Permutation statistics and multiple pattern avoidance

WUTTISAK TRONGSIRIWAT

For a set of patterns Π , let $F_n^{\text{st}}(\Pi; q)$ be the st-polynomial of permutations avoiding all patterns in Π . Suppose $312 \in \Pi$. For some permutation statistic st, we give a formula that expresses $F_n^{\text{st}}(\Pi; q)$ in terms of these st-polynomials where we take some subblocks of the patterns in Π . Using this formula, we construct examples of nontrivial st-Wilf equivalences. In particular, this disproves a conjecture by Dokos, Dwyer, Johnson, Sagan, and Selsor that all inv-Wilf equivalences are trivial.

1. Introduction

Let \mathfrak{S}_n be the set of permutations of $[n] := \{1, 2, \ldots, n\}$ and let $\mathfrak{S} = \bigcup_{n\geq 0} \mathfrak{S}_n$, where \mathfrak{S}_0 contains only one element ϵ – the empty permutation. For permutations $\pi, \sigma \in \mathfrak{S}$ we say that the permutation σ contains π if there is a subsequence of σ having the same relative order as π . In particular, every permutation contains ϵ , and every permutation except ϵ contains $1 \in \mathfrak{S}_1$. For consistency, we will use the letter σ to represent a permutation and π to represent a pattern. We say that σ avoids π (or σ is π -avoiding) if σ does not contain π . For example, the permutation 46127538 contains 3142 while the permutation 46123578 avoids 3142. We denote by $\mathfrak{S}_n(\pi)$, where $\pi \in \mathfrak{S}$, the set of permutations $\sigma \in \mathfrak{S}_n$ avoiding π . More generally we denote by $\mathfrak{S}_n(\Pi)$, where $\Pi \subseteq \mathfrak{S}$, the set of permutations avoiding ach pattern $\pi \in \Pi$ simultaneously, i.e. $\mathfrak{S}_n(\Pi) = \bigcap_{\pi \in \Pi} \mathfrak{S}_n(\pi)$. Two sets of patterns Π and Π' are called *Wilf equivalent*, written $\Pi \equiv \Pi'$, if $|\mathfrak{S}_n(\Pi)| = |\mathfrak{S}_n(\Pi')|$ for all integers $n \geq 0$.

Now we define q-analogues of pattern avoidance using permutation statistics. A *permutation statistic* (or sometimes just *statistic*) is a function st : $\mathfrak{S} \to \mathbb{N}$, where \mathbb{N} is the set of nonnegative integers. Given a permutation statistic st, we define the *st-polynomial* of Π -avoiding permutations to be

$$F_n^{\mathrm{st}}(\Pi) = F_n^{\mathrm{st}}(\Pi; q) := \sum_{\sigma \in \mathfrak{S}_n(\Pi)} q^{\mathrm{st}(\sigma)}.$$

arXiv: 1309.3028

We may drop the q if it is clear from the context. The sets of patterns Π and Π' are said to be st-*Wilf equivalent*, written $\Pi \stackrel{\text{st}}{\equiv} \Pi'$, if $F_n^{\text{st}}(\Pi;q) = F_n^{\text{st}}(\Pi';q)$ for all $n \geq 0$.

The study of q-analogues of pattern avoidance using permutation statistics and the st-Wilf equivalences began in 2002, as initiated by Robertson, Saracino, and Zeilberger [6], with the emphasis on the number of fixed points. Elizable subsequently refined results of Robertson et al. by considering the excedance statistic [2] and later extended the study to cases of multiple patterns [3]. A bijective proof was later given by Elizable and Pak [4]. Dokos et al. [1] studied pattern avoidance on the inversion and major statistics, as remarked by Savage and Sagan in their study of Mahonian pairs [7].

In this paper, we study multiple pattern avoidance on a class of permutation statistics which includes the inversion and descent statistics. The *inversion number* of $\sigma \in \mathfrak{S}_n$ is

$$\operatorname{inv}(\sigma) = \#\{(i,j) \in [n]^2 : i < j \text{ and } \sigma(i) > \sigma(j)\}.$$

The descent number of $\sigma \in \mathfrak{S}_n$ is

$$des(\sigma) = \#\{i \in [n-1] : \sigma(i) > \sigma(i+1)\}.$$

For example inv $(3142) = \#\{(1,2), (1,4), (3,4)\} = 3$ and des $(3142) = \#\{1,3\} = 2$.

In [1], Dokos et al. conjectured that there are only essentially trivial inv-Wilf equivalences, obtained by rotations and reflections of permutation matrices. Let us describe these more precisely. The notations used below are mostly taken from [1].

Given a permutation $\sigma \in \mathfrak{S}_n$, we represent it geometrically using the squares $(1, \sigma(1)), (2, \sigma(2)), \ldots, (n, \sigma(n))$ of the *n*-by-*n* grid, which is coordinated according to the *xy*-plane. This will be referred as the *permutation matrix* of σ . The diagram to the left in Figure 1 is the permutation matrix of 46127538. In the diagram to the right, the red squares correspond to the subsequence 4173, which is an occurrence of the pattern 3142.

By representing each $\sigma \in \mathfrak{S}$ as a permutation matrix, we have an action of the dihedral group of square D_4 on \mathfrak{S} by the corresponding action on the permutation matrices. We denote the elements of D_4 by

$$D_4 = \{R_0, R_{90}, R_{180}, R_{270}, r_{-1}, r_0, r_1, r_\infty\},\$$

where R_{θ} is the counterclockwise rotation by θ degrees and r_m is the reflection in a line of slope m. We will sometimes write Π^t for $r_{-1}(\Pi)$. Note that

Figure 1: The permutation matrix of 46127538 (left) with an occurrence of 3142 colored (right).

 R_0, R_{180}, r_{-1} , and r_1 preserve the inversion statistic while the others reverse it, i.e.

$$\operatorname{inv}(f(\sigma)) = \begin{cases} \operatorname{inv}(\sigma) & \text{if } f \in \{R_0, R_{180}, r_{-1}, r_1\}, \\ \binom{n}{2} - \operatorname{inv}(\sigma) & \text{if } f \in \{R_{90}, R_{270}, r_0, r_\infty\}. \end{cases}$$

It follows that Π and $f(\Pi)$ are inv-Wilf equivalent for all $\Pi \subseteq \mathfrak{S}$ and $f \in \{R_0, R_{180}, r_{-1}, r_1\}$. We call these equivalences trivial. With these notations, the conjecture by Dokos et al. can be stated as the following.

Conjecture 1.1 ([1], conj. 2.4). Π and Π' are inv-Wilf equivalent iff $\Pi = f(\Pi')$ for some $f \in \{R_0, R_{180}, r_{-1}, r_1\}$.

Given permutations $\pi = a_1 a_2 \dots a_k \in \mathfrak{S}_k$ and $\sigma_1, \dots, \sigma_k \in \mathfrak{S}$, the *in*flation $\pi[\sigma_1, \dots, \sigma_k]$ of π by the σ_i is the permutation whose permutation matrix is obtained by putting the permutation matrices of σ_i in the relative order of π ; for instance, 213[123,1,21] = 234165 as illustrated in Figure 2.

For convenience, we write

$$\pi_* := 21[\pi, 1].$$

In other words, π_* is the permutation whose permutation matrix is obtained by adding a box to the lower right corner of the permutation matrix of π .

The next proposition is one of the main results of this paper, which disproves the conjecture above. This is a special case of the corollary of Theorem 2.4 in the next section.

Proposition 1.2. Let ι_r be the permutation $12 \ldots r \in \mathfrak{S}_r$. Let $\pi_1, \ldots, \pi_r, \pi'_1, \ldots, \pi'_r$ be permutations such that $\{312, \pi_i\} \stackrel{inv}{\equiv} \{312, \pi'_i\}$ for all *i*. Set $\pi =$

Figure 2: The permutation 213[123,1,21].

 $\iota_r[\pi_{1*}, \ldots, \pi_{r*}]$ and $\pi' = \iota_r[\pi'_{1*}, \ldots, \pi'_{r*}]$. Then $\{312, \pi\}$ and $\{312, \pi'\}$ are inv-Wilf equivalent, i.e. $F_n^{inv}(312, \pi) = F_n^{inv}(312, \pi')$ for all n.

In particular, if we set each π'_i to be either π_i or π^t_i , then the conditions $\{312, \pi_i\} \stackrel{\text{inv}}{\equiv} \{312, \pi'_i\}$ are satisfied. By this construction Π' is generally not of the form $f(\Pi)$ for any $f \in \{R_0, R_{180}, r_{-1}, r_1\}$. For example, the pair $\Pi = \{312, 32415\}$ and $\Pi' = \{312, 24315\}$ is an example of smallest size of nontrivial inv-Wilf equivalences constructed this way.

2. Avoiding two patterns

In this section, we study the st-polynomials in the case when Π consists of 312 and another permutation π . For this set of patterns Π , Mansour and Vainshtein [5] gave a recursive formula for $|\mathfrak{S}_n(\Pi)|$. Here, we give a recursive formula for the st-polynomials $F_n^{\rm st}(\Pi)$, which generalizes the result of Mansour and Vainshtein. Then we present its corollary, which gives a construction of nontrivial st-Wilf equivalences. We note that Proposition 2.1 and Lemma 2.2 appear in [5] as small observations.

Suppose $\sigma \in \mathfrak{S}_{n+1}(312)$ with $\sigma(k+1) = 1$. Then, for every pair of indices (i, j) with i < k+1 < j, we must have $\sigma(i) < \sigma(j)$; otherwise $\sigma(i)\sigma(k+1)\sigma(j)$ is an occurrence of the pattern 312 in σ . So σ can be written as $\sigma = 213[\sigma_1, 1, \sigma_2]$ with $\sigma_1 \in \mathfrak{S}_k$ and $\sigma_2 \in \mathfrak{S}_{n-k}$. For the rest of the paper, we will always consider σ in this inflation form.

We also assume that the permutation statistic st : $\mathfrak{S}_n \to \mathbb{N}$ satisfies

(†)
$$\operatorname{st}(\sigma) = f(k, n-k) + \operatorname{st}(\sigma_1) + \operatorname{st}(\sigma_2)$$

for some function $f : \mathbb{N}^2 \to \mathbb{N}$ which does not depend on σ . Some examples of such statistics are the inversion number, the descent number, and the

number of occurrences of the consecutive pattern 213:

$$\underline{213}(\sigma) = \#\{i \in [n-2] : \sigma(i+1) < \sigma(i) < \sigma(i+2)\}.$$

For these statistics, we have

$$inv(\sigma) = k + inv(\sigma_1) + inv(\sigma_2), des(\sigma) = 1 - \delta_{0,k} + des(\sigma_1) + des(\sigma_2), 213(\sigma) = (1 - \delta_{0,k})(1 - \delta_{k,n}) + 213(\sigma_1) + 213(\sigma_2),$$

where δ is the Kronecker delta function.

It will be more beneficial to consider the permutation patterns in their *block decomposition* form as in the following proposition.

Proposition 2.1. Every 312-avoiding permutation $\pi \in \mathfrak{S}_n(312)$ can be written uniquely as

$$\pi = \iota_r[\pi_{1*}, \ldots, \pi_{r*}]$$

where $r \geq 0$ and $\pi_i \in \mathfrak{S}(312)$.

Proof. The uniqueness part is trivial. The proof of existence of π_1, \ldots, π_r is by induction on n. If n = 0, there is nothing to prove. Suppose the result holds for n. Suppose that $\pi(k+1) = 1$. Then $\pi = 213[\pi_1, 1, \pi'] = 12[\pi_{1*}, \pi']$ where $\pi_1 \in \mathfrak{S}_k(312)$ and $\pi' \in \mathfrak{S}_{n-k}(312)$. Applying the inductive hypothesis on π' , we are done.

Suppose that $\pi \in \mathfrak{S}_n(312)$ has the block decomposition $\pi = \iota_r[\pi_{1*}, \ldots, \pi_{r*}]$. For $1 \leq i \leq r$, we define $\underline{\pi}(i)$ and $\overline{\pi}(i)$ to be

$$\underline{\pi}(i) = \begin{cases} \pi_1 & \text{if } i = 1, \\ \iota_i[\pi_{1*}, \dots, \pi_{i*}] & \text{otherwise}, \end{cases}$$

and

$$\overline{\pi}(i) = \iota_{r-i+1}[\pi_{i_*}, \dots, \pi_{r_*}].$$

Let Π be a set of patterns containing 312. If $\pi \in \Pi \setminus \{312\}$ contains the pattern 312, then every permutation avoiding 312 will automatically avoid π , which means $F_n^{\text{st}}(\Pi) = F_n^{\text{st}}(\Pi \setminus \{\pi\})$. So we may assume that each pattern besides 312 in Π avoids 312. The following lemma gives a recursive condition for a permutation $\sigma = 213[\sigma_1, 1, \sigma_2] \in \mathfrak{S}(312)$ to avoid π , in terms of σ_1, σ_2 , and the blocks π_{i*} of π .

Figure 3: The poset L_5 .

Lemma 2.2. Let $\sigma = 213[\sigma_1, 1, \sigma_2], \pi = \iota_r[\pi_{1*}, \ldots, \pi_{r*}] \in \mathfrak{S}(312)$. Then σ avoids π if and only if the condition

 (C_i) : σ_1 avoids $\underline{\pi}(i)$ and σ_2 avoids $\overline{\pi}(i)$

holds for some $i \in [r]$.

Proof. First, suppose that σ contains π . Let j be the largest number for which σ_1 contains $\underline{\pi}(j)$. Then σ_2 must contain $\overline{\pi}(j+1)$. So σ_1 contains $\underline{\pi}(i)$ for all $i \leq j$, and σ_2 contains $\overline{\pi}(i)$ for all i > j. Thus none of the C_i holds.

On the other hand, suppose that there is a permutation $\sigma \in \mathfrak{S}(312)$ that avoids π but does not satisfy any C_i . This means, for every i, either σ_1 contains $\underline{\pi}(i)$ or σ_2 contains $\overline{\pi}(i)$. Let j be the smallest number such that σ_1 does not contain $\underline{\pi}(j)$. Note that j exists and j > 1 since j = 1 implies σ_2 contains $\overline{\pi}(1) = \pi$, a contradiction. Since σ_1 does not contain $\underline{\pi}(j)$, σ_2 must contain $\overline{\pi}(j)$ (by C_j). But since σ_1 contains $\underline{\pi}(j-1)$ by minimality of j, we have found a copy of π in σ with $\underline{\pi}(j-1)$ from σ_1 and $\overline{\pi}(j)$ from σ_2 , a contradiction. (For j = 2, the number 1 in σ together with π_1 in σ_1 give π_{1*} .)

Before presenting the main result, we state a technical lemma regarding the Möbius function of certain posets. See, for example, Chapter 3 of [8] for definitions and terminologies about posets and the general treatment of the subject.

Let \mathbf{r} be the chain of r elements $0 < 1 < \cdots < r-1$. Let L_r be the poset obtained by taking the elements of $\mathbf{r} \times \mathbf{r}$ of rank 0 to r-1, i.e. the elements of L_r are the lattice points (a, b) where $a, b \ge 0$ and a + b < r. For instance, L_5 is the poset shown in Figure 3. We denote its unique minimal element (0,0) by $\hat{0}$. Let \hat{L}_r be the poset L_r with the unique maximum element $\hat{1}$ adjoined.

For a poset P, we denote the Möbius function of P by μ_P . Note that for every element $a \in \hat{L}_r$ the up-set $U(a) := \{x \in \hat{L}_r : x \geq a\}$ of a is isomorphic to $\hat{L}_{r-l(a)}$ where l(a) is the rank of a in L_r . Therefore, the problem of computing $\mu_{\hat{L}_r}(x, \hat{1})$ for every r is equivalent to computing $\mu_{\hat{L}_r}(\hat{0}, \hat{1})$ for every r, which is given by the following lemma. The proof is omitted since it is by a straightforward calculation.

Lemma 2.3. We have

$$\mu_{\hat{L}_r}(\hat{0},\hat{1}) = \begin{cases} (-1)^r, & \text{ if } r = 1,2, \\ 0, & \text{ otherwise.} \end{cases}$$

We now present the main theorem of this section.

Theorem 2.4. Let $\Pi = \{312, \pi\}$. Suppose that the statistic st : $\mathfrak{S} \to \mathbb{N}$ satisfies the condition (\dagger). Then $F_n^{st}(\Pi; q)$ satisfies

$$F_{n+1}^{st}(\Pi;q) = \sum_{k=0}^{n} q^{f(k,n-k)} \Biggl[\sum_{i=1}^{r} F_{k}^{st}(312,\underline{\pi}(i)) \cdot F_{n-k}^{st}(312,\overline{\pi}(i)) \\ - \sum_{i=1}^{r-1} F_{k}^{st}(312,\underline{\pi}(i)) \cdot F_{n-k}^{st}(312,\overline{\pi}(i+1)) \Biggr],$$

for all $n \ge 0$, where $F_0^{st}(\Pi; q) = 0$ if $\pi = \epsilon$, and 1 otherwise.

Proof. For $k \in \{0, 1, ..., n\}$ and $\Sigma \subset \mathfrak{S}$, we write $\mathfrak{S}_{n+1}^k(\Sigma)$ to denote the set of permutations $\sigma \in \mathfrak{S}_{n+1}(\Sigma)$ such that $\sigma(k+1) = 1$. In particular,

$$\mathfrak{S}_{n+1}^k(312) = \{ \sigma = 213[\sigma_1, 1, \sigma_2] : \sigma_1 \in \mathfrak{S}_k(312) \text{ and } \sigma_2 \in \mathfrak{S}_{n-k}(312) \}.$$

Fix k, and let $A_i(i \in [r])$ be the set of permutations in $\mathfrak{S}_{n+1}^k(312)$ satisfying the condition C_i . So $\mathfrak{S}_{n+1}^k(\Pi) = A_1 \cup A_2 \cup \cdots \cup A_r =: A$ by Lemma 2.2. Observe that if $i_1 < \cdots < i_k$ then

$$A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k} = A_{i_1} \cap A_{i_k} =: A_{i_1,i_k}$$

since satisfying the conditions C_{i_1}, \ldots, C_{i_k} is equivalent to satisfying the conditions C_{i_1} and C_{i_k} .

Let P be the intersection poset of A_1, \ldots, A_r , where the order is given by $A \leq B$ if $A \subseteq B$. The elements of P are A, A_i $(1 \leq i \leq r)$, and $A_{i,j}$ $(1 \leq i < j \leq r)$. We see that P is isomorphic to the set \hat{L}_r , so the Möbius function $\mu_P(T, A)$ for $T \in P$ is given by

$$\mu_P(T, A) = \begin{cases} 1 & \text{if } T = A \text{ or } A_{i,i+1} \text{ for some } i, \\ -1 & \text{if } T = A_i \text{ for some } i, \\ 0 & \text{otherwise.} \end{cases}$$

For $T \in P$, we define $g: P \to \mathbb{C}(x: x \in A)$ by

$$g(T) = \sum_{x \in T} x.$$

The Möbius inversion formula ([8], Section 3.7) implies that

$$g(A) = -\sum_{T < A} \mu_P(T, A)g(T)$$

= $\sum_{i=1}^r g(A_i) - \sum_{i=1}^{r-1} g(A_i \cap A_{i+1})$

By mapping $\sigma \mapsto q^{\operatorname{st}(\sigma)}$ for all $\sigma \in A$, g(A) is sent to $F_{n+1,k}^{\operatorname{st}}(\Pi;q) := \sum_{\sigma \in \mathfrak{S}_{n+1}^k(\Pi)} q^{\operatorname{st}(\sigma)}$. Hence,

$$F_{n+1,k}^{\mathrm{st}}(\Pi;q) = \sum_{i=1}^{r} \sum_{\sigma \in A_i} q^{\mathrm{st}(\sigma)} - \sum_{i=1}^{r-1} \sum_{\sigma \in A_i \cap A_{i+1}} q^{\mathrm{st}(\sigma)}$$
$$= q^{f(k,n-k)} \left[\sum_{i=1}^{r} \sum_{\sigma \in A_i} q^{\mathrm{st}(\sigma_1) + \mathrm{st}(\sigma_2)} - \sum_{i=1}^{r-1} \sum_{\sigma \in A_i \cap A_{i+1}} q^{\mathrm{st}(\sigma_1) + \mathrm{st}(\sigma_2)} \right],$$

where the second equality is obtained from the condition (\dagger) .

Note that $\sigma \in A_i$ iff σ_1 avoids $\underline{\pi}(i)$ and σ_2 avoids $\overline{\pi}(i)$, and $\sigma \in A_i \cap A_{i+1}$ iff σ_1 avoids $\underline{\pi}(i)$ and σ_2 avoids $\overline{\pi}(i+1)$. Thus

$$\sum_{\sigma \in A_i} q^{\operatorname{st}(\sigma_1) + \operatorname{st}(\sigma_2)} = F_k^{\operatorname{st}}(312, \underline{\pi}(i)) \cdot F_{n-k}^{\operatorname{st}}(312, \overline{\pi}(i))$$

and

$$\sum_{\sigma \in A_i \cap A_{i+1}} q^{\operatorname{st}(\sigma_1) + \operatorname{st}(\sigma_2)} = F_k^{\operatorname{st}}(312, \underline{\pi}(i)) \cdot F_{n-k}^{\operatorname{st}}(312, \overline{\pi}(i+1)).$$

Therefore

$$\begin{split} F_{n+1,k}^{\mathrm{st}}(\Pi;q) &= q^{f(k,n-k)} \Bigg[\sum_{i=1}^{r} F_{k}^{\mathrm{st}}(312,\underline{\pi}(i)) \cdot F_{n-k}^{\mathrm{st}}(312,\overline{\pi}(i)) \\ &- \sum_{i=1}^{r-1} F_{k}^{\mathrm{st}}(312,\underline{\pi}(i)) \cdot F_{n-k}^{\mathrm{st}}(312,\overline{\pi}(i+1)) \Bigg]. \end{split}$$

We get the stated result by summing the preceding equation from k = 0 to n.

Example 2.5 (q-analogues of odd Fibonacci numbers). It is well known that the permutations avoiding 312 and 1432 are counted by the Fibonacci numbers F_{2n+1} , assuming $F_1 = F_2 = 1$ (see [9] for example). Let $A_n = F_{2n+1}$. It can be shown that the A_n satisfy

$$A_{n+1} = A_n + \sum_{k=0}^{n-1} 2^{n-k-1} A_k.$$

Theorem 2.4 gives q-analogues of this relation. Here, we consider the inversion statistic.

Let $\pi = 1432 = 12[\epsilon_*, 21_*]$ and $\Pi = \{312, \pi\}$. Since $\underline{\pi}(1) = \epsilon$ and $F_n^{\text{inv}}(312, \epsilon) = 0$ for all n, Theorem 2.4 implies

$$\begin{split} F_{n+1}^{\text{inv}}(\Pi) &= \sum_{k=0}^{n} F_{k}^{\text{inv}}(\Pi) F_{n-k}^{\text{inv}}(312,321) \\ &= q^{n} F_{n}^{\text{inv}}(\Pi) + \sum_{k=0}^{n-1} q^{k} (1+q)^{n-k-1} F_{k}^{\text{inv}}(\Pi), \end{split}$$

where the last equality is by [1], Proposition 4.2.

Corollary 2.6. Let st be a statistic satisfying (\dagger) . Let $\pi_1, \ldots, \pi_r, \pi'_1, \ldots, \pi'_r$ be permutations such that $\{312, \pi_i\} \stackrel{st}{=} \{312, \pi'_i\}$ for all *i*. Set $\pi = \iota_r[\pi_{1*}, \ldots, \pi_{r*}]$ and $\pi' = \iota_r[\pi'_{1*}, \ldots, \pi'_{r*}]$. Then $\{312, \pi\}$ and $\{312, \pi'\}$ are also st-Wilf equivalent, *i.e.* $F_n^{st}(312, \pi) = F_n^{st}(312, \pi')$ for all *n*.

Proof. The proof is by induction on n. If n = 0, then the statement trivially holds. Now suppose the statement holds up to n. Then for $0 \le k \le n$ and $1 \le i \le r$, we have $F_k^{\text{st}}(312, \underline{\pi}(i)) = F_k^{\text{st}}(312, \underline{\pi}'(i))$ and $F_{n-k}^{\text{st}}(312, \overline{\pi}(i)) = F_{n-k}^{\text{st}}(312, \overline{\pi}'(i))$. Hence $F_{n+1}^{\text{st}}(312, \pi) = F_{n+1}^{\text{st}}(312, \pi')$ by comparing the terms on the right-hand side of (*).

243

As mentioned at the end of Section 1, for the inversion statistic we can choose each π'_i to be either π_i or π^t_i . Of course, this construction works for every statistic st satisfying (†) and that $\operatorname{st}(\sigma) = \operatorname{st}(\sigma^t)$ for all $\sigma \in \mathfrak{S}(312)$. Besides the inversion statistic, the descent statistic for example also possesses this property. To justify this fact, we write $\sigma = 213[\sigma_1, 1, \sigma_2] \in \mathfrak{S}(312)$ where $\sigma_1, \sigma_2 \in \mathfrak{S}$. Observe that $\sigma^t = 132[\sigma_2^t, \sigma_1^t, 1]$ and

$$\operatorname{des}(\sigma^t) = \operatorname{des}(\sigma_2^t) + \operatorname{des}(\sigma_1^t) + (1 - \delta_{0,k})$$

where $k = |\sigma_1^t| = |\sigma_1|$. The proof then proceeds by induction on $n = |\sigma|$. It is, however, not true in general that the matrix transposition preserves the descent number. For instance, if $\sigma = 2413$, then $des(\sigma) = 1$ while $des(\sigma^t) = 2$.

3. Generalization

In this section, we generalize the results from Section 2 to the case when Π consists of 312 and other patterns. We again begin with a lemma regarding the Möbius function.

Lemma 3.1. Let L be the poset $L_{r_1} \times \cdots \times L_{r_m}$ and \hat{L} the poset $L \cup \{\hat{1}\}$. Let $\mu = \mu_{\hat{L}}$ be the Möbius function on \hat{L} . Then $\mu(\hat{0}, \hat{1}) = 0$ unless each $r_i \in \{1, 2\}$, in which case $\mu(\hat{0}, \hat{1}) = (-1)^{|S|+1}$, where $S = \{i : r_i = 2\}$.

Proof. Let $a = (a_1, \ldots, a_m) \in L$. Then $\mu(\hat{0}, a) = \prod_{i=1}^m \mu_i(\hat{0}, a_i)$, where μ_i is the Möbius function of L_{r_i} . So

$$\mu(\hat{0},\hat{1}) = -\sum_{a \in L} \mu(\hat{0},a) = -\prod_{i=1}^{m} \left(\sum_{a_i \in L_{r_i}} \mu_i(\hat{0},a_i) \right).$$

Note that if $r \geq 3$, the Möbius function $\mu_{L_r}(\hat{0}, a)$ vanishes unless $a \in \{(0,0), (1,0), (0,1), (1,1)\}$, in which cases the value of $\mu_{L_r}(\hat{0}, a)$ is 1, -1, -1, 1, respectively. So $\sum_{a \in L_r} \mu_{L_r}(\hat{0}, a) = 0$ unless r = 1, 2. For r = 1, 2, it can easily be checked that $\sum_{a \in L_r} \mu_{L_r}(\hat{0}, a) = 1$ if r = 1 and -1 if r = 2. So if $r_i \geq 3$ for some i, then $\mu(\hat{0}, \hat{1}) = 0$. If each $r_i \in \{1, 2\}$, then each index i for which $r_i = 2$ contributes a -1 to the product on the right-hand side of the previous equation. Thus $\mu(\hat{0}, \hat{1}) = (-1)^{|S|+1}$.

For convenience, we introduce the following notations. Let $\Pi = \{312, \pi^{(1)}, \dots, \pi^{(m)}\}$ where $\pi^{(j)} = \iota_{r_j}[(\pi_1^{(j)})_*, \dots, (\pi_{r_j}^{(j)})_*]$. For $I = (i_1, \dots, i_m)$, we define

$$\underline{\Pi}_{I} = \{312, \underline{\pi}^{(1)}(i_{1}), \dots, \underline{\pi}^{(m)}(i_{m})\}$$

and

$$\overline{\Pi}_I = \{312, \overline{\pi^{(1)}}(i_1), \dots, \overline{\pi^{(m)}}(i_m)\}\$$

A generalization of Theorem 2.4 can be stated as the following.

Theorem 3.2. Suppose that the statistic $st : \mathfrak{S} \to \mathbb{N}$ satisfies the condition (†). Let $\Pi = \{312, \pi^{(1)}, \ldots, \pi^{(m)}\}$ where $\pi^{(i)} = \iota_{r_i}[(\pi_1^{(i)})_*, \ldots, (\pi_{r_i}^{(i)})_*]$. Then $F_0^{st}(\Pi) = 0$ if $\pi_i = \epsilon$ for some *i* and 1 otherwise, and for $n \ge 1$ the st-polynomial $F_n^{st}(\Pi; q)$ satisfies

$$F_{n+1}^{st}(\Pi;q) = \sum_{k=0}^{n} q^{f(k,n-k)} \left[\sum_{S \subseteq [m]} (-1)^{|S|} \sum_{\substack{I=(i_1,\dots,i_m):\\1 \le i_j \le r_j - \delta_j}} F_k^{st}(\underline{\Pi}_I) \cdot F_{n-k}^{st}(\overline{\Pi}_{I+\delta}) \right],$$

where $\delta = (\delta_1, \ldots, \delta_m)$ with $\delta_j = 1$ if $j \in S$ and 0 if $j \notin S$.

Proof. Recall that by Lemma 2.2 a permutation $\sigma = 213[\sigma_1, 1, \sigma_2] \in \mathfrak{S}(312)$ avoids $\pi^{(j)}$ iff σ satisfies the condition

 (C_i^j) : σ_1 avoids $\underline{\pi^{(j)}}(i)$ and σ_2 avoids $\overline{\pi^{(j)}}(i)$

for some $i \in [r_j]$. So $\sigma \in \mathfrak{S}(312)$ belongs to $\mathfrak{S}(\Pi)$ iff, for every j, there is an $i \in [r_j]$ for which σ satisfies (C_i^j) . Fix k and let $\mathfrak{S}_{n+1}^k(312)$ be as in the proof of Theorem 2.4. Let A_i^j be the set of $\pi^{(j)}$ -avoiding permutations in $\mathfrak{S}_{n+1}^k(312)$ satisfying the condition (C_i^j) . For $I = (i_1, \ldots, i_m) \in [r_1] \times [r_2] \times \cdots \times [r_m]$, we define the set A_I to be

$$A_I = A_{i_1, i_2, \dots, i_m} := A_{i_1}^1 \cap A_{i_2}^2 \cap A_{i_m}^m.$$

So $\mathfrak{S}_{n+1}^k(\Pi)$ is the union

$$\mathfrak{S}_{n+1}^k(\Pi) = \bigcup_{i_1,\dots,i_m} A_{i_1,i_2,\dots,i_m},$$

where the union is taken over all *m*-tuples $I = (i_1, \ldots, i_m)$ in $[r_1] \times [r_2] \times \cdots \times [r_m]$. Let \hat{P}_j be the intersection poset of $A_1^j, \ldots, A_{r_j}^j$, and let P_j be the poset $\hat{P}_j \setminus \{A^j\}$, where $A^j = A_1^j \cup \cdots \cup A_{r_j}^j$ is the unique maximum element of \hat{P}_j . Recall that P_j is isomorphic to L_{r_j} . Let P be the intersection poset of the A_I . The elements of P are the unique maximal element $A = \mathfrak{S}_{n+1}^k(\Pi)$ and

$$T = T^1 \cap T^2 \cap \dots \cap T^m,$$

where each T^j is an element of P_j . Thus P is isomorphic to $L_{r_1} \times \cdots \times L_{r_m} \cup \{\hat{1}\}$. For $S \subseteq [n]$, we say that an element $T \in P$ has type S if

 $T^{j} = A_{i}^{j}$ for some *i* when $j \notin S$ and $T^{j} = A_{i}^{j} \cap A_{i+1}^{j}$ for some *i* when $j \in S$. Using Lemma 3.1, we know that the value of $\mu_{P}(T, A)$ where $T = T^{1} \cap T^{2} \cap \cdots \cap T^{m} \neq A$ is

$$\mu_P(T, A) = \begin{cases} (-1)^{|S|+1}, & \text{if } T \text{ has type } S, \\ 0, & \text{otherwise.} \end{cases}$$

For $T \in P$, we define $g: P \to \mathbb{C}(x: x \in A)$ by $g(T) = \sum_{x \in T} x$, so that

$$g(A) = \sum_{S \subseteq [n]} (-1)^{|S|} \sum_{T \text{ has type } S} g(T)$$

by the Möbius inversion formula.

Now, by the definition of type S, we have

$$\sum_{T \text{ has type } S} g(T) = \sum_{\substack{i_1, \dots, i_m:\\ 1 \le i_j \le r_j - \delta_j}} g\left(\bigcap_{j \notin S} A^j_{i_j} \cap \bigcap_{j \in S} (A^j_{i_j} \cap A^j_{i_j+1})\right),$$

where $\delta_j = 1$ if $j \in S$ and 0 if $j \notin S$. Recall that $\sigma \in A_{i_j}^j$ iff σ_1 avoids $\underline{\pi^{(j)}}(i_j)$ and σ_2 avoids $\overline{\pi^{(j)}}(i_j)$, and $\sigma \in A_{i_j}^j \cap A_{i_j+1}^j$ iff σ_1 avoids $\underline{\pi^{(j)}}(i_j)$ and σ_2 avoids $\overline{\pi^{(j)}}(i_j+1)$. Therefore, by mapping $\sigma \mapsto q^{\operatorname{st}(\sigma)}$, we have

$$g\left(\bigcap_{j\notin S} A_{i_j}^j \cap \bigcap_{j\in S} (A_{i_j}^j \cap A_{i_j+1}^j)\right) \mapsto q^{f(k,n-k)} F_k^{\mathrm{st}}(312, \underline{\pi^{(1)}}(i_1), \dots, \underline{\pi^{(m)}}(i_m)) \\ \cdot F_{n-k}^{\mathrm{st}}(312, \overline{\pi^{(1)}}(i_1+\delta_1), \dots, \overline{\pi^{(m)}}(i_m+\delta_m)).$$

Therefore,

$$F_{n+1,k}^{\mathrm{st}}(\Pi;q) = q^{f(k,n-k)} \left[\sum_{S \subseteq [m]} (-1)^{|S|} \sum_{\substack{i_1,\dots,i_m:\\1 \le i_j \le r_j - \delta_j}} F_k^{\mathrm{st}}(\underline{\Pi}_I) \cdot F_{n-k}^{\mathrm{st}}(\overline{\Pi}_{I+\delta}) \right],$$

and we are done.

Example 3.3. Let $\Pi = \{312, \pi^{(1)}, \pi^{(2)}\}$ where $\pi^{(1)} = 2314 = 12[12_*, \epsilon_*]$ and $\pi^{(2)} = 2143 = 12[1_*, 1_*]$. We want to compute $a_n = F_n^{\text{inv}}(\Pi)$ by using Theorem 3.2. There are four possibilities of $S \subseteq \{1, 2\}$, and for each possibility the following table shows the appearing terms, where δ is again the Kronecker delta function.

$S = \emptyset$:	$F_k^{\text{inv}}(312, 12, 1) \cdot F_{n-k}^{\text{inv}}(\Pi)$	$= \delta_{0,k} \cdot a_{n-k}$
	$F_k^{\text{inv}}(312,2314,1) \cdot F_{n-k}^{\text{inv}}(312,1,2143)$	$= \delta_{0,k} \cdot \delta_{0,n-k}$
	$F_k^{\text{inv}}(312, 12, 2143) \cdot F_{n-k}^{\text{inv}}(312, 2314, 21)$	= 1
	$F_k^{\text{inv}}(\Pi) \cdot F_{n-k}^{\text{inv}}(312, 1, 21)$	$= \delta_{0,n-k} \cdot a_k$
$S = \{1\}:$	$F_k^{\text{inv}}(312, 12, 1) \cdot F_{n-k}^{\text{inv}}(312, 1, 2143)$	$= \delta_{0,k} \cdot \delta_{0,n-k}$
	$F_k^{\text{inv}}(312, 12, 2143) \cdot F_{n-k}^{\text{inv}}(312, 1, 21)$	$=\delta_{0,n-k}$
$S = \{2\}:$	$F_k^{\text{inv}}(312, 12, 1) \cdot F_{n-k}^{\text{inv}}(312, 2314, 21)$	$=\delta_{0,k}$
	$F_k^{\text{inv}}(312,2314,1) \cdot F_{n-k}^{\text{inv}}(312,1,21)$	$= \delta_{0,k} \cdot \delta_{0,n-k}$
$S = \{1, 2\}:$	$F_k^{\text{inv}}(312,21,1) \cdot F_{n-k}^{\text{inv}}(312,1,21)$	$= \delta_{0,k} \cdot \delta_{0,n-k}$

Hence the a_n satisfy

$$a_{n+1} = \sum_{q=0}^{n} q^{k} \left[\delta_{0,k} a_{n-k} + \delta_{0,n-k} \cdot a_{k} + 1 - \delta_{0,k} - \delta_{0,n-k} \right]$$

= $(1+q^{n})a_{n} + \frac{1-q^{n+1}}{1-q} - (1+q^{n})$
= $(1+q^{n})a_{n} + q \left(\frac{1-q^{n-1}}{1-q}\right).$

In particular, by setting q = 1 we get $a_{n+1} = 2a_n + n - 1$ with $a_0 = a_1 = 1$. Thus

$$|\mathfrak{S}_n(312, 2314, 2143)| = 2^n - n.$$

The following construction of st-Wilf equivalences can be extracted from Theorem 3.2. A proof of this corollary uses a similar argument to that of Corollary 2.6 and is omitted here.

Corollary 3.4. Let st be a statistic satisfying (†). Let $\pi_i^{(j)}, \pi_i^{\prime(j)}, 1 \leq j \leq m, 1 \leq i \leq r_m$, be permutations such that

$$\{312, \pi_{i_1}^{(1)}, \dots, \pi_{i_m}^{(m)}\} \stackrel{st}{\equiv} \{312, \pi_{i_1}^{\prime(1)}, \dots, \pi_{i_m}^{\prime(m)}\}$$

for all m-tuples $I = (i_1, \ldots, i_m) \in [r_1] \times \cdots \times [r_m]$. Set $\pi^{(j)} = \iota_r[\pi_{1*}^{(j)}, \ldots, \pi_{r_j*}^{(j)}]$ and $\pi'^{(j)} = \iota_r[\pi_{1*}^{(j)}, \ldots, \pi_{r_j*}^{(j)}]$. Then $\Pi = \{312, \pi^{(1)}, \ldots, \pi^{(m)}\}$ and $\Pi' = \{312, \pi^{(1)}, \ldots, \pi^{(m)}\}$ are st-Wilf equivalent.

References

 T. Dokos, T. Dwyer, B. P. Johnson, B. E. Sagan, and K. Selsor (2012). Permutation patterns and statistics. *Discrete Mathematics* **312**(8) 2760– 2775. MR2945168

- [2] S. Elizalde (2011). Fixed points and excedances in restricted permutations. *Electron. J. Combin.* 18(2). MR2880679
- [3] S. Elizalde (2004). Multiple pattern-avoidance with respect to fixed points and excedances. *Electron. J. Combin.* 11(1). MR2097317
- [4] S. Elizalde and I. Pak (2004). Bijections for refined restricted permutations. J. Combin. Theory A 105(2) 207–219. MR2046080
- [5] T. Mansour and A. Vainshtein (2001). Restricted 132-Avoiding Permutations. Adv. in Appl. Math. 26(3) 258–269. MR1818747
- [6] A. Robertson, D. Saracino, and D. Zeilberger (2003). Refined Restricted Permutations. Annals of Combin. 6(3) 427–444. MR1980351
- [7] B. E. Sagan and C. D. Savage (2012). Mahonian Pairs. J. Combin. Theory Ser. A 119(3) 526–545. MR2871748
- [8] R. P. Stanley (2012). Enumerative Combinatorics Vol. 1, 2nd ed. Cambridge University Press, Cambridge. MR2868112
- J. West (1996). Generating trees and forbidden subsequences. Discrete Mathematics 157(1-3) 363-374. MR1417303

WUTTISAK TRONGSIRIWAT DEPARTMENT OF MATHEMATICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA 02139 USA *E-mail address:* wuttisak@mit.edu

Received 29 January 2014