(i+ 1))

]
.

We get the stated result by summing the preceding equation from k = 0 to
n.

Example 2.5 (q-analogues of odd Fibonacci numbers). It is well known
that the permutations avoiding 312 and 1432 are counted by the Fibonacci
numbers F2n+1, assuming F1 = F2 = 1 (see [9] for example). Let An =
F2n+1. It can be shown that the An satisfy

An+1 = An +

n−1∑
k=0

2n−k−1Ak.

Theorem 2.4 gives q-analogues of this relation. Here, we consider the inver-
sion statistic.

Let π = 1432 = 12[ε∗, 21∗] and Π = {312, π}. Since π(1) = ε and
F inv
n (312, ε) = 0 for all n, Theorem 2.4 implies

F inv
n+1(Π) =

n∑
k=0

F inv
k (Π)F inv

n−k(312, 321)

= qnF inv
n (Π) +

n−1∑
k=0

qk(1 + q)n−k−1F inv
k (Π),

where the last equality is by [1], Proposition 4.2.

Corollary 2.6. Let st be a statistic satisfying (†). Let π1, . . . , πr, π′
1, . . . , π

′
r

be permutations such that {312, πi}
st≡ {312, π′

i} for all i. Set π = ιr[π1∗, . . . ,
πr∗] and π′ = ιr[π

′
1∗, . . . , π

′
r∗]. Then {312, π} and {312, π′} are also st-Wilf

equivalent, i.e. F st
n (312, π) = F st

n (312, π′) for all n.

Proof. The proof is by induction on n. If n = 0, then the statement trivially
holds. Now suppose the statement holds up to n. Then for 0 ≤ k ≤ n and
1 ≤ i ≤ r, we have F st

k (312, π(i)) = F st
k (312, π′(i)) and F st

n−k(312, π(i)) =

F st
n−k(312, π

′(i)). Hence F st
n+1(312, π)=F st

n+1(312, π
′) by comparing the terms

on the right-hand side of (*).
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As mentioned at the end of Section 1, for the inversion statistic we can
choose each π′

i to be either πi or πt
i . Of course, this construction works for

every statistic st satisfying (†) and that st(σ) = st(σt) for all σ ∈ S(312).
Besides the inversion statistic, the descent statistic for example also possesses
this property. To justify this fact, we write σ = 213[σ1, 1, σ2] ∈ S(312) where
σ1, σ2 ∈ S. Observe that σt = 132[σt

2, σ
t
1, 1] and

des(σt) = des(σt
2) + des(σt

1) + (1− δ0,k)

where k = |σt
1| = |σ1|. The proof then proceeds by induction on n = |σ|.

It is, however, not true in general that the matrix transposition preserves
the descent number. For instance, if σ = 2413, then des(σ) = 1 while
des(σt) = 2.

3. Generalization

In this section, we generalize the results from Section 2 to the case when Π
consists of 312 and other patterns. We again begin with a lemma regarding
the Möbius function.

Lemma 3.1. Let L be the poset Lr1 × · · · × Lrm and L̂ the poset L ∪ {1̂}.
Let μ = μL̂ be the Möbius function on L̂. Then μ(0̂, 1̂) = 0 unless each

ri ∈ {1, 2}, in which case μ(0̂, 1̂) = (−1)|S|+1, where S = {i : ri = 2}.
Proof. Let a = (a1, . . . , am) ∈ L. Then μ(0̂, a) =

∏m
i=1 μi(0̂, ai), where μi is

the Möbius function of Lri . So

μ(0̂, 1̂) = −
∑
a∈L

μ(0̂, a) = −
m∏
i=1

⎛
⎝ ∑

ai∈Lri

μi(0̂, ai)

⎞
⎠ .

Note that if r ≥ 3, the Möbius function μLr
(0̂, a) vanishes unless a ∈

{(0, 0), (1, 0), (0, 1), (1, 1)}, in which cases the value of μLr
(0̂, a) is 1, −1,

−1, 1, respectively. So
∑

a∈Lr
μLr

(0̂, a) = 0 unless r = 1, 2. For r = 1, 2, it

can easily be checked that
∑

a∈Lr
μLr

(0̂, a) = 1 if r = 1 and −1 if r = 2. So

if ri ≥ 3 for some i, then μ(0̂, 1̂) = 0. If each ri ∈ {1, 2}, then each index i
for which ri = 2 contributes a −1 to the product on the right-hand side of
the previous equation. Thus μ(0̂, 1̂) = (−1)|S|+1.

For convenience, we introduce the following notations. Let Π= {312, π(1),

. . . , π(m)} where π(j) = ιrj [(π
(j)
1 )∗, . . . , (π

(j)
rj )∗]. For I = (i1, . . . , im), we de-

fine

ΠI = {312, π(1)(i1), . . . , π
(m)(im)}
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and

ΠI = {312, π(1)(i1), . . . , π(m)(im)}.
A generalization of Theorem 2.4 can be stated as the following.

Theorem 3.2. Suppose that the statistic st : S → N satisfies the condition

(†). Let Π = {312, π(1), . . . , π(m)} where π(i) = ιri [(π
(i)
1 )∗, . . . , (π

(i)
ri )∗]. Then

F st
0 (Π) = 0 if πi = ε for some i and 1 otherwise, and for n ≥ 1 the st-

polynomial F st
n (Π; q) satisfies

F st
n+1(Π; q) =

n∑
k=0

qf(k,n−k)

[ ∑
S⊆[m]

(−1)|S|
∑

I=(i1,...,im):
1≤ij≤rj−δj

F st
k (ΠI) · F st

n−k(ΠI+δ)

]
,

where δ = (δ1, . . . , δm) with δj = 1 if j ∈ S and 0 if j /∈ S.

Proof. Recall that by Lemma 2.2 a permutation σ = 213[σ1, 1, σ2] ∈ S(312)
avoids π(j) iff σ satisfies the condition

(Cj
i ) : σ1 avoids π(j)(i) and σ2 avoids π(j)(i)

for some i ∈ [rj ]. So σ ∈ S(312) belongs to S(Π) iff, for every j, there is an

i ∈ [rj ] for which σ satisfies (Cj
i ). Fix k and let Sk

n+1(312) be as in the proof

of Theorem 2.4. Let Aj
i be the set of π

(j)-avoiding permutations inSk
n+1(312)

satisfying the condition (Cj
i ). For I = (i1, . . . , im) ∈ [r1] × [r2] × · · · × [rm],

we define the set AI to be

AI = Ai1,i2,...,im := A1
i1 ∩A2

i2 ∩Am
im .

So Sk
n+1(Π) is the union

Sk
n+1(Π) =

⋃
i1,...,im

Ai1,i2,...,im ,

where the union is taken over all m-tuples I = (i1, . . . , im) in [r1] × [r2] ×
· · · × [rm]. Let P̂j be the intersection poset of Aj

1, . . . , A
j
rj , and let Pj be the

poset P̂j \ {Aj}, where Aj = Aj
1 ∪ · · · ∪Aj

rj is the unique maximum element

of P̂j . Recall that Pj is isomorphic to Lrj . Let P be the intersection poset of
the AI . The elements of P are the unique maximal element A = Sk

n+1(Π)
and

T = T 1 ∩ T 2 ∩ · · · ∩ Tm,

where each T j is an element of Pj . Thus P is isomorphic to Lr1 × · · · ×
Lrm ∪ {1̂}. For S ⊆ [n], we say that an element T ∈ P has type S if
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T j = Aj
i for some i when j /∈ S and T j = Aj

i ∩ Aj
i+1 for some i when

j ∈ S. Using Lemma 3.1, we know that the value of μP (T,A) where T =
T 1 ∩ T 2 ∩ · · · ∩ Tm �= A is

μP (T,A) =

{
(−1)|S|+1, if T has type S,

0, otherwise.

For T ∈ P , we define g : P → C(x : x ∈ A) by g(T ) =
∑

x∈T x, so that

g(A) =
∑
S⊆[n]

(−1)|S|
∑

T has type S

g(T )

by the Möbius inversion formula.
Now, by the definition of type S, we have

∑
T has type S

g(T ) =
∑

i1,...,im:
1≤ij≤rj−δj

g

⎛
⎝⋂

j /∈S
Aj

ij
∩

⋂
j∈S

(Aj
ij
∩Aj

ij+1)

⎞
⎠ ,

where δj = 1 if j ∈ S and 0 if j /∈ S. Recall that σ ∈ Aj
ij

iff σ1 avoids

π(j)(ij) and σ2 avoids π(j)(ij), and σ ∈ Aj
ij
∩Aj

ij+1 iff σ1 avoids π(j)(ij) and

σ2 avoids π(j)(ij + 1). Therefore, by mapping σ �→ qst(σ), we have

g

⎛
⎝⋂

j /∈S
Aj

ij
∩

⋂
j∈S

(Aj
ij
∩Aj

ij+1)

⎞
⎠�→ qf(k,n−k)F st

k (312, π(1)(i1), . . . , π
(m)(im))

· F st
n−k(312, π

(1)(i1+ δ1), . . . , π(m)(im+ δm)).

Therefore,

F st
n+1,k(Π; q) = qf(k,n−k)

[ ∑
S⊆[m]

(−1)|S|
∑

i1,...,im:
1≤ij≤rj−δj

F st
k (ΠI) · F st

n−k(ΠI+δ)

]
,

and we are done.

Example 3.3. Let Π = {312, π(1), π(2)} where π(1) = 2314 = 12[12∗, ε∗]
and π(2) = 2143 = 12[1∗, 1∗]. We want to compute an = F inv

n (Π) by using
Theorem 3.2. There are four possibilities of S ⊆ {1, 2}, and for each possi-
bility the following table shows the appearing terms, where δ is again the
Kronecker delta function.
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S = ∅: F inv
k (312, 12, 1) · F inv

n−k(Π) = δ0,k · an−k

F inv
k (312, 2314, 1) · F inv

n−k(312, 1, 2143) = δ0,k · δ0,n−k

F inv
k (312, 12, 2143) · F inv

n−k(312, 2314, 21) = 1

F inv
k (Π) · F inv

n−k(312, 1, 21) = δ0,n−k · ak
S = {1}: F inv

k (312, 12, 1) · F inv
n−k(312, 1, 2143) = δ0,k · δ0,n−k

F inv
k (312, 12, 2143) · F inv

n−k(312, 1, 21) = δ0,n−k

S = {2}: F inv
k (312, 12, 1) · F inv

n−k(312, 2314, 21) = δ0,k

F inv
k (312, 2314, 1) · F inv

n−k(312, 1, 21) = δ0,k · δ0,n−k

S = {1, 2}: F inv
k (312, 21, 1) · F inv

n−k(312, 1, 21) = δ0,k · δ0,n−k

Hence the an satisfy

an+1 =

n∑
q=0

qk [δ0,kan−k + δ0,n−k · ak + 1− δ0,k − δ0,n−k]

= (1 + qn)an +
1− qn+1

1− q
− (1 + qn)

= (1 + qn)an + q

(
1− qn−1

1− q

)
.

In particular, by setting q = 1 we get an+1 = 2an + n− 1 with a0 = a1 = 1.
Thus

|Sn(312, 2314, 2143)| = 2n − n.

The following construction of st-Wilf equivalences can be extracted from
Theorem 3.2. A proof of this corollary uses a similar argument to that of
Corollary 2.6 and is omitted here.

Corollary 3.4. Let st be a statistic satisfying (†). Let π
(j)
i , π

′(j)
i , 1 ≤ j ≤

m, 1 ≤ i ≤ rm, be permutations such that

{312, π(1)
i1

, . . . , π
(m)
im

} st≡ {312, π′(1)
i1

, . . . , π
′(m)
im

}

for all m-tuples I = (i1, . . . , im) ∈ [r1]×· · ·×[rm]. Set π(j) = ιr[π
(j)
1∗ , . . . , π

(j)
rj∗]

and π′(j) = ιr[π
′(j)
1∗ , . . . , π

′(j)
rj∗ ]. Then Π = {312, π(1), . . . , π(m)} and Π′ = {312,

π′(1), . . . , π′(m)} are st-Wilf equivalent.
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