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Signed arc permutations
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Arc permutations, which were originally introduced in the study
of triangulations and characters, have recently been shown to have
interesting combinatorial properties. The first part of this paper
continues their study by providing signed enumeration formulas
with respect to their descent set and major index. Next, we gener-
alize the notion of arc permutations to the hyperoctahedral group
in two different directions. We show that these extensions to type
B carry interesting analogues of the properties of type A arc per-
mutations, such as characterizations by pattern avoidance, and el-
egant unsigned and signed enumeration formulas with respect to
the flag-major index.
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1. Introduction

The enumeration of permutations taking into account their sign, usually
referred to as signed enumeration, was studied for subsets of the sym-
metric group Sn in the seminal paper of Simion and Schmidt on pattern-
avoiding permutations [24]. Among many other instances of sign enumera-
tion in the literature, we highlight an elegant formula for the signed descent
number enumerator conjectured by Loday [20] and proved by Désarmenien
and Foata [15] and by Wachs [25]. Type B analogues were given later by
Reiner [22].

In analogy to MacMahon’s well-known product formula enumerating
permutations in Sn with respect to the major index, a factorial-type for-
mula for the signed major index enumerator on Sn was given by Gessel and
Simion [25, Cor. 2]. For generalizations to other groups, see [3, 7, 13, 10,
9, 12]. In this paper we study signed major index enumerators and other
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related polynomials for arc permutations, both in the symmetric group Sn

and in the hyperoctahedral group Bn.
Arc permutations were introduced in [5] as a subset of the symmetric

group. These permutations play an important role in the study of flip graphs
of polygon triangulations and associated affine Weyl group actions. It was
shown in [16] that arc permutations can be characterized in terms of pattern
avoidance. A descent-set-preserving map from arc permutations to Young
tableaux was constructed in [16] to deduce a conjectured character formula
of Regev.

In this paper we propose two different generalizations of the notion of arc
permutations to the hyperoctahedral group. These generalizations, which we
call signed arc permutations and B-arc permutations, carry known proper-
ties of unsigned arc permutations and reveal new ones. In particular, we give
characterizations of both generalizations by forbidden patterns (see Theo-
rems 4.4 and 5.4), in analogy to the results from [16] in the unsigned case.
Additionally, we show in Subsection 5.3 that both unsigned arc permutations
and B-arc permutations may be characterized by their canonical expressions.
This characterization will be used to derive the signed and unsigned flag-
major index enumerators for B-arc permutations. In the case of signed arc
permutations, different tools are used to derive similar formulas in Section 4.

For both generalizations of arc permutations to type B, we obtain nice
product formulas for their descent set enumerators (see Theorems 4.5 and
5.10). Even though the descent set has a different distribution on these
two definitions, it turns out that they both carry the same unsigned and
signed flag-major index enumerators (see Corollary 6.1). This surprising
phenomenon deserves further study.

2. Arc permutations in the symmetric group

2.1. Definition and basic properties

We start by reviewing two definitions and a result from [16]. Recall that an
interval of Zn is a set of the form {a, a+1, . . . , b} or {b, b+1, . . . , n, 1, 2, . . . , a}
where 1 ≤ a ≤ b ≤ n.

Definition 2.1. A permutation π ∈ Sn is an arc permutation if, for every
1 ≤ j ≤ n, the first j letters in π form an interval in Zn. Denote by An the
set of arc permutations in Sn.

A permutation π ∈ An is left-unimodal if, for every 1 ≤ j ≤ n, the first
j letters in π form an interval in Z. Denote by Ln the set of left-unimodal
permutations in Sn.
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Example 1. We have that 12543 ∈ A5, but 125436 /∈ A6, since {1, 2, 5} is
an interval in Z5 but not in Z6.

It is easy to show that |An| = n2n−2 for n ≥ 2 [16]. Arc permutations
can be characterized in terms of pattern avoidance, as those permutations
avoiding the eight patterns τ ∈ S4 with |τ(1)− τ(2)| = 2.

Theorem 2.2 ([16]).

An = Sn(1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231).

2.2. Enumeration

For a permutation π ∈ Sn, recall the definition of its descent set

Des(π) := {i : π(i) > π(i+ 1)},

its major index

maj(π) :=
∑

i∈Des(π)

i,

and its inversion number

inv(π) := #{i < j : π(i) > π(j)}.

For a set D = {i1, . . . , ik} denote xD = xi1 · · ·xik .
Theorem 2.3. For every n ≥ 2,∑

π∈An

tinv(π)xDes(π)

=

n−1∏
i=1

(1 + tixi) +

n−2∑
j=1

(
(tj(n−j)xj + tn−j−1xj+1)

×
j−1∏
i=1

(1 + tixi)

n−1∏
i=j+2

(1 + tn−ixi)

)
.

Proof. We separate permutations π ∈ An into those that are left-unimodal
and those that are not.

Left-unimodal permutations are in bijection with subsets of [n− 1], the
bijection given by taking their descent set. Thus, such permutations are
determined by choosing, for each 1 ≤ i ≤ n − 1, whether π(i) > π(i + 1)
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or π(i) < π(i + 1). In the first case, we introduce a descent in position i,
and inversions between πi+1 and all the preceding entries of π, contributing
tixi to the generating function, while in the second case no descents or
inversions are created. It follows that left-unimodal permutations contribute∏n−1

i=1 (1 + tixi) to the generating function.
If π is not left-unimodal, let j be the largest such that {π(1), . . . , π(j)}

is an interval in Z. Note that 1 ≤ j ≤ n− 2, and that π(j + 1) ∈ {1, n}.
If π(j + 1) = 1, then the first j entries in π are larger than the last

n − j entries, creating j(n − j) inversions and a descent in position j. For
each i with 1 ≤ i ≤ j − 1 or j + 2 ≤ i ≤ n − 1, we have the choice of
whether π(i) > π(i + 1) or π(i) < π(i + 1). For 1 ≤ i ≤ j − 1, the first
option introduces a descent in position i and inversions between πi+1 and
the entries to its left, contributing tixi. Similarly, for j + 2 ≤ i ≤ n− 1, the
choice π(i) > π(i + 1) introduces inversions between πi and the entries to
its right, contributing tn−ixi. In total, the contribution of non-left-unimodal
permutations with π(j + 1) = 1 is

tj(n−j)xj

j−1∏
i=1

(1 + tixi)

n−1∏
i=j+2

(1 + tn−ixi).

If π(j+1) = n, the argument is similar, except that instead of a descent
in position j there is a descent in position j + 1, and there are inversions
between π(j+1) and the entries to its right, so the contribution in this case
is

tn−j−1xj+1

j−1∏
i=1

(1 + tixi)

n−1∏
i=j+2

(1 + tn−ixi).

Substituting t = 1 in Theorem 2.3 we recover the following formula
from [16]:

(1)
∑
π∈An

xDes(π) =

n−1∏
i=1

(1 + xi)

(
1 +

n−2∑
j=1

xj + xj+1

(1 + xj)(1 + xj+1)

)

for every n ≥ 2. It is now easy to obtain the (des,maj)-enumerator for arc
permutations. Recall the notation [n]q = 1 + q + q2 + · · ·+ qn−1 = 1−qn

1−q .

Corollary 2.4. For every n ≥ 2,

∑
π∈An

tdes(π)qmaj(π) =

n−2∏
i=2

(1 + tqi)
(
1 + 2tq[n− 1]q + t2qn

)
.
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In particular, ∑
π∈An

tdes(π) = (1 + t)n−3
(
1 + 2(n− 1)t+ t2

)
.

Proof. Substituting xi = tqi for 1 ≤ i ≤ n− 1 in Equation (1), we get

∑
π∈An

tdes(π)qmaj(π) =

n−1∏
i=1

(1 + tqi)

(
1 +

n−2∑
j=1

tqj(1 + q)

(1 + tqj)(1 + tqj+1)

)
.

Using that

tqj

(1 + tqj)(1 + tqj+1)
=

1

1− q

(
1

1 + tqj+1
− 1

1 + tqj

)
,

the summation on the right-hand side becomes a telescopic sum that sim-
plifies to

(1 + q)tq[n− 2]q
(1 + tq)(1 + tqn−1)

,

from where the first formula in the statement follows. The second formula
is obtained by substituting q = 1.

Now we turn to signed enumeration of arc permutations. Recall that
sign(π) = (−1)inv(π). Setting t = −1 in Theorem 2.3, we get∑

π∈An

sign(π)xDes(π)(2)

=

n−1∏
i=1

(1 + (−1)ixi) +

n−2∑
j=1

(
((−1)j(n−j)xj + (−1)n−j−1xj+1)

×
j−1∏
i=1

(1 + (−1)ixi)

n−1∏
i=j+2

(1 + (−1)n−ixi)

)
.

When n is even, this formula simplifies to∑
π∈An

sign(π)xDes(π)(3)

=

n−1∏
i=1

(1 + (−1)ixi)

(
1 +

n−2∑
j=1

(−1)j(xj − xj+1)

(1 + (−1)jxj)(1 + (−1)j+1xj+1)

)
.
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Theorem 2.5. For every n ≥ 2

∑
π∈An

qmaj(π) = [n]q

n−2∏
i=1

(1 + qi),

∑
π∈An

sign(π)qmaj(π) = [n](−1)n−1q

n−2∏
i=1

(1 + (−q)i).

Proof. Substituting t = 1 in Corollary 2.4 gives the first formula, which

already appears in [16, Cor. 7]. To prove the second formula, we consider

two cases depending on the parity of n.

If n is even, substituting xi = qi for 1 ≤ i ≤ n − 1 in Equation (3)

gives

∑
π∈An

sign(π)qmaj(π) =

n−1∏
i=1

(1 + (−q)i)

(
1 +

n−2∑
j=1

(−1)j(qj − qj+1)

(1 + (−q)j)(1 + (−q)j+1)

)
.

Letting z = −q, the formula becomes

(4)

n−1∏
i=1

(1 + zi)

(
1 +

n−2∑
j=1

zj + zj+1

(1 + zj)(1 + zj+1)

)
,

where the sum can be simplified as

1 + z

1− z

n−2∑
j=1

(
1

1 + zj+1
− 1

1 + zj

)

=
1 + z

1− z

(
1

1 + zn−1
− 1

1 + z

)
=

z − zn−1

(1− z)(1 + zn−1)
,

and so Equation (4) equals

n−1∏
i=1

(1+zi)

(
1 +

z − zn−1

(1− z)(1 + zn−1)

)
=

n−2∏
i=1

(1+zi)[n]z = [n]−q

n−2∏
i=1

(1+(−q)i).

If n is odd, substituting xj = qj in Equation (2) gives
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∑
π∈An

sign(π)qmaj(π)(5)

=

n−1∏
i=1

(1 + (−q)i) +

n−2∑
j=1

(
(qj + (−1)jqj+1)

×
j−1∏
i=1

(1 + (−q)i)

n−1∏
i=j+2

(1− (−q)i)

)

=

n−1∏
i=1

(1 + zi) +

n−2∑
j=1

(
((−1)jzj − zj+1)

j−1∏
i=1

(1 + zi)

n−1∏
i=j+2

(1− zi)

)
,

letting z = −q again. Writing (−1)jzj − zj+1 = (1− zj+1)− (1− (−1)jzj),
the summation on the right-hand side of Equation (5) becomes a telescopic
sum

n−2∑
j=1

(
j−1∏
i=1

(1 + zi)

n−1∏
i=j+1

(1− zi)− (1− (−1)jzj)

j−1∏
i=1

(1 + zi)

n−1∏
i=j+2

(1− zi)

)(6)

=

n−1∏
i=2

(1− zi) +

n−3∑
j=2
j even

(
2zj

j−1∏
i=1

(1 + zi)

n−1∏
i=j+2

(1− zi)

)
−

n−2∏
i=1

(1 + zi),

noting that −(1− (−1)jzj)+ (1+ zj) = 2zj when j is even and 0 otherwise.
Now, writing

2zj =
(1 + zj)(1 + zj+1)− (1− zj)(1− zj+1)

1 + z
,

the summation in the middle of Equation (6) also becomes a telescopic sum

1

1 + z

n−3∑
j=2
j even

(
j+1∏
i=1

(1 + zi)

n−1∏
i=j+2

(1− zi)−
j−1∏
i=1

(1 + zi)

n−1∏
i=j

(1− zi)

)

=
1

1 + z

(
− (1 + z)

n−1∏
i=2

(1− zi) + (1− zn−1)

n−2∏
i=1

(1 + zi)

)

= −
n−1∏
i=2

(1− zi) + (1− zn−1)

n−2∏
i=2

(1 + zi).
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With these simplifications, Equation (5) equals

n−1∏
i=1

(1+ zi)+

n−1∏
i=2

(1− zi)−
n−1∏
i=2

(1− zi)+ (1− zn−1)

n−2∏
i=2

(1 + zi)−
n−2∏
i=1

(1 + zi)

=

n−2∏
i=1

(1 + zi)

(
1 + zn−1 +

1− zn−1

1 + z
− 1

)

= [n]−z

n−2∏
i=1

(1 + zi) = [n]q

n−2∏
i=1

(1 + (−q)i).

A different approach to prove Theorem 2.5 will be described in Sec-
tion 5.3.

3. The hyperoctahedral group: preliminaries and notation

The hyperoctahedral group Bn may be realized as a group of signed permu-
tations as follows. We denote by Bn the group of all bijections π of the set
[±n] = {−1,−2, . . . ,−n, 1, 2, . . . , n} onto itself such that

π(−a) = −π(a)

for every 1 ≤ a ≤ n, with composition as the group operation. This group
is usually known as the group of signed permutations on {1, 2, . . . , n}, or as
the hyperoctahedral group of rank n. We identify Sn as a subgroup of Bn,
and Bn as a subgroup of S2n in the natural ways.

If π ∈ Bn, we write π = [a1, . . . , an] to mean that π(i) = ai for 1 ≤
i ≤ n. The Coxeter generating set of Bn is S = {σi : 0 ≤ i < n}, where
σ0 = [−1, 2, 3, 4, . . . , n] and, for 1 ≤ i < n, σi is the adjacent transposition
(i, i+ 1).

We recall some statistics on Bn. For π ∈ Bn, we say that i is a descent
in π if π(i) > π(i+1) with respect to the order −1 < −2 < · · · < −n < 1 <
2 < · · · < n. We use the following standard notation:

Des(π) := {1 ≤ i ≤ n− 1 : π(i) > π(i+ 1)},
des(π) := |Des(π)|,
maj(π) :=

∑
i∈Des(π)

i,

Neg(π) := {1 ≤ i ≤ n : π(i) < 0},
neg(π) := |Neg(π)|.
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Two more statistics, defined in [4] and [1], respectively, are the flag-major
index

fmaj(π) := 2 ·maj(π) + neg(π),

and flag-descent number

fdes(π) := 2 · des(π) + δ(π(1) < 0),

where δ(a) := 1 if the event a occurs and zero otherwise.
The statistics fmaj and fdes have been shown to play a significant role

in the study of Bn, which is analogous to the role of the classical descent
statistics on Sn. Some examples in the literature are [2, 3, 7, 8, 14, 17, 18, 19].

4. Signed arc permutations

4.1. Definition and basic properties

In this section we introduce our first generalization of arc permutations to
type B.

Definition 4.1. A permutation π = [π(1), . . . , π(n)] ∈ Bn is a signed arc
permutation if, for every 1 < i < n,

• the prefix {|π(1)|, . . . , |π(i)|} forms an interval in Zn; and
• the sign of π(i) is positive if |π(i)| − 1 ∈ {|π(1)|, . . . , |π(i − 1)|} and

negative if |π(i)|+ 1 ∈ {|π(1)|, . . . , |π(i− 1)|} (with addition in Zn).

Denote by As
n the set of signed arc permutations in Bn.

Note that there is no restriction on the signs of π(1) and π(n).

Example 2. We have that [2,−1, 3] ∈ As
3 and [−3,−2, 4, 1] ∈ As

4, but
[−2, 1, 3] /∈ As

3.

For π ∈ Bn, let |π| = |π(1)||π(2)| . . . |π(n)| ∈ Sn. Note that if π ∈ As
n,

then |π| ∈ An.

Remark 4.2. The apparent ad-hoc determination of the signs in the sec-
ond part of Definition 4.1 surprisingly results in a coherent combinatorial
structure to be described below, which further leads to interesting quasi-
symmetric functions of type B to be discussed in a forthcoming paper.

Claim 4.3. For n ≥ 1, |As
n| = n2n.

Proof. The equality is trivial for n = 1, so we may assume that n ≥ 2.
From every σ ∈ An, there are four permutations π ∈ As

n such that |π| = σ,
since all the signs but those of the first and the last entry are determined.
It follows that |As

n| = 4|An| = n2n.
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4.2. Characterization by pattern avoidance

Let us recall the standard definition of pattern avoidance in the hyperoctahe-
dral group. Given π = [π(1), . . . , π(n)] ∈ Bn and σ = [σ(1), . . . , σ(k)] ∈ Bk,
we say that π contains the pattern σ if there exist indices 1 ≤ i1 < · · · <
ik ≤ n such that

• π(ij) and σ(j) have the same sign for all 1 ≤ j ≤ k, and
• |π(i1)||π(i2)| . . . |π(ik)| is in the same relative order as |σ(1)||σ(2)| . . .
|σ(k)|.

In this case, π(i1)π(i2) . . . π(ik) is called an occurrence of σ. Otherwise,
we say that π avoids σ. For example, [−3, 2, 5,−1, 4] contains the pattern
[−2,−1, 3], because the subsequence −3,−1, 4 is an occurrence of this pat-
tern, but it avoids the pattern [2, 1, 3].

In analogy with Theorem 2.2 for arc permutations in Sn, we can char-
acterize signed arc permutations in terms of pattern avoidance.

Theorem 4.4. A permutation π ∈ Bn is a signed arc permutation if and
only if it avoids the following 24 patterns:

[±1,−2,±3], [±1, 3,±2], [±2,−3,±1], [±2, 1,±3], [±3,−1,±2], [±3, 2,±1].

We say that a triple (a, b, c) of different integers in {1, 2, . . . , n} is a
clockwise triple if either a < b < c, b < c < a or c < a < b. Otherwise, we
say that it is a counterclockwise triple. The name comes from the direction
determined by the triple (a, b, c) in the circle where the entries 1, 2, . . . , n
have been written in clockwise order.

Note that the patterns listed in Theorem 4.4 are precisely those permu-
tations in B3 of the form [±a,−b,±c] where (a, b, c) is a clockwise triple,
and [±a, b,±c] where (a, b, c) is a counterclockwise triple.

Proof of Theorem 4.4. In this proof, addition and subtraction are in Zn, and
so are intervals.

Let π ∈ Bn contain an occurrence π(i1)π(i2)π(i3) of one of the 24 listed
patterns. Suppose for contradiction that π ∈ As

n.
If π(i2) > 0, then (|π(i1)|, |π(i2)|, |π(i3)|) is a counterclockwise triple.

Since π ∈ As
n and π(i2) is positive, the interval {|π(1)|, . . . , |π(i2 − 1)|}

contains |π(i2)| − 1 and |π(i1)|, but not |π(i2)|. Thus, it must also contain
|π(i3)|, which is a contradiction.

Similarly, if π(i2) < 0, then (|π(i1)|, |π(i2)|, |π(i3)|) is a clockwise triple,
and the interval {|π(1)|, . . . , |π(i2 − 1)|} contains |π(i2)|+1 and |π(i1)|, but
not |π(i2)|. Thus, it must also contain |π(i3)|, again a contradiction.
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To prove the converse, suppose now that π ∈ Bn is not a signed arc

permutation. Let i be the smallest index where the conditions from Defi-

nition 4.1 fail. This means that either {|π(1)|, . . . , |π(i)|} is not an interval

in Zn, or π(i) has the wrong sign. In the first case, neither of the values

|π(i)| ± 1 is in the interval {|π(1)|, . . . , |π(i − 1)|}. In the second case, ei-

ther π(i) > 0 but |π(i)| − 1 /∈ {|π(1)|, . . . , |π(i − 1)|}, or π(i) < 0 but

|π(i)|+ 1 /∈ {|π(1)|, . . . , |π(i− 1)|}.
If π(i) > 0 (respectively, π(i) < 0), let j > i be such that |π(j)| =

|π(i)| − 1 (respectively, |π(j)| = |π(i)| + 1). Then (|π(1)|, |π(i)|, |π(j)|) is a

counterclockwise (respectively, clockwise) triple, so π(1)π(i)π(j) is an oc-

currence of one of the 24 listed patterns.

4.3. Descent set enumerators

Next we describe the joint distribution of the descent set and the set of

negative entries on signed arc permutations.

Theorem 4.5. For every n ≥ 1,

(7)∑
π∈As

n

xDes(π)yNeg(π) =

n∏
i=1

(1 + xi−1yi)

(
1 +

n−1∑
j=1

(xj + xj−1yj)(1 + yj+1)

(1 + xj−1yj)(1 + xjyj+1)

)
,

and ∑
π∈As

n

tinv(|π|)xDes(π)yNeg(π)(8)

=

n∏
i=1

(1 + ti−1xi−1yi) +

n−1∑
j=1

(
(xj + tj−1xj−1yj)(t

j(n−j) + tn−j−1yj+1)

×
j−1∏
i=1

(1 + ti−1xi−1yi)

n∏
i=j+2

(1 + tn−ixi−1yi)

)
,

with the convention that x0 := 1.

Proof. Since Equation (7) follows from Equation (8) by setting t = 1 and

simplifying, it suffices to prove Equation (8).

If π ∈ As
n is such that |π| is left-unimodal, then |π(n)| ∈ {1, n}. Let

us first consider signed arc permutations where |π| is left-unimodal and

π(n) ∈ {−1, n}. The contribution of such permutations to the generating
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function is
n∏

i=1

(1 + ti−1xi−1yi).

Indeed, such permutations are uniquely determined by a choice of sign of
π(i) for 1 ≤ i ≤ n. If π(i) is negative, it creates a descent with π(i − 1)
(for i > 1) and inversions in |π| with all the preceding entries, contributing
a factor ti−1xi−1yi. If π(i) is positive, then no descent or inversions with
preceding entries are created.

Let us now consider the remaining permutations π ∈ As
n, and let j+1 be

the first index where π fails to be in the set considered above. In other words,
if |π| is not left-unimodal, j is the largest such that {|π(1)|, . . . , |π(j)|} is an
interval in Z, and note that 1 ≤ j ≤ n−2 in this case. On the other hand, if
|π| is left-unimodal but π(n) ∈ {1,−n}, then j = n− 1. Consider two cases
depending on the sign of π(j + 1).

• If π(j+1) is positive, we must have π(j+1) = 1. In this case, the first
j entries in |π| are larger than the last n− j entries, creating j(n− j)
inversions. The contribution of permutations where π(j) is positive as
well (and so π(j) = n) is then

(9) tj(n−j)xj ·
j−1∏
i=1

(1 + ti−1xi−1yi)

n∏
i=j+2

(1 + tn−ixi−1yi).

To see this, first notice that the factor xj records the descent in position
j. For 1 ≤ i ≤ j − 1, each negative entry π(i) creates a descent with
π(i−1) and inversions with all the preceding entries in |π|, contributing
ti−1xi−1yi. For j + 2 ≤ i ≤ n, each negative entry π(i) creates a
descent with π(i − 1) and inversions with all the following entries in
|π|, contributing tn−ixi−1yi. In both cases, positive entries π(i) just
contribute a factor of 1.
The contribution of permutations where π(j) is negative is given by
replacing tj(n−j)xj with tj(n−j)tj−1xj−1yj in Equation (9), since now
π has a descent in position j− 1, and |π(j)| creates inversions with all
the preceding entries in |π|.

• If π(j+1) is negative, we must have π(j+1) = −n. In this case, the con-
tribution of permutations where π(j) is negative (and so π(j) = −1)
is given by replacing tj(n−j)xj with tj−1tn−j−1xj−1yjyj+1 in Equa-
tion (9). Indeed, π has a descent in position j− 1, and there are inver-
sions in |π| between |π(j)| and all the preceding entries, and between
|π(j + 1)| and all the following entries.
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Similarly, the contribution of permutations where π(j) is positive is

obtained by replacing tj(n−j)xj with tn−j−1xjyj+1 in Equation (9),

since π has a descent in position j − 1, and there are inversions in |π|
between |π(j)| and all the preceding entries, and between |π(j + 1)|
and all the following entries.

Adding all of the above contributions we obtain the stated formula.

4.4. The (fdes, fmaj)-enumerator

Corollary 4.6. For every n ≥ 2,∑
π∈As

n

tfdes(π)qfmaj(π)

= (1 + tq)
(
1 + tq(1 + q) + 2t2q3[2n− 3]q + t3q2n(1 + q) + t4q2n+2

)
×

n−1∏
i=3

(1 + t2q2i−1).

In particular,∑
π∈As

n

tfdes(π) = (1 + t)(1 + t2)n−3(1 + 2t+ (4n− 6)t2 + 2t3 + t4).

Proof. Substituting y1 = tq, yi = q for 2 ≤ i ≤ n, and xi = t2q2i for

1 ≤ i ≤ n− 1 in Equation (7), we get∑
π∈As

n

tfdes(π)qfmaj(π)

= (1 + tq)

n∏
i=2

(1 + t2q2i−1)

×
(
1 +

tq(1 + q)

1 + t2q3
+

n−1∑
j=2

(1 + q2)t2q2j−1

(1 + t2q2j−1)(1 + t2q2j+1)

)
.

Using that

t2q2j−1

(1 + t2q2j−1)(1 + t2q2j+1)
=

1

1− q2

(
1

1 + t2q2j+1
− 1

1 + t2q2j−1

)
,
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the summation on the right-hand side becomes a telescopic sum that sim-

plifies to

(1 + q)t2q3[2n− 4]q
(1 + t2q3)(1 + t2q2n−1)

.

The first formula in the statement follows now from straightforward simpli-
fications, and the second formula is obtained by substituting q = 1.

4.5. The signed fmaj-enumerator

Recall that Bn has four one-dimensional characters: the trivial character;
the sign character sign(π); (−1)neg(π); and the sign of |π| ∈ Sn, denoted

sign(|π|). Let us now compute the enumerators for signed arc permutations

with respect to fmaj and each one of these characters.

Corollary 4.7. For every n ≥ 1,

∑
π∈As

n

qfmaj(π) = [2n]q

n−1∏
i=1

(1 + q2i−1),(10)

∑
π∈As

n

sign(π)qfmaj(π) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1− q)[n]−q2

n−1∏
i=1

(1 + (−1)iq2i−1) if n is odd,

[2n]q

n−1∏
i=1

(1 + (−1)iq2i−1) if n is even,

(11)

∑
π∈As

n

(−1)neg(π)qfmaj(π) = [2n]−q

n−1∏
i=1

(1− q2i−1),

∑
π∈As

n

sign(|π|)qfmaj(π) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1+ q)[n]−q2

n−1∏
i=1

(1+ (−1)i−1q2i−1) if n is odd,

[2n]−q

n−1∏
i=1

(1+ (−1)i−1q2i−1) if n is even.

Proof. Equation (10) for n ≥ 2 is obtained from Corollary 4.6 by substitut-
ing t = 1, and it is trivial for n = 1.

To prove Equation (11), we use that the sign of π ∈ Bn can be expressed
as sign(π) = (−1)neg(π)sign(|π|) = (−1)inv(|π|)+neg(π). Substituting t = −1,

yi = −q and xi = q2i for all i in Theorem 4.5, we obtain
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∑
π∈As

n

sign(π)qfmaj(π) =
∑
π∈As

n

(−1)inv(|π|)+neg(π)qfmaj(π)

(12)

=

n∏
i=1

(1 + (−1)iq2i−1) +

n−1∑
j=1

(
q2j−1(q + (−1)j)((−1)j(n−j) + (−1)n−jq)

×
j−1∏
i=1

(1 + (−1)iq2i−1)

n∏
i=j+2

(1 + (−1)n−i+1q2i−1)

)
.

When n is odd, the right-hand side of Equation (12) simplifies to

n∏
i=1

(1 + (−1)iq2i−1)

(
1 +

n−1∑
j=1

(−1)jq2j−1(1− q2)

(1 + (−1)jq2j−1)(1 + (−1)j+1q2j+1)

)
.

The summation in the above formula can be written as a telescopic sum

1− q2

1 + q2

n−1∑
j=1

(
1

1 + (−1)j+1q2j+1
− 1

1 + (−1)jq2j−1

)

=
q(1 + q)((−1)n−1q2n−2 − 1)

(1 + q2)(1 + (−1)nq2n−1)
,

from where we obtain the expression in the statement.

When n is even, using the shorthand aj =
∏j

i=1(1+(−1)iq2i−1) and bj =∏n
i=j(1 + (−1)i−1q2i−1), we can write the right-hand side of Equation (12)

as

(13) an +

n−1∑
j=1

q2j−1(1 + (−1)jq2)aj−1bj+2 +

n−1∑
j=1

q2j−1(1 + (−1)jq)aj−1bj+2.

Using that q2j−1(1 + (−1)jq2) = (1 + (−1)jq2j+1) − (1 − q2j−1), the first
summation in Equation (13) simplifies as a telescopic sum

n−1∑
j=1

(
aj−1bj+1 − (1− q2j−1)aj−1bj+2

)
= b2 − an−1 +

n−2∑
j=2
j even

2q2j−1aj−1bj+2.

Combining this expression with the fact that the second summation in Equa-
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tion (13) can be written as

n−2∑
j=2
j even

2q2jaj−1bj+2,

Equation (13) equals

(14) an + b2 − an−1 + (1 + q)

n−2∑
j=2
j even

2q2j−1aj−1bj+2.

Now, using that

2q2j−1 =
(1− q2j+1)(1 + q2j−1)− (1 + q2j+1)(1− q2j−1)

1− q2
,

Equation (14) simplifies to

an + b2 − an−1 +
1

1− q

n−2∑
j=2
j even

(aj+1bj+2 − aj−1bj)

= an + b2 − an−1 +
an−1bn − a1b2

1− q
= an−1

(
(1 + q2n−1)− 1 +

bn
1− q

)
+ b2

(
1− a1

1− q

)
= [2n]q an−1 = [2n]q

n−1∏
i=1

(1 + (−1)iq2i−1),

as claimed.
Finally, the generating functions

∑
π∈As

n
(−1)neg(π)qfmaj(π) and∑

π∈As
n
sign(|π|)qfmaj(π) are easily obtained by replacing q with −q in Equa-

tion (10) and in Equation (11), respectively.

5. B-arc permutations

5.1. Definition and basic properties

In this section we introduce a different generalization of arc permutations
to type B.

Let On be a circle with 2n points labeled −1,−2, . . . ,−n, 1, 2, . . . , n in
clockwise order, as shown in Figure 1. One can think of these points as the
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elements of Z2n, where for every 1 ≤ j ≤ n, the letter −j is identified with

n+ j ∈ Z2n.

Figure 1: The circle On.

Definition 5.1. A permutation π = [π(1), . . . , π(n)] ∈ Bn is a B-arc per-

mutation if, for every 1 ≤ j ≤ n, the suffix {π(j), π(j + 1), . . . , π(n)} forms

an interval in On. Denote by AB
n the set of B-arc permutations in Bn.

Example 3. We have that [−2, 3,−1] ∈ AB
3 and [2,−1, 4, 3] ∈ AB

4 , but

[−3,−1, 2] /∈ AB
3 and [5, 2,−1, 4, 3] /∈ AB

5 .

Remark 5.2. While for permutations in Sn the suffix is an interval if and

only if the prefix is an interval, this is not the case in Bn. If we replaced suffix

with prefix in Definition 5.1, the corresponding formulas in Sections 5.3.2

and 5.4 would be less elegant.

Claim 5.3. For n ≥ 1, |AB
n | = n2n.

Proof. Writing the entries of π ∈ AB
n from right to left, there are 2n choices

for π(n), and 2 choices for each entry thereafter, since every suffix has to be

be an interval in On.

5.2. Characterization by pattern avoidance

Paralleling our results for signed arc permutations, we can characterize B-

arc permutations in terms of pattern avoidance.

Theorem 5.4. A permutation π ∈ Bn is a B-arc permutation if and only

if it avoids the following 24 patterns:

[±2, 1, 3], [±2, 3, 1], [±3, 1,−2], [±3,−2, 1], [±1, 2,−3], [±1,−3, 2],

[±2,−1,−3], [±2,−3,−1], [±3,−1, 2], [±3, 2,−1], [±1,−2, 3], [±1, 3,−2].
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Note that the patterns listed in the above theorem are precisely those of

the form [a, b, c] ∈ B3 where b and c are at distance at least 2 in the circle

O3.

Proof. If π ∈ Bn contains an occurrence π(i1)π(i2)π(i3) of a pattern [a, b, c] ∈
B3, where b and c are at distance at least 2 inO3, then the suffix {π(i2), π(i2+
1), . . . , π(n)} is not an interval in On, since it contains the letters π(i2) and

π(i3), but neither of the letters ±π(i1). Thus, π /∈ AB
n .

For the converse, suppose now that π ∈ Bn is not a B-arc permutation.

Take the largest j such that {π(j), π(j + 1), . . . , π(n)} is not an interval in

On. Then π(j) is at distance at least 2 from the interval {π(j + 1), π(j +

2), . . . , π(n)} in the circle On. It follows that there is some value 1 ≤ k ≤ n

such that ±k /∈ {π(j), π(j + 1), . . . , π(n)}, but any interval containing π(j)

and π(j+1) must also contain either k or −k. Let i be such that π(i) = ±k,

and note that 1 ≤ i < j. We claim that the subsequence π(i)π(j)π(j + 1)

is an occurrence of one of the patterns in the statement. Noticing that AB
n

is invariant under left multiplication by [n, n − 1, . . . , 1], we can assume

without loss of generality that |π(j)| < |π(j+1)|. Additionally, by symmetry

(reversing the signs if necessary), we can assume that π(j) > 0. Now these

are the possibilities:

• if 0 < π(j +1) then 0 < π(j) < k < π(j +1), so π(i)π(j)π(j+1) is an

occurrence of [±2, 1, 3];

• if −k < π(j+1) < 0 then π(j) < k, so π(i)π(j)π(j+1) is an occurrence

of [±3, 1,−2];

• if π(j + 1) < −k then π(j) > k, so π(i)π(j)π(j + 1) is an occurrence

of [±1, 2,−3].

5.3. Canonical expressions and signed enumeration

In this subsection we characterize arc permutations and B-arc permutations

in terms of their canonical expressions. This characterization is then applied

to derive the unsigned and signed flag-major index enumerators.

5.3.1. The type A case For a positive integer 1 ≤ m < n let cm :=

σmσm−1 · · ·σ1 = (m + 1,m, . . . , 2, 1), in cycle notation. Every permutation

π ∈ Sn has a unique expression

π = c
kn−1

n−1 c
kn−2

n−2 · · · ck1

1 ,
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with 0 ≤ ki ≤ i for all 1 ≤ i < n− 1. Recall from [4] that

(15) maj(π) =

n−1∑
i=1

ki.

Indeed, in the above expression for π, each multiplication by cm from the left

rotates the values 1, 2, . . . ,m + 1 cyclically. Changing the value 1 to m + 1

has the effect of moving a descent one position to the right, while the other

descents remain unchanged.

Proposition 5.5. A permutation π ∈ Sn is an arc permutation if and only

if

π = c
kn−1

n−1 c
kn−2

n−2 · · · ck1

1 ,

with 0 ≤ kn−1 ≤ n− 1 and ki ∈ {0, i} for all 1 ≤ i ≤ n− 2.

Proof. First, notice that a permutation in Sn is an arc permutation if and

only if it may obtained by rotation of the values of a left-unimodal permu-

tation, namely, π = ckn−1u for some u ∈ Ln. Next, a permutation u ∈ Sn is

left-unimodal if and only if its inverse has descent set {1, 2, . . . , j} for some

1 ≤ j ≤ n. Equivalently, its inverse may be obtained from a permutation

whose inverse is in Ln−1 by inserting the letter n at the beginning or at the

end. Hence, by induction on n, we have that u ∈ Ln if and only if it has the

form

u = c
kn−2

n−2 c
kn−2

n−2 · · · ck1

1 ,

with ki ∈ {0, i} for all 1 ≤ i ≤ n− 2.

The above characterization can be used to give a short algebraic proof

of Theorem 2.5.

Alternate proof of Theorem 2.5. Let χ be a one-dimensional character of the

symmetric group Sn. LetKn := {k = (k1, . . . , kn−1) : 0 ≤ kn−1 ≤ n−1, ki ∈
{0, i} for 1 ≤ i ≤ n− 2}.

By Proposition 5.5 and Equation (15),∑
π∈An

χ(π)qmaj(π) =
∑
k∈Kn

χ(c
kn−1

n−1 · · · ck1

1 )qmaj(c
kn−1
n−1 ···ck1

1 )

=
∑
k∈Kn

χ(c
kn−1

n−1 · · · ck1

1 )q
∑

ki =
∑
k∈Kn

n−1∏
i=1

χ(ci)
ki q

∑
ki



224 Sergi Elizalde and Yuval Roichman

=
∑
k∈Kn

n−1∏
i=1

(χ(ci)q)
ki =

n−1∑
kn−1=0

(χ(cn−1)q)
kn−1

n−2∏
i=1

(1 + χ(ci)
iqi)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[n]q

n−1∏
i=1

(1 + qi) if χ is the trivial character,

[n](−1)n−1q

n−2∏
i=1

(1 + (−q)i) if χ is the sign character.

5.3.2. The type B case In analogy with the formulas in Corollary 4.7 for

signed arc permutations, in this section we give formulas enumerating B-arc

permutations with respect to fmaj and each one of the four one-dimensional

characters in type B.

We will use the following characterization of B-arc permutations, anal-

ogous to the characterization of arc permutations given in Proposition 5.5.

For a positive integer 0 ≤ m < n let now

cm := σmσm−1 · · ·σ1σ0 = [−(m+ 1), 1, 2, . . . ,m,m+ 2, . . . , n].

Note that cm = (m + 1,m, . . . , 1,−(m + 1),−m, . . . ,−1) in cycle notation,

and it has order 2m+ 2. Every π ∈ Bn has a unique expression

π = c
kn−1

n−1 c
kn−2

n−2 · · · ck1

1 ck0

0 ,

with 0 ≤ ki ≤ 2i+ 1 for all 0 ≤ i < n. Recall from [4] that

(16) fmaj(π) =

n−1∑
i=0

ki.

Proposition 5.6. A permutation π ∈ Bn is a B-arc permutation if and

only if

π = c
kn−1

n−1 c
kn−2

n−2 · · · ck1

1 ck0

0 ,

with 0 ≤ kn−1 ≤ 2n− 1 and ki ∈ {0, 2i+ 1} for all 0 ≤ i ≤ n− 2.

Proof. For every 0 ≤ i < n, if π ∈ AB
n is such that π(j) = j for all j > i,

the permutation c2i+1
i π = c−1

i π is also a B-arc permutation. It follows by

induction that c
kn−2

n−2 · · · ck0

0 ∈ AB
n for all choices of ki ∈ {0, 2i + 1}. Next,

notice that AB
n is invariant under left multiplication by cn−1, since this
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operation is a counterclockwise rotation of the letters in On. One concludes
that

{ckn−1

n−1 c
kn−2

n−2 · · · ck0

0 : 0 ≤ kn ≤ 2n− 1 and ki ∈ {0, 2i+ 1}
for all 0 ≤ i < n } ⊆ AB

n .

Finally, we prove that these two sets are equal by showing that they have
the same cardinality. The set on the left-hand side has size n2n, because
each choice of the ki yields a different element of Bn. By Claim 5.3, this
coincides with the cardinality of AB

n .

Product formulas for unsigned, signed and other one-dimensional char-
acter enumerators for the flag-major index follow.

Theorem 5.7. For every n ≥ 1,

∑
π∈AB

n

qfmaj(π) = [2n]q

n−1∏
i=1

(1 + q2i−1),(17)

∑
π∈AB

n

sign(π)qfmaj(π) = [2n](−1)nq

n−1∏
i=1

(1 + (−1)iq2i−1),

∑
π∈AB

n

(−1)neg(π)qfmaj(π) = [2n]−q

n−1∏
i=1

(1− q2i−1),

∑
π∈AB

n

sign(|π|)qfmaj(π) = [2n](−1)n−1q

n−1∏
i=1

(1 + (−1)i−1q2i−1).

Proof. Let χ be a one-dimensional character of Bn. Let K
′
n := {k = (k0, k1,

. . . , kn−1) : 0 ≤ kn−1 ≤ 2n− 1, ki ∈ {0, 2i+ 1} for 0 ≤ i ≤ n− 2}.
By Proposition 5.6 and Equation (16),∑

π∈AB
n

χ(π)qfmaj(π) =
∑
k∈K′

n

χ(c
kn−1

n−1 · · · ck1

1 )qfmaj(c
kn−1
n−1 ···ck0

0 )

=
∑
k∈K′

n

χ(c
kn−1

n−1 · · · ck0

0 )q
∑

ki =
∑
k∈K′

n

n−1∏
i=0

χ(ci)
ki q

∑
ki

=
∑
k∈K′

n

n−1∏
i=0

(χ(ci)q)
ki =

2n−1∑
kn−1=0

(χ(cn−1)q)
kn−1

n−2∏
i=0

(1 + χ(ci)q
2i+1).
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Remark 5.8. A characterization similar to Proposition 5.6 holds for signed
arc permutations. Letting tn be the reflection [1, 2, . . . , n − 1,−n], one can
show that a permutation π ∈ Bn is a signed arc permutation if and only
if

π = (cn−1c0)
kntkn−1

n c
kn−2

n−2 · · · ck1

1 ck0

0 ,

with 0 ≤ kn ≤ n − 1 and ki ∈ {0,−1} for all 0 ≤ i ≤ n − 1. Unlike in the
case of B-arc permutations, we did not find this characterization helpful in
computing enumerators.

5.4. The (fdes, fmaj)-enumerator

Next we apply a coset analysis to calculate the bivariate (fdes, fmaj)-enume-
rator on B-arc permutations.

Theorem 5.9. For every n ≥ 2,

∑
π∈AB

n

tfdes(π)qfmaj(π) =
(1 + tq)(1 + tqn)

1− q
(18)

×
(
(1− tqn)

n−2∏
i=1

(1 + t2q2i+1)− (1− t)q

n−2∏
i=1

(1 + t2q2i+2)

)
,

(19)
∑
π∈AB

n

tfdes(π) = (1 + t)3(1 + t2)n−3(1 + (n− 2)t+ t2).

Proof. Fix n, and let c := cn−1 = [−n, 1, 2, . . . , n − 1] = σn−1σn−2 · · ·σ0,
which is a Coxeter element in Bn, and it has order 2n. Recall that AB

n is
closed under left multiplication by c, which corresponds to shifting the values
of π one position counterclockwise in On. A collection of representatives of
the distinct left cosets of the cyclic subgroup generated by c is given by

{π ∈ AB
n : π(n) = n}. Denoting this set by ÃB

n , we can write AB
n as a

disjoint union

AB
n =

2n−1⋃
j=0

{cjπ : π ∈ ÃB
n }.

Before proving Equation (18), we start with the case t = 1 to illustrate
our technique. This is Equation (17), which we proved above using a different
method. We first show that
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∑
π∈ÃB

n

qfmaj(π) =

n−1∏
i=1

(1 + q2i−1).

Indeed, for every 1 ≤ i < n, given a suffix of n−i letters, which is an interval
containing n, there are two choices for the preceding letter π(i): positive and
maximal among the remaining letters, or negative and minimal. In the first
case, π(i − 1) must be smaller than π(i) and the contribution to the flag-
major index is zero. In the second case, since π(i) is negative and minimal
among the remaining letters, i− 1 must be a descent, and the contribution
to the flag-major index is 2(i− 1) + 1.

It is easy to verify that for every π ∈ AB
n and 0 ≤ j < 2n,

(20) fmaj(cjπ) = fmaj(π) + j.

One concludes that ∑
π∈AB

n

qfmaj(π) = [2n]q
∑
π∈ÃB

n

qfmaj(π),

which implies Equation (17).

Refining the above argument, we can enumerate permutations π ∈ ÃB
n

with π(1) > 0 according to the descent set, the value of π(1), and neg(π) as
follows:∑

{π∈ÃB
n : π(1)>0}

xDes(π)yπ(1)zneg(π)

= yn−1

(
xn−2z +

1

y

)(
xn−3z +

1

y

)
. . .

(
x1z +

1

y

)
= y

n−2∏
i=1

(1 + xiyz).

To see this, let 2 ≤ i < n, and suppose that the entries π(i + 1), π(i +
2), . . . , π(n) have been chosen, forming an interval in On containing n. Sup-
pose that this interval is bounded by −k < 0 and m > 0. There are two
choices for the entry π(i), namely −k− 1 and m− 1. If π(i) = −k− 1, then
π(i−1)π(i) will be a descent, regardless of how π(i−1) is chosen, and addi-
tionally π(i) contributes to neg(π). On the other hand, if π(i) = m−1, then
π(i− 1)π(i) will not be a descent. Finally, there is only one choice for π(1)
once π(2), π(3), . . . , π(n) have been chosen, since π(1) > 0, and its value will
be n−1 minus the number of indices 2 ≤ i < n for which the positive choice
for π(i) has been made.
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Similarly, for permutations π ∈ ÃB
n with π(1) < 0, we get

∑
{π∈ÃB

n : π(1)<0}

xDes(π)y|π(1)|zneg(π) = yz

n−2∏
i=1

(1 + xiyz),

and so

∑
π∈ÃB

n

xDes(π)y|π(1)|zneg(π)uδ(π(1)<0) = y(1 + uz)

n−2∏
i=1

(1 + xiyz).

Making the substitutions xi = t2q2i, z = q and u = t, we obtain

P (t, q, y) :=
∑
π∈ÃB

n

tfdes(π)qfmaj(π)y|π(1)| = y(1 + tq)

n−2∏
i=1

(1 + yt2q2i+1).

Given π ∈ ÃB
n with π(1) = a > 0, let us analyze the values of fdes on

the coset {cjπ : 0 ≤ j < 2n}. To see how fdes changes when multiplying by
c, note that des(cσ) = des(σ) unless σ(1) = −1, in which case des(cσ) =
des(σ) + 1, or σ(n) = −1, in which case des(cσ) = des(σ)− 1. Thus,

des(cjπ) =

{
des(π) if 0 ≤ j < n+ a,

des(π) + 1 if n+ a ≤ j < 2n.

Since cjπ(1) < 0 precisely for a ≤ j < n+ a, it follows that

(21) fdes(cjπ) =

⎧⎪⎨⎪⎩
fdes(π) if 0 ≤ j < a,

fdes(π) + 1 if a ≤ j < n+ a,

fdes(π) + 2 if n+ a ≤ j < 2n.

Similarly, given π ∈ ÃB
n with π(1) = a < 0, we have

des(cjπ) =

⎧⎪⎨⎪⎩
des(π) if 0 ≤ j < a,

des(π) + 1 if a ≤ j < n+ a,

des(π) if n+ a ≤ j < 2n,

and since cjπ(1) < 0 precisely when 0 ≤ j < a or n+ a ≤ j < 2n, the same
Formula (21) for fdes(cjπ) holds.
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Using Equations (21) and (20), we see that if the contribution of π ∈ ÃB
n

to the generating function P (t, q, y) is tfdes(π)qfmaj(π)y|π(1)| = tdqmya, then
the contribution of the coset {cjπ : 0 ≤ j < 2n} to the generating function∑

π∈AB
n
tfdes(π)qfmaj(π) is

tdqm(1 + q + · · ·+ qa−1 + tqa + tqa+1 + · · ·
+ tqn+a−1 + t2qn+a + t2qn+a+1 + · · ·+ t2q2n−1)

= tdqm([a]q + tqa[n]q + t2qn+a[n− a]q)

= tdqm
1− t2q2n − (1− t)(1 + tqn)qa

1− q
.

It follows that∑
π∈AB

n

tfdes(π)qfmaj(π)

=
(1− t2q2n)P (t, q, 1)− (1− t)(1 + tqn)P (t, q, q)

1− q
=

(1 + tq)(1 + tqn)

1− q

×
(
(1− tqn)

n−2∏
i=1

(1 + t2q2i+1)− (1− t)q

n−2∏
i=1

(1 + t2q2i+2)

)
,

proving Equation (18).
When q = 1, it is easy to realize that if the contribution of a permutation

π ∈ ÃB
n to P (t, 1, y) is tdya, then the contribution of the coset {cjπ : 0 ≤

j < 2n} to
∑

π∈AB
n
tfdes(π) is

td(a+ tn+ t2(n− a)) = td(a(1− t2) + nt(1 + t)).

It follows that∑
π∈AB

n

tfdes(π) = (1− t2)
∂

∂y
P (t, 1, y)

∣∣∣∣
y=1

+ nt(1 + t)P (t, 1, 1)

= (1− t2)(1 + t)(1 + t2)n−3(1 + (n− 1)t2)

+ nt(1 + t)2(1 + t2)n−2

= (1 + t)2(1 + t2)n−3
(
(1− t)(1 + (n− 1)t2) + nt(1 + t2)

)
= (1 + t)3(1 + t2)n−3(1 + (n− 2)t+ t2),

proving Equation (19).
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5.5. The descent set enumerator

In this subsection we apply a descent-set-preserving map to reduce the cal-
culation of the descent set enumerator on B-arc permutations to the type
A case.

Theorem 5.10. For every n ≥ 2,

(22)
∑
π∈AB

n

xDes(π) =

n−1∏
i=1

(1 + xi)

(
2 + n+ 2

n−2∑
i=1

xi + xi+1

(1 + xi)(1 + xi+1)

)
.

Proof. We show that there exists an n-to-1 descent-set-preserving map from
the subset of permutations in AB

n which contain the letter 1 to Ln, and a
2-to-1 descent-set-preserving map from permutations in AB

n which contain
the letter −1 to An.

For 1 ≤ k ≤ n, denote by Bn,k the set of permutations in AB
n whose

support is −k + 1,−k + 2 . . . ,−n, 1, . . . , k. Note that
⋃

1≤k≤nBn,k is the

subset of permutations in AB
n which contain the entry 1. Permutations π ∈

Bn,k are determined by choosing, for 1 ≤ i ≤ n−1, whether π(i) is the largest
or the smallest of the remaining entries. Clearly, π(i) creates a descent with
π(i+ 1) only in the first case. It follows that

(23)
∑

π∈Bn,k

xDes(π) =

n−1∏
i=1

(1 + xi),

which, as shown in the proof of Theorem 2.3, coincides with the descent
set enumerator on Ln. In fact, this construction gives a natural descent-
set-preserving bijection from Bn,k to Ln, and thus an n-to-1 descent-set-
preserving map from permutations in AB

n which contain 1 to Ln.

Next we describe a 2-to-1 descent-set-preserving map from permutations
in AB

n which contain −1 to An. The image of π is simply defined to be |π|,
that is, the permutation obtained by forgetting the signs. It is easy to check
that |π| ∈ An and that this map preserves the descent set.

To see that it is a 2-to-1 map, we show that each permutation [a1, a2,
. . . , an] ∈ An has exactly two preimages. If a1 �= 1, the preimages are
[a1, a

′
2, a

′
3, . . . , a

′
n] and [−a1, a

′
2, a

′
3, . . . , a

′
n], where

a′i =

{
ai if ai > a1,

−ai otherwise.
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If a1 = 1, the preimages are [−1, a2, . . . , an] and [−1,−a2, . . . ,−an].
Combining Equation (1), which gives the distribution of the descent set

on An, with Equation (23), we conclude that∑
π∈AB

n

xDes(π) = n
∑
π∈Ln

xDes(π) + 2
∑
π∈An

xDes(π)

= n

n−1∏
i=1

(1 + xi) + 2

n−1∏
i=1

(1 + xi)

(
1 +

n−2∑
i=1

xi + xi+1

(1 + xi)(1 + xi+1)

)
,

which equals the right-hand side of Equation (22).

6. Final remarks and open problems

Comparing Theorem 4.5 with Theorem 5.10, we see that the descent set
has different distributions on As

n and AB
n . However, combining Theorem 5.7

with Corollary 4.7, we obtain the following equidistribution phenomena. It
would be natural to look for bijective proofs.

Corollary 6.1. 1. For every n ≥ 1,∑
π∈AB

n

qfmaj(π) =
∑
π∈As

n

qfmaj(π).

2. For every even n ≥ 2,∑
π∈AB

n

sign(π)qfmaj(π) =
∑
π∈As

n

sign(π)qfmaj(π).

Signed arc permutations and B-arc permutations have further proper-
ties analogous to those of unsigned arc permutations. In particular, both sets
carry affine Weyl group actions, interesting underlying graph structures, and
descent-set-preserving maps to standard Young tableaux. Whereas the defi-
nition of B-arc permutations is more natural and gives rise to a nicer under-
lying graph structure, signed arc permutations have a finer joint distribution
of the descent set and the set of negative entries, which leads to interesting
quasi-symmetric functions of type B to be discussed in a forthcoming paper.

We conclude by mentioning a natural direction in which our work could
be extended. The flag-major index and flag-descent number have been gen-
eralized to classical complex reflection groups in [11, 9, 6, 23].

Problem 6.2. Generalize the concept of arc permutations to the complex
reflection group G(r, p, n).
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Finding elegant descent enumerators on these generalized arc permuta-
tions may serve as an indicator of a “correct” generalization. It should be
noted that natural analogues of Equation (15) and Proposition 5.5 hold on
wreath products G(r, 1, n) = Zr � Sn. Thus, enumerators on B-arc permuta-
tions could be generalized to all one-dimensional character enumerators for
the flag-major index on these sets.

A more challenging task is to find a unified abstract generalization of arc
permutations to all Coxeter groups, including affine as well as exceptional
types.
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