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Permutation statistics and multiple pattern
avoidance

WUTTISAK TRONGSIRIWAT

For a set of patterns II, let FS*(IT; q) be the st-polynomial of per-
mutations avoiding all patterns in II. Suppose 312 € II. For some
permutation statistic st, we give a formula that expresses F5*(II; q)
in terms of these st-polynomials where we take some subblocks
of the patterns in II. Using this formula, we construct examples
of nontrivial st-Wilf equivalences. In particular, this disproves a
conjecture by Dokos, Dwyer, Johnson, Sagan, and Selsor that all
inv-Wilf equivalences are trivial.

1. Introduction

Let &,, be the set of permutations of [n] := {1,2,...,n} and let & =
U,>0 ©n, where &y contains only one element e — the empty permuta-
tion. For permutations 7,0 € & we say that the permutation o contains
if there is a subsequence of ¢ having the same relative order as 7. In partic-
ular, every permutation contains €, and every permutation except € contains
1 € G&;. For consistency, we will use the letter o to represent a permutation
and 7 to represent a pattern. We say that o avoids w (or o is w-avoiding) if
o does not contain 7. For example, the permutation 46127538 contains 3142
while the permutation 46123578 avoids 3142. We denote by &,,(7), where
m € 6, the set of permutations ¢ € G,, avoiding m. More generally we de-
note by &,,(II), where II C &, the set of permutations avoiding each pattern
7 € II simultaneously, i.e. &,(II) = [ .y Sn(r). Two sets of patterns II
and IT" are called Wilf equivalent, written 11 = IT, if |&,,(I1)| = |&,,(IT')| for
all integers n > 0.

Now we define g-analogues of pattern avoidance using permutation statis-
tics. A permutation statistic (or sometimes just statistic) is a function st :
6& — N, where N is the set of nonnegative integers. Given a permutation
statistic st, we define the st-polynomial of II-avoiding permutations to be

FY ) = Fl (L) == Y ¢
€S, (II)
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We may drop the q if it is clear from the context. The sets of patterns II and
IT’ are said to be st- Wilf equivalent, written II 2 I, if F54(11; q) = F5Y(IT; q)
for all n > 0.

The study of g-analogues of pattern avoidance using permutation statis-
tics and the st-Wilf equivalences began in 2002, as initiated by Robertson,
Saracino, and Zeilberger [6], with the emphasis on the number of fixed points.
Elizalde subsequently refined results of Robertson et al. by considering the
excedance statistic [2] and later extended the study to cases of multiple pat-
terns [3]. A bijective proof was later given by Elizalde and Pak [4]. Dokos
et al. [1] studied pattern avoidance on the inversion and major statistics, as
remarked by Savage and Sagan in their study of Mahonian pairs [7].

In this paper, we study multiple pattern avoidance on a class of per-
mutation statistics which includes the inversion and descent statistics. The
inversion number of o € &,, is

inv(e) = #{(i,5) € [n)*:i < j and (i) > o(j)}.
The descent number of o € &,, is
des(o)=#{ien—1]:0()>c(i+1)}.

For example inv(3142) = #{(1,2), (1,4), (3,4)} = 3 and des(3142) = #{1,3}
=2.

In [1], Dokos et al. conjectured that there are only essentially trivial
inv-Wilf equivalences, obtained by rotations and reflections of permutation
matrices. Let us describe these more precisely. The notations used below are
mostly taken from [1].

Given a permutation o € &, we represent it geometrically using the
squares (1,0(1)),(2, 0(2)),...,(n,o(n)) of the n-by-n grid, which is coor-
dinated according to the xy-plane. This will be referred as the permutation
matriz of . The diagram to the left in Figure 1 is the permutation matrix
of 46127538. In the diagram to the right, the red squares correspond to the
subsequence 4173, which is an occurrence of the pattern 3142.

By representing each ¢ € G as a permutation matrix, we have an action
of the dihedral group of square Dy on & by the corresponding action on the
permutation matrices. We denote the elements of Dy by

Dy = {Ro, Rgo, R180, R270,7-1,70,71, o0 } »

where Ry is the counterclockwise rotation by 6 degrees and r,, is the reflec-
tion in a line of slope m. We will sometimes write II* for r_;(II). Note that
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u

Figure 1: The permutation matrix of 46127538 (left) with an occurrence of
3142 colored (right).

Ry, R1s0,7_1, and r{ preserve the inversion statistic while the others reverse
it, i.e.
inv(f(a)) _ inv(a) iff S {Ro,ngo,T_l,Tl},
(g) — inv(a) if f S {Rgo, Roqg, 10, Too}.

It follows that IT and f(II) are inv-Wilf equivalent for all Il C & and f €
{Ro, R180,7—1,71}. We call these equivalences trivial. With these notations,
the conjecture by Dokos et al. can be stated as the following.

Conjecture 1.1 ([1], conj. 2.4). II and II' are inv-Wilf equivalent iff 11 =
f(T') for some f € {Ro, Rigo,7—1,71}-

Given permutations m = aqasy...ar € 6 and o1,...,0, € G, the in-
flation w[oy, ..., 01 of m by the o; is the permutation whose permutation
matrix is obtained by putting the permutation matrices of ¢; in the relative
order of m; for instance, 213[123,1,21] = 234165 as illustrated in Figure 2.

For convenience, we write

Ty = 21[m, 1].

In other words, 7, is the permutation whose permutation matrix is obtained
by adding a box to the lower right corner of the permutation matrix of .

The next proposition is one of the main results of this paper, which
disproves the conjecture above. This is a special case of the corollary of
Theorem 2.4 in the next section.

Proposition 1.2. Let v, be the permutation 12...r € &,. Let 7y, ..., 7, ),
nv

.., . be permutations such that {312,7;} = {312,x.} for all i. Set 7 =
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Figure 2: The permutation 213[123,1,21].

LTy ooy i) and @ = o[, .. 7). Then {3127} and {312,7'} are
inv-Wilf equivalent, i.e. F(312,7) = F™(312,7') for all n.

In particular, if we set each 7} to be either m; or 7}, then the conditions

{312, 7;} B {312, 7} are satisfied. By this construction I is generally not
of the form f(II) for any f € {Ry, Riso,7—1,71}. For example, the pair
IT = {312,32415} and II' = {312,24315} is an example of smallest size of
nontrivial inv-Wilf equivalences constructed this way.

2. Avoiding two patterns

In this section, we study the st-polynomials in the case when II consists
of 312 and another permutation . For this set of patterns II, Mansour
and Vainshtein [5] gave a recursive formula for |S,,(II)|. Here, we give a
recursive formula for the st-polynomials F5*(IT), which generalizes the result
of Mansour and Vainshtein. Then we present its corollary, which gives a
construction of nontrivial st-Wilf equivalences. We note that Proposition 2.1
and Lemma 2.2 appear in [5] as small observations.

Suppose 0 € G,41(312) with o(k + 1) = 1. Then, for every pair of
indices (4,j) with i« < k+ 1 < j, we must have o(i) < o(j); otherwise
o(i)o(k + 1)o(j) is an occurrence of the pattern 312 in 0. So o can be
written as o = 213[01, 1, 02] with 01 € & and 09 € &,,_. For the rest of
the paper, we will always consider ¢ in this inflation form.

We also assume that the permutation statistic st : &,, — N satisfies

(1) st(o) = f(k,n — k) + st(o1) + st(o2)

for some function f : N?> — N which does not depend on ¢. Some examples
of such statistics are the inversion number, the descent number, and the
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number of occurrences of the consecutive pattern 213:
213(c) =#{ien—2]:0(i+1)<o(i) <o(i+2)}.
For these statistics, we have

inv(o) = k +inv(oy) + inv(oz),
des(0) =1 — dy  + des(o1) + des(o2),
213(0) = (1 = bo k) (1 — Og,n) + 213(01) + 213(02),

where 0 is the Kronecker delta function.
It will be more beneficial to consider the permutation patterns in their
block decomposition form as in the following proposition.

Proposition 2.1. Every 312-avoiding permutation 7 € &,(312) can be
written uniquely as

T = [Tl v oy Trs)
where v > 0 and m; € &(312).

Proof. The uniqueness part is trivial. The proof of existence of mq,...,m, is
by induction on n. If n = 0, there is nothing to prove. Suppose the result
holds for n. Suppose that 7(k + 1) = 1. Then 7 = 213[my, 1, 7] = 12[m14, 7]
where m € 6;(312) and ' € &,,_,(312). Applying the inductive hypothesis
on 7', we are done. O

Suppose that 7 € &,,(312) has the block decomposition 7 = ¢, [m14,. ..,
Trs). For 1 <14 <r, we define 7(7) and 7(¢) to be

ifi=1

i T1wy ...y Tix]  Otherwise,

and
7(2) = Lr71'+1[71'i*, c ,7TT*].

Let II be a set of patterns containing 312. If = € II'\ {312} contains the
pattern 312, then every permutation avoiding 312 will automatically avoid
7, which means FS'(IT) = F5Y(IT\ {n}). So we may assume that each pattern
besides 312 in II avoids 312. The following lemma gives a recursive condition
for a permutation o = 213[01, 1, 09] € &(312) to avoid m, in terms of o1, o2,
and the blocks ;. of .
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Figure 3: The poset Ls.

Lemma 2.2. Let 0 = 213[01,1,02], 7 = tp[T14, ..., Tps] € &(312). Then o
avoids T if and only if the condition

(C) : o1 avoids (i) and oo avoids (i)
holds for some i € [r].

Proof. First, suppose that o contains 7. Let j be the largest number for
which o; contains 7(j). Then o2 must contain 7(j + 1). So o1 contains (%)
for all ¢ < j, and o9 contains 7(4) for all ¢ > j. Thus none of the C; holds.
On the other hand, suppose that there is a permutation o € S(312)
that avoids 7 but does not satisfy any C;. This means, for every i, either oy
contains m(i) or o2 contains 7(7). Let j be the smallest number such that
o1 does not contain (7). Note that j exists and j > 1 since j = 1 implies
o9 contains 7(1) = m, a contradiction. Since o1 does not contain m(j), o2
must contain 7(j) (by C;). But since oy contains 7(j — 1) by minimality of
Jj, we have found a copy of 7 in o with 7(5 — 1) from o7 and 7(j) from o9,
a contradiction. (For j = 2, the number 1 in o together with 7; in o1 give
™ 1*.) O

Before presenting the main result, we state a technical lemma regarding
the Mobius function of certain posets. See, for example, Chapter 3 of [8] for
definitions and terminologies about posets and the general treatment of the
subject.

Let r be the chain of r elements 0 < 1 < --- < r—1. Let L, be the poset
obtained by taking the elements of r x r of rank 0 to r — 1, i.e. the elements
of L, are the lattice points (a,b) where a,b > 0 and a+ b < r. For instance,
Ls is the poset shown in Figure 3. We denote its unique minimal element
(0,0) by 0. Let L, be the poset L, with the unique maximum element 1
adjoined.

For a poset P, we denote the Mdbius function of P by up. Note that
for every element a € L, the up-set U(a) := {x € L, : = > a} of a is



Permutation statistics and multiple pattern avoidance 241

isomorphic to ﬁr_l(a) where [(a) is the rank of @ in L,.. Therefore, the problem
of computing pj (z,1) for every r is equivalent to computing p Lr(f), 1) for
every r, which is given by the following lemma. The proof is omitted since
it is by a straightforward calculation.

Lemma 2.3. We have

 (0,1) =
ML"( ) 0, otherwise.

{(—1)?", ifr=1,2,

We now present the main theorem of this section.

Theorem 2.4. Let II = {312, 7}. Suppose that the statistic st : & — N
satisfies the condition (1). Then F5'(11;q) satisfies

n+1 Zq f(kn—k)

(*) Z (312,7(7)) - F51, (312, 7(i + 1)) |,

ZF“ (312,7(3)) - FSt,.(312,7(i))

for all n > 0, where F§'(1l;q) = 0 if m = €, and 1 otherwise.
Proof. For k € {0,1,...,n} and £ C &, we write &, (Z) to denote the set
of permutations o € &,,41(X) such that o(k + 1) = 1. In particular,

GF.1(312) = {0 = 213[01,1,09] : 01 € G (312) and 03 € &,,_(312)}.

Fix k, and let A;(i € [r]) be the set of permutations in &%, (312) satisfying
the condition C;. So GQH(H) =A UAU---UA, = A by Lemma 2.2.
Observe that if i; < --- < 7 then

Ail N Aiz N---N Alk = Ail N Azk = Aihik
since satisfying the conditions Cj,,...,C;, is equivalent to satisfying the
conditions C;, and Cj, .
Let P be the intersection poset of Aj,..., A, where the order is given

by A < B if A C B. The elements of P are A, A; (1 < i < r), and A4;;
(1 <i<j<r). We see that P is isomorphic to the set L,, so the Mobius
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function pp(T, A) for T € P is given by

1 if T'= A or A; ;41 for some ¢,
up(T,A) =< —1 if T = A; for some 1,
0 otherwise.

For T € P, we define g : P — C(x : z € A) by

9(T) = Z x.

zeT

The Mé&bius inversion formula ([8], Section 3.7) implies that

g(A) == up(T, A)g(T)

T<A
T r—1

= g(A) = g(Ain Aiga).
=1 =1

By mapping o — ¢*(%) for all ¢ € A, g(A) is sent to Ft (g =

Yoest, (1) ¢**?). Hence,

T r—1
Ffp@g) => > @ =" M gt

i=1 o0€A; =1 c€A;NA;11
r r—1
— qf(k,nfk) Z Z qst(01)+st(02) . Z Z qst(01)+st(02) 7
=1 O’EA,‘, =1 O'EA,:mAi_H

where the second equality is obtained from the condition ().
Note that o € A; iff o1 avoids (i) and o9 avoids 7(i), and 0 € A;NA; 14
iff o1 avoids m(i) and o9 avoids 7(i + 1). Thus

Z FHostloz) — pst3192 7 (7)) - F5Y (312, 7(4))
O'EA,,

and

> @) = FR(312, m(4)) - P, (312,7 (i + 1)).
OGAiﬁAi+1
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Therefore

Fly p (M q) = ¢/ B Y R (312, 7(i)) - Bty (312,7(0))
i=1

Z (312,m(d)) - F5* (312, 7(i + 1)) |.

We get the stated result by summing the preceding equation from k£ = 0 to
n. ]

Example 2.5 (g-analogues of odd Fibonacci numbers). It is well known
that the permutations avoiding 312 and 1432 are counted by the Fibonacci
numbers Fh,11, assuming F; = Fy = 1 (see [9] for example). Let A, =
Fy,41. It can be shown that the A,, satisfy

n—1

Appr = Ap + > 277714,
k=0

Theorem 2.4 gives g-analogues of this relation. Here, we consider the inver-
sion statistic.

Let m = 1432 = 12[e,,21,] and II = {312,7}. Since ©(1) = € and
Finv(312,¢) = 0 for all n, Theorem 2.4 implies

v (I Z Fi™v(II)Fi™, (312, 321)
n—1
_ an;ZIlV(H) + qu(l + q)n—k—lF’éIlV(H)’
k=0

where the last equality is by [1], Proposition 4.2.

/

Corollary 2.6. Let st be a statistic satisfying (). Let w1, ..., 7wp, 7, ..., 7

be permutations such that {312, ;} = {312, 7}} for alli. Set m = ty[m1x, .. .,
] and @ = v (7., ..., 7). Then {312,7} and {312,7'} are also st-Wilf
equivalent, i.e. F54(312,7) = F54(312,7') for all n.

Proof. The proof is by induction on n. If n = 0, then the statement trivially
holds. Now suppose the statement holds up to n. Then for 0 < k < n and
1 < i < r, we have F*(312,(i)) = F3*(312,7/(:)) and F* (312,7(i)) =
F2t, (312,7/(i)). Hence 5 4 (312, m) = F5' (312, 7’) by comparing the terms
on the right-hand side of (*). O
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As mentioned at the end of Section 1, for the inversion statistic we can
choose each 7/ to be either 7; or mf. Of course, this construction works for
every statistic st satisfying () and that st(o) = st(c?) for all 0 € &(312).
Besides the inversion statistic, the descent statistic for example also possesses
this property. To justify this fact, we write o = 213|071, 1, 09] € &(312) where
01,09 € &. Observe that of = 132[c%, 0%, 1] and

des(o") = des(ob) + des(a}) + (1 — o k)

where k = |o!| = |o1|. The proof then proceeds by induction on n = |o]|.
It is, however, not true in general that the matrix transposition preserves
the descent number. For instance, if o = 2413, then des(c) = 1 while
des(o?) = 2.

3. Generalization

In this section, we generalize the results from Section 2 to the case when II
consists of 312 and other patterns. We again begin with a lemma regarding
the Md6bius function.

Lemma 3.1. Let L be the poset Ly, X -+ X Ly, cmdAﬁA the poset L U {1}.
Let p = p; be the Mébius function on L. Then p(0,1) = 0 unless each
ri € {1,2}, in which case p(0,1) = (1)1 where S = {i : r; = 2}.

Proof. Let a = (ay,...,ay) € L. Then u(0,a) = [, (0, a;), where y; is
the Mé6bius function of L,.. So

m

0 i ZM H Z ,Mi((],ai)

a€Ll =1 \a; EL”

Note that if > 3, the Mobius function pur, (0, a) vanishes unless a €
{(0,0),(1,0),(0,1),(1,1)}, in which cases the value of pr, (0,a) is 1, —1,
—1, 1, respectively. So ZaELT wr,(0,a) = 0 unless » = 1,2. For r = 1,2, it
can easily be checked that > . pr (0,a) =1if r =1 and —1if r = 2. So
if r; > 3 for some i, then p(0,1) = 0. If each r; € {1,2}, then each index i
for which r; = 2 contributes a —1 to the product on the right-hand side of
the previous equation. Thus (0, 1) = (=1)ISH*1, O
For convenience, we introduce the following notations. Let IT= {312, M),
LMY where 7@ = o, (79, (7). For T = (in, ..., im), we de-

fine

0, = {312,7W(iy), ..., 2" (im)}
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and
I = {312, 7MW (i1), ..., 7™ (i)}
A generalization of Theorem 2.4 can be stated as the following.

Theorem 3.2. Suppose that the statistic st : & — N satisfies the condition
(t). Let I1 = {312, 7V ... 7™} where () = Lri[(ﬂ?))*, e (m(«z))*] Then
F§'(II) = 0 if m; = € for some i and 1 otherwise, and for n > 1 the st-
polynomial F5Y(1L; q) satisfies

Foiq (11 Zq flen=b) Z (-1l Z FH ) - Pl () |

SCm] I=(i1,e.crim):
1§7/] Srj—éj

where § = (01,...,0m) withd; =1 1ifj€ S and0ifj ¢ S.

Proof. Recall that by Lemma 2.2 a permutation o = 213[o, 1, 02] € 6(312)
avoids 7\ iff o satisfies the condition

(CY) : oy avoids 79 (i) and oy avoids w0 (i)

for some i € [r;]. So o € G(312) belongs to G(II) iff, for every j, there is an
i € [r;] for which o satisfies (Cj) Fix k and let GF ,,(312) be as in the proof
of Theorem 2.4. Let AJ be the set of 7()-avoiding permutations in G* 4+1(312)

satisfying the condition (C?). For I = (i1, ...,im) € [r1] X [ra] X -+ X [rm],
we define the set Ay to be

A=Ay = Af NAZ NAT.

So &F,,(II) is the union

n+1 U All,zg, bm

7’17 50

where the union is taken over all m-tuples I = (i1,...,%y) in [r1] x [r2] X
X [rm). Let P;j be the intersection poset of A7, ..., AL, and let P; be the
poset Pj\ {A7}, where A7 = AJU---U AL is the unique maximum element

of P Recall that P; is isomorphic to Ly,. Let P be the intersection poset of
the A 7. The elements of P are the unique maximal element A = &%, (II)

and
T=T'nT?n---Nn1T™,

where each 77 is an element of P;. Thus P is isomorphic to L,, X --- X
L, U{l}. For S C [n], we say that an element 7' € P has type S if
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T/ = Ag for some i when j ¢ S and T7 = Ag N AZ 41 for some ¢ when
j € S. Using Lemma 3.1, we know that the value of pup(T, A) where T =
T'NT?N---NT™# Ais

(T A) = (=D)L if T has type S,
A , otherwise.

For T € P, we define g: P — C(x : v € A) by g(T) = > @, so that

g(A) =Y =yt Y g(T)

SCln] T has type S

by the Mdbius inversion formula.
Now, by the definition of type S, we have

Z g(T) = Z ﬂAJ mﬂA]mA{H )

T has type S (R j¢sS JES
1<i;<r;—9;
where §; = 1if j € S and 0 if j ¢ S. Recall that o € Agj iff o1 avoids
7Y)(i;) and o9 avoids m(zj), and o € AZJ_ N Agﬁ-l iff o1 avoids 714)(i;) and

o9 avoids W(zj + 1). Therefore, by mapping o — ¢°*(?), we have

gl AL (AN AL )]/ E R EE 312,20 (60), . 7T (i)
Jj¢s JES

CFt L (312, 7D (i + 1), - 7 (i + O

Therefore,

Flaalg) = ¢/ B0 37 (0t 37 B ) - B ()|
5C[m] Uyl
1<4;<r; =9,

and we are done. O

Example 3.3. Let IT = {312, 7(V, 7} where 7)) = 2314 = 12[12,,¢,]
and 7 = 2143 = 12[1,, 1.]. We want to compute a,, = F™(II) by using
Theorem 3.2. There are four possibilities of S C {1,2}, and for each possi-
bility the following table shows the appearing terms, where § is again the
Kronecker delta function.
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S = 0: Finv(312,12,1) - Fi, (I1) = S0k * An—k
Fjnv(312,2314,1) - FW, (312,1,2143) =00k * 00—k
Fi™v(312,12,2143) - Finv, (312,2314,21) | =1
Finv(IT) - Fiv, (312,1,21) = 00—k Gk

S ={1}: Finv(312,12,1) - FIv, (312, 1,2143) = 60k - O0.n—k
Fj™(312,12,2143) - Fin, (312, 1,21) = 80—k

S ={2}: Finv(312,12,1) - FWv, (312,2314,21) = dok
Finv(312,2314,1) - Fiv, (312,1,21) = 80k * O0.n—k

={1,2}: | F"™(312,21,1)  F™,(312,1,21) = 60k - 00—k

Hence the a, satisfy

Ap41 = Zq [00,k@n—k + 00—k - ar + 1 — 0k — d0.n—k]
q=0
qn+1

1_
Z(l"‘q")an""ﬁ_(l"‘q")

1— qn—l
=(1+4" — .
(1+4q )an+q< = )
In particular, by setting ¢ = 1 we get ap+1 = 2a, +n — 1 with ag = a1 = 1.
Thus
|6,,(312,2314,2143)| = 2" — n.
The following construction of st-Wilf equivalences can be extracted from

Theorem 3.2. A proof of this corollary uses a similar argument to that of
Corollary 2.6 and is omitted here.

Corollary 3.4. Let st be a statistic satisfying (). Let ng),ﬂg(‘j), 1<j<

m,1 <1 <71y, be permutations such that

312,70, 2™y E 312,70 2y

im

for allm-tuples I = (i1,...,0m) € [r1] X+ X[rm]. Set w(j) =l [ng*), . 777(3)]
and 7'0) = Lr[’iT;(*J), . 7rr(] )] Then 11 = {312 M wY and I = {312,
W 7MY are st- Wilf equivalent.
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