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Block patterns in Stirling permutations

Jeffrey B. Remmel and Andrew Timothy Wilson
∗

We introduce and study a new notion of patterns in Stirling and
k-Stirling permutations, which we call block patterns. We prove
a general result which allows us to compute generating functions
for the occurrences of various block patterns in terms of gener-
ating functions for the occurrences of patterns in permutations.
This result yields a number of applications involving, among other
things, Wilf equivalence of block patterns and a new interpretation
of Bessel polynomials. We also show how to interpret our results for
a certain class of labeled trees, which are in bijection with Stirling
permutations.
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1. Introduction

The set Qn of Stirling permutations of order n is the collection of all per-

mutations of the multiset {12, 22, . . . , n2} such that every element between

the two occurrences of i is greater than i for each i ∈ {1, 2, . . . , n}. Stirling
permutations were initially defined in [GS78]. With the recent abundance of

progress in permutation patterns and related areas of probability and com-

binatorics, Stirling permutations and their generalizations have been the

subject of much work, such as [B0́8, Jan08, JKP11, KP12, HV12]. These

papers studied the distributions of various types of patterns in Stirling per-

mutations and their generalizations. Moreover, there are natural bijections

between Stirling permutations and various families of trees, as mentioned

in [Jan08, JKP11, Dot12]. Thus, studying patterns in Stirling permutations

is equivalent to studying patterns in these trees. We outline one of these

bijections in Section 5.

The main goal of this paper is to study a new type of pattern in Stir-

ling permutations and k-Stirling permutations which we call block patterns.
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Figure 1: The Hasse diagram of P(4415778852213663).

These patterns are motivated by work of [Dot12] connecting Stirling permu-
tations to the theory of operads, specifically to a notion of Gröbner bases
in operads. To begin, we define blocks in Stirling permutations, essentially
following [KP12]. For σ ∈ Qn, we let (i, i)σ denote the consecutive string
of elements of σ between the two occurrences of i in σ and we let [i, i]σ
denote the consecutive string of elements of σ between and including the
two occurrences of i in σ. We shall write [i, i]σ ⊂ [j, j]σ if i �= j and [i, i]σ is
a consecutive substring of [j, j]σ.

For any word w over the alphabet of positive integers P, we say that the
reduced form of w, written red(w), is equal to the word obtained by replacing
each of the occurrences of the ith smallest number in w with the number i.
Two words with the same reduced form are said to be order isomorphic.

We say that [i, i]σ is a level 1 block of σ if there is no j such that
[i, i]σ ⊂ [j, j]σ. For � ≥ 2, we define the level � blocks of σ inductively by
saying that [i, i]σ is a level � block if there is a level � − 1 block [j, j]σ of σ
such that [i, i]σ ⊂ [j, j]σ and in red((j, j)σ) the block that corresponds to
[i, i] is a level 1 block. If [i, i]σ ⊂ [j, j]σ, [i, i]σ is a level � block, and [j, j]σ
is a level �− 1 block, then we will say that [j, j]σ is the parent of the block
[i, i]σ.

For example, if σ = 4415778852213663, then [1, 1]σ = 1577885221 and
(1, 1)σ = 57788522. The level 1 blocks of σ are [4, 4]σ, [1, 1]σ, and [3, 3]σ,
the level 2 blocks of σ are [5, 5]σ, [2, 2]σ, and [6, 6]σ, and the level 3 blocks
are [7, 7]σ and [8, 8]σ. Thus for any Stirling permutation, the blocks of σ
induce a natural partially ordered set which we call P(σ) where the edges
in the Hasse diagram of P(σ) connect a parent to its children and the min-
imal elements correspond to a level 1 block. For example, Figure 1 pictures
P(4415778852213663).

We say that blocks [i, i]σ and [j, j]σ are siblings if they are both level
1 blocks or they share the same parent. It is easy to see from the Hasse
diagram of P(4415778852213663) that the only level 2 blocks which are
siblings are [5, 5]σ and [2, 2]σ. Finally, the maximum level of any block in a
Stirling permutation is the height of that Stirling permutation.
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We will consider a permutation pattern to be a permutation, i.e. an
element of the symmetric group Sm for some m ≥ 1, that may have some
of its consecutive elements underlined.1 A permutation pattern p of length
m is said to occur in a word w of length n if there exist indices 1 ≤ i1 <
· · · < im ≤ n such that

• red(wi1wi2 . . . wim) is equal to the permutation obtained by removing
the underlines from p, and

• if pj and pj+1 are connected by an underline then ij+1 = ij + 1.

In other words, the underlines insist that certain entries are consecutive in
w.

Often, the word w is also a permutation. For example, the pattern 231
occurs twice in the permutation 7253146, by taking the subsequences con-
sisting of 253 and 231, respectively. The subsequence 254 does not form an
occurrence of 231 because, although these entries are order isomorphic to
231, the 5 and 4 do not appear consecutively in the permutation.

When p has no underlines, it is known as a classical pattern. When every
element of p is underlined, it is a consecutive pattern. Following [Kit11], we
let p(π) denote the number of occurrences of the pattern p in the permutation
π.

If p is a permutation pattern, we let Sn(p) = {π ∈ Sn : p(π) = 0}
denote the set of permutations of Sn which avoid p. Similarly, if A is a set
of permutation patterns, we let Sn(A) = {π ∈ Sn : p(π) = 0 ∀p ∈ A}
denote the set of permutations of Sn which avoid all the patterns in A. We
say that two patterns p and q are Wilf equivalent if |Sn(p)| = |Sn(q)| for
all n ≥ 1. More generally, we say that two sets of patterns P and Q are Wilf
equivalent if |Sn(P )| = |Sn(Q)| for all n ≥ 1.

If A is a set of patterns we wish to avoid and p is a pattern whose
occurrences we want to count, then we shall consider the generating function

FA,p(t, z) = 1 +
∑
n≥1

tn

n!
fA,p
n (z)

where

fA,p
n (z) =

∑
π∈Sn(A)

zp(π).

1This is not the most general definition of a permutation pattern, but it will suit
our purposes. For more general definitions, see [Kit11].
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We now have the terminology necessary to define block patterns. Given

a permutation pattern p of length m, we say p occurs as a block pattern in

σ ∈ Qn if there exist blocks [b1, b1]σ, . . . , [bm, bm]σ appearing from left to

right in σ such that

• all the blocks [b1, b1]σ, . . . , [bm, bm]σ are siblings,

• red(b1b2 . . . bm) = p when considering p as a permutation, and

• if pj and pj+1 are connected by an underline then the second occur-

rence of the number bj in σ and the first occurrence of bj+1 in σ are

consecutive.

Since the blocks are all siblings, they must all be of the same level in σ. We

say that this level is the level of the occurrence of p as a block pattern in σ.

We will write the number of occurrences of the pattern p in σ ∈ Qn at level

� as p(�)(σ) and the number of total occurrences of p in σ as p(σ).

For example, we consider the Stirling permutation σ=4415778852213663

and the pattern p = 21. We have

• p(1)(σ) = 2 (with b1 = 4, b2 = 1 and b1 = 4, b2 = 3), and

• p(2)(σ) = 1 (with b1 = 5, b2 = 2).

The entries 72 do not form an occurrence of 21 because the 7 block is con-

tained in the 5 block, but the 2 block is not, so the two blocks are not

siblings. If we instead consider the descent pattern d = 21, we get

• d(1)(σ) = 1 (with b1 = 4, b2 = 1), and

• d(2)(σ) = 1 (with b1 = 5, b2 = 2).

We are now ready to define our main generating function. We will use

boldface to indicate sequences, i.e. maps into the set of positive integers P.

Let A = (A1, A2, . . .) be a sequence of sets of patterns and p = (p1, p2, . . .)

be a sequence of patterns. We set

Qn(A) = {σ ∈ Qn : a(i)(σ) = 0 for all a ∈ Ai and for any i ∈ P}.

Thus Qn(A) is the set of Stirling permutations that avoid all the patterns

in Ai at level i for all i ≥ 1. Our main object of interest in this paper is the

exponential generating function

GA,p(t;x;y) = 1 +
∑
n≥1

tn

n!
gA,p
n (x;y)
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where

gA,p
n (x;y) =

∑
σ∈Qn(A)

∏
i≥1

x
p
(i)
i (σ)

i y
bl(i)(σ)
i .

Here for any σ ∈ Qn, bl
(i)(σ) is the number of level i blocks in σ. Thus the

generating function GA,p(t;x;y) keeps track of the number of occurrences
of pi in the ith level of the permutations in Qn(A).

Given any sequence s = (s1, s2, s3, . . .), we let sh(s) = (s2, s3, . . .). Thus
sh(s) just removes the first element from the sequence. Our main theorem
describes how to compute GA,p if we already have Gsh(A),sh(p) as well as the
generating function FA1,p1 .

Theorem 1.1.

GA,p(t;x;y) = FA1,p1

(
y1

∫ t

0
Gsh(A),sh(p)(u; sh(x); sh(y))du, x1

)
.

It should be noted that, although Theorem 1.1 contains an integral that
may be difficult to compute in certain cases, it can always be used recursively
to compute any particular term of the generating function on the left-hand
side. We state the recursive form of Theorem 1.1 in Corollary 2.1.

The outline of this paper is as follows. In Section 2, we prove Theorem 1.1
and derive two important corollaries of it. In Sections 3 and 4, we describe
several special classes of sequences A and p where we can explicitly com-
pute GA,p(t;x;y). Section 5 contains a brief explanation of the relationship
between our results and patterns in labeled trees. In Section 6, we prove a
generalization of Theorem 1.1 for k-Stirling permutations.

2. Proof and corollaries of Theorem 1.1

We start this section by giving a proof of Theorem 1.1. Our proof is similar
to the proof of the compositional formula as described in Section 5.1 of
[Sta99].

Proof. Let A = (A1, A2, . . .) and p = (p1, p2, . . .). For any exponential gen-
erating function c(t) =

∑
n≥0 cn

tn

n! , we let c(t)| tn
n!

denote cn.

We also let Qm
n (A) denote the set of all permutations in Qn(A) with

exactly m level 1 blocks. We describe a way in which we can uniquely con-
struct all elements of Qm

n (A). We will refer to this process as building a
Stirling permutation by levels.
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1. First, we partition the set {1, 2, . . . , n} into an (unordered) collection

of m nonempty sets {S1, S2, . . . , Sm}.
2. For each i = 1 tom, we create a Stirling permutation inQ|Si|−1(sh(A))

out of the non-minimal elements of Si. That is, the reduced form of this

object should be a member of Q|Si|−1(sh(A)). We place the minimal

element in Si before and after this (unreduced) Stirling permutation.

We call the resulting (unreduced) Stirling permutation σ(i). (If Si is a

singleton set, σ(i) = mm.)

3. The final Stirling permutation is the concatenation σ(π1) . . . σ(πm)

where π = π1 . . . πm is an element of Sm(A1).

By definition,

∑
σ∈Qm

n (A)

∏
i≥1

x
p
(i)
i (σ)

i y
bl(i)(σ)
i = ym1 GA,p(t;x;y)

∣∣
tnym

1
n!

.

From the construction of Stirling permutations by levels, we see that this

expression equals

∑
π∈Qm(A1)

x
p1(π)
1 ym1

×
∑

a1+···+am=n

ai≥1

(
n

a1, . . . , am

) m∏
i=1

(
Gsh(A),sh(p)(t; sh(x); sh(y))

∣∣∣
tai−1

(ai−1)!

)

=
∑

π∈Qm(A1)

x
p1(π)
1 ym1

×
∑

a1+···+am=n

ai≥1

(
n

a1, . . . , am

) m∏
i=1

⎛
⎝∫ t

0
Gsh(A),sh(p)(u; sh(x); sh(y))du

∣∣∣∣
tai

ai!

⎞
⎠

=
∑

π∈Qm(A1)

x
p1(π)
1 ym1

(∫ t

0
Gsh(A),sh(p)(u; sh(x); sh(y))du

)m∣∣∣∣
tn

n!

.

Thus

∑
σ∈Qn(A)

∏
i≥1

x
p
(i)
i (σ)

i y
bl(i)(σ)
i =

n∑
m=1

∑
σ∈Qm

n (A)

∏
i≥1

x
p
(i)
i (σ)

i y
bl(i)(σ)
i
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which equals

n∑
m=1

∑
π∈Qm(A1)

x
p1(π)
1 ym1

(∫ t

0
Gsh(A),sh(p)(u; sh(x); sh(y))du

)m∣∣∣∣
tn

n!

= FA1,p1

(
y1

∫ t

0
Gsh(A),sh(p)(u; sh(x); sh(y))du, x1

)∣∣∣∣
tn

n!

.

Finally, we have

GA,p(t;x;y) = 1+
∑
n≥1

tn

n!

∑
σ∈Qn(A)

∏
i≥1

x
p
(i)
i (σ)

i y
bl(i)(σ)
i

= 1+
∑
n≥1

tn

n!
FA1,p1

(
y1

∫ t

0
Gsh(A),sh(p)(u; sh(x); sh(y))du, x1

)∣∣∣∣
tn

n!

= FA1,p1

(
y1

∫ t

0
Gsh(A),sh(p)(u; sh(x); sh(y))du, x1

)

which proves Theorem 1.1.

We note that Theorem 1.1 implies the following recursion for gA,p
n (x;y),

which we recall is equal to n! times the coefficient of tn in GA,p(t;x;y). For

any partition λ � n, let mi(λ) be the multiplicity of the number i in λ and

�(λ) be the length, i.e. number of nonzero parts, of λ.

Corollary 2.1.

gA,p
n (x;y) =

∑
λ�n

(
n

λ

) y
�(λ)
1 fA1,p1

�(λ) (x1)

m1(λ)! . . .mn(λ)!

�(λ)∏
i=1

g
sh(A),sh(p)
λi−1 (sh(x); sh(y)).

This corollary follows immediately from taking coefficients in Theo-

rem 1.1. It is especially useful for computing particular terms for sequences

of patterns whose exponential generating functions do not have nice inte-

grals. Next, we see that Theorem 1.1 allows us to derive a statement about

a type of Wilf equivalence for block patterns.

Corollary 2.2. Let A and A′ be sequences of sets of patterns and p and p′

be sequences of patterns. If

GA,p(t;x;y) = GA′,p′
(t;x;y),
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then FAi,pi(t, z) = FA′
i,p

′
i(t, z) for all i ∈ P. In the other direction, if

FAi,pi(t, z) = FA′
i,p

′
i(t, z) for all i ∈ P and we also assume that there ex-

ists some r ≥ 0 such that

G(Ar,Ar+1,...),(pr,pr+1,...)(t;x;y) = G(A′
r,A

′
r+1,...),(p

′
r,p

′
r+1,...)(t;x;y)

then the converse is true, i.e. GA,p(t;x;y) = GA′,p′
(t;x;y).

Proof. We begin by assuming

GA,p(t;x;y) = GA′,p′
(t;x;y).

We will prove FAi,pi(t, z) = FA′
i,p

′
i(t, z) for all i by induction on i.

For the base case i = 1, we set yj = 0 for each j ≥ 2. This yields

GA,p(t;x; y1, 0, 0, . . .) = 1 +
∑
n≥1

tn

n!

∑
σ∈Qn(A)

height(σ)=1

x
p(1)
1 (σ)

1 yn1 = FA1,p1(ty1, x1)

because Stirling permutations of height 1 correspond to permutations with
each number written twice consecutively. We can apply the same argument
to GA′,p′

to finish the base case.
For the induction step, we wish to prove FAi,pi = FA′

i,p
′
i assuming this

statement has been proved for each positive integer less than i. We set yj = 0
for j > i. The theorem states that GA,p can be obtained by repeatedly
integrating FAi,pi and plugging that result into FAj ,pj , where j = i− 1, i−
2, . . . , 1. Since the two generating functions GA,p and GA′,p′

are known to
be equal, induction implies that we must have FAr,pr = FA′

r,p
′
r .

In order to prove the other direction, we simply iterate the theorem r
times.

One consequence of Corollary 2.2 is that, if pi = ∅ for all i and Ai = {q}
for some pattern q, then we can replace Ai with A′

i = {q′} without changing
the generating function GA,p as long as q and q′ are Wilf equivalent. To
illustrate this application, we mention a few well-known classes of results
about Wilf equivalence. Some other examples of such results, which we will
not mention further, can be found in [Sta94, BWX07].

Perhaps the most classical example of Wilf equivalence is the result of
[Knu81] that all classical patterns of length 3 are Wilf equivalent. Applying
this fact to Corollary 2.2, we learn that if there exists an i ≥ 1 such that
Ai = {q}, where q ∈ S3 is a classical pattern of length 3, and pi = ∅, then
we can change q to a different classical pattern of length 3 without altering
GA,p.
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We say a consecutive pattern q of length m is minimally overlapping if
the shortest permutation that contains at least two copies of q has length
2m − 1. In other words, no two occurrences of q can overlap in more than
one position. Elizalde [Eli04] conjectured that any two minimally overlapping
patterns q and q′ of length m are strongly Wilf equivalent, i.e. F ∅,q(t, z) =
F ∅,q′(t, z), whenever q1 = q′1 and qm = q′m. Independent proofs of Elizalde’s
conjecture were given in [DR12] and [DK10]. Thus Corollary 2.2 implies that,
for any i ≥ 1 such that Ai = ∅ and pi = q, where q is a minimally overlapping
pattern of length m, we can change q to a minimally overlapping pattern q′

of length m without changing GA,p as long as q1 = q′1 and qm = q′m.

3. Stirling permutations of restricted height

In this section as well as the next, we derive a variety of generating func-
tions from Theorem 1.1. Some of these generating functions are well-studied,
while others seem to be new and may be of interest in future work. In this
section, we study Stirling permutations whose heights are at most some fixed
number. These permutations are especially nice for two reasons. First, Stir-
ling permutations of height 1 correspond to permutations (with every entry
written twice consecutively). This allows us to directly apply any known
exponential generating function from the theory of permutation patterns.
Second, our main theorem provides a way to understand Stirling permuta-
tions of height at most h if we understand Stirling permutations of height at
most h−1. In other words, if we have an exponential generating function for
the permutation pattern case and we know how to integrate this generating
function, we can provide closed-form generating functions for the restricted-
height Stirling permutation case. Even if we cannot integrate the generating
function, we can obtain initial terms for the sequence from the recursion in
Corollary 2.1.

3.1. Height ≤ 2

First we will deal with Stirling permutations of height at most 2. In order to
obtain the class of Stirling permutations whose height is at most 2, we want
to “avoid” the set of patterns {1} at level 3. Since this pattern is unavoidable,
the resulting class of permutations can only have blocks at levels 1 and 2.
Thus throughout this section we will set A3 = {1}.

These objects fit nicely into the context of the main theorem because
the shifted pattern sequence sh(A) = (∅, {1}, ∅, . . .) implies that the gener-
ating function Gsh(A),sh(p) is a sum over permutations. We will use this idea
repeatedly in the remainder of this section to produce several examples.
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Example 1. A = ({21}, ∅, {1}, ∅, . . .) and p = (∅, ∅, . . .).
Any Stirling permutation that avoids A is equal to a series of blocks of

height 1, written in order of increasing minimal element, forming a Stirling
permutation of height at most 2. These objects biject to permutations de-
composed into cycles, so we should expect to see the unsigned Stirling num-
bers of the first kind. For example, 14422331577566 is an example of such
a Stirling permutation for n = 7. This corresponds to the permutation with
cycle decomposition (1, 4, 2, 3), (5, 7), (6). We have F {21},∅(t, z) = exp(t) and∫ t

0
Gsh(A),sh(p)(u;x;y)du =

∫ t

0

1

1− uy1
du

=
− log(1− ty1)

y1
.

Thus

GA,p(t;x;y) = exp

(
−y1
y2

log(1− ty2)

)
= (1− ty2)

−y1/y2(1)

which, as we would expect from the above discussion, is equal to the expo-
nential generating function

1 +
∑
n≥1

tn

n!

∑
π∈Sn

y#cycles in π
1 yn−# cycles in π

2 .

If we set y2 = 1, we obtain the exponential generating function for the
unsigned Stirling numbers of the first kind.

Example 2. A = ({21}, {21}, {1}, ∅, . . .) and p = (∅, ∅, . . .).
In this case, we obtain Stirling permutations whose blocks increase from

left to right at both level 1 and level 2. One can see that the Stirling permu-
tations σ ∈ Qn that avoid A correspond to partitions of the set {1, 2, . . . , n}.
Indeed, Theorem 1.1 gives

GA,p(t;x;y) = exp

(
y1
y2

(exp(ty2)− 1)

)
(2)

which is equal to ∑
n≥0

tn

n!

∑
τ

y# parts of τ
1 yn−# parts of τ

2

where the second sum is over partitions of the set {1, 2, . . . n}. If we set
y2 = 1 and take n! times the coefficient of tnyk1 in this function, we obtain the
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triangle of Stirling numbers of the second kind. Through similar methods,
we can find the ordered unsigned Stirling numbers of the first kind and the
ordered Stirling numbers of the second kind by setting A = (∅, ∅, {1}, ∅, . . .)
and (∅, {21}, {1}, ∅, . . .), respectively.

Next we shall show how we can enumerate simple patterns at level 1.

Example 3. A = (∅, ∅, {1}, ∅, . . .) and p = (21, ∅, . . .).

In this case we are counting block descents at level 1 while not avoiding
any other patterns. We know that

F ∅,21(t, z) =
z − 1

z − exp(t(z − 1))

and ∫ t

0
Gsh(A),sh(p)(u;x;y)du =

− log(1− ty1)

y1
.

Plugging these into the main theorem, we obtain

GA,p(t;x;y) =
x1 − 1

x1 − (1− ty2)y1(1−x1)/y2
.(3)

This function refines the ordered unsigned Stirling numbers of the first kind,
since setting x1 = 1 yields the generating function for these numbers. We can
think of the ordered unsigned Stirling numbers of the first kind as counting
the number of ordered cycle decompositions. For example, in this setting
(5), (1, 4, 2), (3) and (5), (3), (1, 4, 2) are counted separately. The generating
function above enumerates descents (i.e. consecutive decreases) among min-
imal elements in cycles. In our examples, the first example has one descent
and the second has two descents. Although this is a classical application of
the compositional formula for exponential generating functions, we are not
aware of any work on these patterns.

Example 4. A = (∅, {21}, {1}, ∅, . . .) and p = (21, ∅, . . .).

In this case we are counting block descents at level 1 while while insisting
that the level two blocks in any level 1 block are increasing. In this case,
Gsh(A),sh(p)(u;x;y) equals exp(y2t) so that

∫ t

0
Gsh(A),sh(p)(u;x;y)du =

exp(y2t)

y2
.
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Hence

GA,p(t;x;y) =
x1 − 1

x1 − exp
(
(x1−1)y1

y2
(exp(ty2)− 1)

) .(4)

This is a refinement of the ordered Stirling numbers of the second kind. In

particular, if we write an ordered set partition in the form 458|12|9|367, using
bars to separate parts, this function counts the number of descents between

minimal elements. For our example, we would have two such descents. This

function also does not seem to be studied in the literature.

Example 5. A = (∅, ∅, {1}, ∅, . . .) and p = (21, 21, ∅, . . .).

In this case, GA,p(t;x;y) keeps track of the number of descents and

blocks at level 1 and the number of descents and blocks at level 2 in Stirling

permutation whose height is ≤ 2. In this case,

F ∅,21(t, z) =
z − 1

exp(t(z − 1))− z
,

Gsh(A),sh(p)(t;x;y) =
x2 − 1

exp(y2t(x2 − 1))− x2
, and

∫ t

0
Gsh(A),sh(p)(u;x;y)du =

y2t(x2 − 1) + ln
(

1−x2

exp(y2t(x2−1))−x2

)
x2y2

.

This yields

GA,p(t;x;y) =
x1 − 1

x1 − exp
(
y1(x1−1)

x2y2

(
y2t(x2 − 1) + ln

(
1−x2

exp(y2t(x2−1))−x2

))) .
(5)

This is a further refinement of the ordered unsigned Stirling numbers of the

first kind. Here we are counting descents among minimal elements using x1
and descents among non-minimal elements inside each cycle with x2.

Example 6. A = ({321}, {21}, {1}, ∅, . . .) and p = (21, ∅, ∅, . . .).

In this case, we are keeping track of block descents at level 1 while

insisting that that the level 2 blocks in each level 1 block are increasing and

the level 1 block have no consecutive decreasing sequences of length greater

than 2. To compute this generating function, we need a result from [MR06],
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namely that

F {321},21(x, t) =
exp(t/2)

cos( t
√
4x−1
2 )− 1√

4x−1
sin( t

√
4x−1
2 )

which is the generation function for distribution of descents in permutations
that avoid 321.

Thus

GA,p(t;x;y) =
exp(exp(y2t)/2y2)

cos( exp(y2t)
√
4x1−1

2y2
)− 1√

4x1−1
sin( exp(y2t)

√
4x−1

2y2
)
.

Of course, we should also consider patterns other than the descent pat-
tern. Unfortunately, there are few exponential generating functions for enu-
meration of other patterns, so we will mostly deal with avoidance. We will
set p = (∅, ∅, . . .), although in most of these examples we could enumerate
descents at level 1 or level 2. If we set A = {{123, 321}, {21}, {1}, ∅, . . .) we
obtain objects that correspond to ordered partitions of {1, 2, . . . , n} whose
minimal elements form a zigzag permutation. A classical result of [And81]
states that

F {123,321},∅(t, z) = 2 sec(t) + 2 tan(t)

so

GA,p(t;x;y) = 2 sec

(
−y1
y2

log(1− ty2)

)
+ 2 tan

(
−y1
y2

log(1− ty2)

)
.(6)

If we wish to switch A1 and A2 we just need to integrate André’s gen-
erating function. For a more modern examples, one could consult [EN03] or
[LR10] where the authors give many exponential generating functions for
permutations that avoid certain consecutive patterns.

3.2. Height ≤ 3

If we wish to look at the set of Stirling permutations of height at most 3, we
set A(4) = {1}. Computing the generating function in this case involves one
more integral than in the height ≤ 2 setting, so it becomes less likely that
we can derive a closed-form generating function. Considering the examples
in the previous section, we can integrate (1) and (2). Thus we have closed-
form generating functions for sequences like A = (A1, {21}, ∅, {1}, ∅, . . .) and
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A = (A1, ∅, {21}, {1}, ∅, . . .), assuming that each pi = ∅ and the generating
function FA1,∅(t, z) is known. However, it seems as if the functions in (3),
(4), (5), and (6) do not have nice integrals. Again, Corollary 2.1 can be used
to compute any particular term of these generating functions.

However, we can end with a simple example which shows the power of
the techniques. For example, we can consider

cosh(t) =
∑
n≥0

t2n

(2n)!

as the generating function for increasing permutations of even length. Using
the ideas of the proof of Theorem 1.1, it is easy to see that

F ∅,∅
(
y1

∫ t

0
cosh(y2u)du, x1

)
=

1

1− y1

y2
sinh(y2t)

is the generating function of y
bl1(σ)
1 y

bl2(σ)
2 over all Stirling permutations σ of

height ≤ 2 such that every block at level 1 contains an even number of level
2 blocks.

Next, one can compute that

H(t, y2, y3) =

∫ t

0

1

1− y2

y3
sinh(y3u)

du

=

2arctan

(
y2√

−(y2
2+y2

3)

)
+ 2arctan

(
−y2−tanh(y3t/2)√

−(y2
2+y2

3)

)
√

(y22 + y23)
.

It then follows that
1

1− y1H(t, y2, y3)

is the generating function of y
bl1(σ)
1 y

bl2(σ)
2 y

bl3(σ)
3 over all of Stirling permu-

tations σ of height ≤ 3 such that every block at level 2 contains an even
number of level 3 blocks and

1

1− y1

(
H(t,y2,y3)+H(−t,y2,y3)

2

)

is the generating function of y
bl1(σ)
1 y

bl2(σ)
2 y

bl3(σ)
3 over all Stirling permutations

σ of height ≤ 3 such that every block at level 2 contains an even number of
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level 3 blocks and every block at level 1 contains an even number of level 2
blocks.

Clearly many other examples of this type can be constructed where we
specify the conditions of the allowable level 2 and level 3 blocks in Stirling
permutations of height ≤ 3.

4. Ignoring higher blocks

In this section, we no longer set a maximum height for the Stirling permu-
tations that we will consider. Instead, we “ignore” all blocks above a certain
level. More specifically, we insist that Ai = ∅, pi = ∅, and we set yi = 1
for all i larger than some fixed integer. These conditions work well with
Theorem 1.1 because we already have an exponential generating function
for the case where Ai = pi = ∅ and yi = 1 for all i, namely the exponential
generating function for |Qn|

∑
n≥0

|Qn|
tn

n!
=

1√
1− 2t

.

Furthermore, we can integrate this function∫ t

0

du√
1− 2u

= 1−
√
1− 2t.

Then Theorem 1.1 allows us to introduce patterns to avoid and count at
level 1. As before, the main obstacles to any situation here are finding the
exponential generating function for the permutation case and integrating
this function.

Example 1. A = {{21}, ∅, . . .}, p = (∅, ∅, . . .), and yi = 1 for all i ≥ 2.

In this situation, we can obtain the generating function of y
bl1(σ)
1 over

the set of Stirling permutations that are increasing at level 1. Since

F 21,∅(t) = exp(t)

we have

GA,p(t;x;y) = exp
(
y1(1−

√
1− 2t)

)
.(7)

This gives us a rather surprising connection with the modified Bessel poly-
nomials. That is, (7) is the exponential generating function for the mod-
ified Bessel polynomials. These polynomials were first defined in [KF49]
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and earned their name from a connection with Bessel functions. Following

[Car57], we define the modified Bessel polynomials

Bn(y) =

n∑
k=1

(2n− k − 1)!

2n−k(n− k)!(k − 1)!
yk.

In [Car57], the author proved

∑
n≥0

tn

n!
Bn(y) = exp

(
y(1−

√
1− 2t)

)
.

This shows that the number of σ ∈ Qn with k level 1 blocks whose minimal

elements increase from left to right is equal to (2n−k−1)!
2n−k(n−k)!(k−1)! . We do not

know of any other proofs of this fact.

Example 2. A = (∅, ∅, ∅, . . .), p = (21, ∅, ∅, . . .), and yi = 1 for all i ≥ 2.

By altering A1 and p1 we can obtain many other interesting generating

functions. In this particular example, we count occurrences of the descent

pattern 21 at level 1 and make no restrictions at level 1. Using the expo-

nential generating function for descents over permutations in Theorem 1.1

produces

GA,p(t;x;y) =
x1 − 1

x1 − exp
(
y1(x1 − 1)(1−

√
1− 2t)

) .
Example 3. A = (∅, {21}, ∅, . . .), p = (21, ∅, ∅, . . .), and yi = 1 for all i ≥ 3.

In this case, GA,p(t;x;y) is the generating function that keeps track of

the number of descents and blocks at level 1 and the number of blocks at level

2 over the set of Stirling permutations whose level 2 blocks are increasing in

each level 1 block. We obtain

F ∅,21(t, z) =
z − 1

exp(t(z − 1))− z
,

Gsh(A),sh(p)(t;x;y) = exp(y2(1−
√
1− 2u))

so
∫ t
0 G

sh(A),sh(p)(u;x;y)du equals

∫ t

0
exp(y2(1−

√
1− 2u))du
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=
−1− y2 + exp(y2(1−

√
1− 2u))(1 + y2

√
1− 2t)

y22
.

This yields

GA,p(t;x;y) =
x1 − 1

x1 − exp
(
y1(x1 − 1)−1−y2+exp(y2(1−

√
1−2u))(1+y2

√
1−2t)

y2
2

) .
As in Section 3, we can attempt to integrate these functions again to intro-
duce new pattern conditions at level 2.

Example 4. A = ({21}, {21}, . . .), p = {∅, ∅, . . .}, xi = yi = 1 for all i ≥ 1.

As one last example, suppose that we want to compute the number of
Stirling permutations where there are no block descents at any level and
we set xi = yi = 1 for all i. This does not strictly fit into the format of
“ignoring higher blocks,” but we can still accomplish our goal. We want to
find GA,p(t;1;1), where 1 = (1, 1, . . .). Then if GA,p(t;1;1) =

∑
n≥0 gn

tn

n! ,
Theorem 1.1 implies that

GA,p(t;1;1) = F 21,∅
(∫ t

0
GA,p(u;1;1)du, 1

)
(8)

= exp

(∫ t

0
GA,p(u;1;1)du

)
.

Since g0 = 1, it is easy to see that equation (8) completely determines
the sequence g0, g1, . . .. In fact, if GA,p(t;1;1) = 1

1−t is a solution to this
equation, then we must have gn = n! for all n. This is, of course, easy to
see combinatorially. That is, if σ ∈ Qn−1 has no block descents, then we can
either insert the two copies of n as a level 1 block at the right end of σ or
immediately before the second occurrence of i for any i = 1, . . . , n− 1.

5. Labeled trees

In this section, we shall show that the results of the previous sections can
be described in terms of patterns in trees.

We define LT n to be the set of planar, rooted, binary trees with n + 1
leaves such that

• each i ∈ {0, 1, 2, . . . , n} is used to label exactly one leaf, and
• for any vertex, the smallest label used in its left subtree is less than
the smallest label used in its right subtree.
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For example

(9)

is in LT 3. However, the tree

is not in LT 3 because it fails the second condition at the vertex whose right

child is the leaf labeled 1.

A left (respectively right) comb is a tree in which every right (respec-

tively left) child is a leaf. In other words, a left comb only grows to the left,

and a right comb only grows to the right. Consider a tree T that satisfies all

of the properties necessary to be in LT n except that its leaves are numbered

bijectively with some other n-element subset of the integers. We say that

the reduced form of T , written red(T ), is the unique S in LT n obtained by

replacing the ith smallest label in T with i for each i ∈ {0, . . . , n}.
As outlined in [Dot12], we can recursively define a bijection

Φ : LT n → Qn

by thinking of a tree T as a left comb with subtrees T1, . . . , Tk as its set of

right children. We then apply Φ to each subtree Ti after reducing Ti. We let

Φ take the one-node tree to the empty word, and then let

Φ(T ) =

{
1Φ(T1)1 if k = 1
red(Φ(T1) . . .Φ(Tk)) if k > 1.

Intuitively, we begin at the root and perform a depth-first search, exploring

left as far as possible before exploring right. Each time we descend to the

right, we record the smallest leaf label in that right subtree. When we ascend

an edge that prompted us to record an i when we descended it initially, we

record the i a second time. For example, Φ maps

(10)
�−→ 133221.
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This bijection allows us to map the notions of level and block patterns
from Qn to LT n. In particular, the level of a vertex in a tree T ∈ LT n is
equal to one greater than the number of right branches on the path from the
root to the vertex. Occurrences of the block pattern p of length m in a tree
T ∈ LT n correspond to appearances of left combs with labels p1, . . . , pm
inside the tree T . The underlines of p tell us which left branches can be
removed in order to obtain the left comb inside T .

For example, the tree

has height 1. It has three blocks, all at level 1. Furthermore, it has two
occurrences of the pattern 21 at level 1, in the entries 4, 2 and 4, 3. It has
only one occurrence of the descent pattern 21 at level 1, in the entries 4, 2.
This is because the leaves labeled 4 and 3 are not right children of consecutive
nodes in the tree.

When p is a consecutive pattern, block patterns correspond exactly to
the notion of consecutive patterns studied in [Dot12]. In that paper, the
author computed the number of trees avoiding many small sets of consecutive
tree patterns and proved a general asymptotic result for these consecutive
patterns.

6. k-Stirling permutations

In this section, we shall prove an analog of Theorem 1.1 for k-Stirling per-
mutations. The set Qn,k of k-Stirling permutations of order n is the set
of all rearrangements of the multiset {1k, 2k, . . . , nk} such that every ele-
ment between two consecutive occurrences of i is greater than i for each
i ∈ {1, 2, . . . , n}. Thus Qn,2 = Qn. Indeed, our main theorem in this section
will reduce to Theorem 1.1 when k = 2.

For σ ∈ Qn,k, we let [i, i]σ denote the consecutive segment of σ that lies
between the first occurrence of i in σ and the last occurrence of i in σ. We
let (i, i)σ be the word that results from removing all occurrence of i from
[i, i]σ. For i �= j, we write [i, i]σ ⊂ [j, j]σ if [i, i]σ is a consecutive subsequence
of [j, j]σ. We say that [i, i]σ is a level 1 block if it is not contained in any
[j, j]σ for j �= i. For � ≥ 2, we define the level � blocks of σ inductively by
saying that [i, i]σ is level � block if there is a level �−1 block [j, j]σ of σ such
that in red((j, j)σ) the block that corresponds to [i, i] is a level 1 block. If
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[i, i]σ ⊂ [j, j]σ, [i, i]σ is a level k block, and [j, j]σ is a level k− 1 block, then
we will say that [j, j]σ is the parent of the block [i, i]σ.

Notice that, for any k ≥ 3, the level k blocks contained in a given level
k − 1 block [h, h]σ in σ ∈ Qn,k are naturally partitioned into k − 1 groups
depending on which two consecutive occurrences of h the blocks fall between.
We say that the level k block is of type s if it occurs between the sth and
s + 1st occurrences of h. Then we say that two blocks are siblings if they
are both level 1 blocks or if they share the same parent [j, j]σ and are of the
same type.

We let p(i,j)(σ) equal the number of occurrences of the block pattern p
at level i and type j. Notice that, since level 1 blocks do not have a type, this
definition only makes sense for � ≥ 2. Now, instead of avoiding sequences of
sets, we can avoid sequences of tuples of sets. We will write Ã for a sequence
(A1, A2, . . .) such that

• A1 is a set of patterns
• Ai is a (k − 1)-tuple of sets of patterns, which we will write as
(Ai,1, . . . , Ai,k−1).

Similarly, p̃ indicates a sequence whose first entry is a pattern and whose
other entries are (k−1)-tuples of patterns. We suppress k from the notation.
Then we can write Qn,k(Ã) for the set of k-Stirling permutations of order
n that avoid each pattern in A1 at level 1 and each pattern in Ai,j among
the blocks at level i and type j. By x̃ we denote the set of variables

x1, x2,1, . . . , x2,k−1, x3,1, . . . , x3,k−1, . . . .

Now our main generating function is

GÃ,p̃
k (t; x̃; ỹ) = 1 +

∑
n≥1

tn

n!

∑
σ∈Qn,k(Ã)

x
p
(1)
1 (σ)

1 y
bl(1)(σ)
1

∏
i≥2

k−1∏
j=1

x
p
(i,j)
i,j (σ)

i,j y
bl(i,j)(σ)
i,j

where bl(i,j)(σ) is the number of level i blocks of type j in σ.

Before we can state our theorem, we also need to refine the operator sh.
Namely, if s̃ = s1, (s2,1, . . . , s2,k−1), (s3,1, . . . , s3,k−1), . . ., then by shj(Ã), we
mean the new sequence of tuples

shj(Ã) = s2,j , (s3,1, . . . , s3,k−1), . . . .

We now state a more general form of Theorem 1.1.
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Theorem 6.1. GÃ,p̃
k (t; x̃; ỹ) is equal to

FA1,p1

⎛
⎝y1

∫ t

0

⎛
⎝k−1∏

j=1

G
shj(Ã),shj(Ã)
k (u; shj(Ã); shj(Ã))

⎞
⎠du, x1

⎞
⎠ .

Proof. We set Qm
n,k(Ã) to be the set of all σ ∈ Qn,k(Ã) with m level 1

blocks. We describe a way in which we can uniquely construct all k-Stirling
permutations σ ∈ Qm

n,k(Ã). We will refer to this process as building a k-
Stirling permutation by levels.

1. First, we partition the set {1, 2, . . . , n} into an (unordered) collection
of m nonempty sets {S1, S2, . . . , Sm}. Let ai be the minimal element
of Si for i = 1, . . . ,m.

2. For each i = 1 to m, we further partition each Si − {ai} into a k − 1
tuple of sets (Ti,1, . . . , Ti,k−1), some of which may be empty. Then we

create a k-Stirling permutation in Q|Ti,j |(shj(Ã)) out of the elements
of Ti,j . That is, the reduced form of this Stirling permutation should
be a member of Q|Ti,j |(shj(Ã)). Call this permutation σ(i,j). If Ti,j is

empty, then σ(i,j) is the empty permutation. We let

σ(i) = aiσ
(i,1)aiσ

(i,2)ai . . . aiσ
(i,k−1)ai.

3. We set the final k-Stirling permutation to be the concatenation
σ(τ1) . . . σ(τm) where τ = τ1 . . . τm is an element of Sm which avoids
A1.

This process yields

∑
σ∈Qm

n,k(Ã)

x
p(1)
1 (σ)

1 y
bl(1)(σ)
1

∏
i≥2

k−1∏
j=1

x
p
(i,j)
i,j (σ)

i,j y
bl(i,j)(σ)
i,j

=
∑

τ∈Qm(A1)

x
p1(τ)
1 ym1

∑
a1+···+am=n

ai≥1

(
n

a1, . . . , am

)

×
k−1∏
i=1

∑
bi,1+···+bi,k−1=ai−1

bi,j≥0

(
ai − 1

bi,1, . . . , bi,k−1

)

×
k−1∏
j=1

(
Gshj(Ã),shj(p̃)(t; shj(x̃); shj(ỹ))

∣∣∣
t
bi,j

bi,j !

)
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∑
τ∈Qm(A1)

x
p1(τ)
1 ym1

∑
a1+···+am=n

ai≥1

(
n

a1, . . . , am

)

×

⎛
⎝k−1∏

j=1

(
Gshj(Ã),shj(p̃)(t; shj(x̃); shj(ỹ))

)⎞⎠
∣∣∣∣∣∣

tai−1

(ai−1)!

=
∑

τ∈Qm(A1)

x
p1(τ)
1 ym1

∑
a1+···+am=n

ai≥1

(
n

a1, . . . , am

)

×
∫ t

0

⎛
⎝k−1∏

j=1

(
Gshj(Ã),shj(p̃)(u; shj(x̃); shj(ỹ))

)⎞⎠
∣∣∣∣∣∣
tai

ai!

=
∑

τ∈Qm(A1)

x
p1(τ)
1 ym1

⎛
⎝∫ t

0

⎛
⎝k−1∏

j=1

(
Gshj(Ã),shj(p̃)(u; shj(x̃); shj(ỹ))

)⎞⎠
⎞
⎠

m∣∣∣∣∣∣
tn

n!

.

Thus

∑
σ∈Qn(Ã)

x
p
(1)
1 (σ)

1 y
bl(1)(σ)
1

∏
i≥2

k−1∏
j=1

x
p
(i,j)
i,j (σ)

i,j y
bl(i,j)(σ)
i,j

=

n∑
m=1

∑
σ∈Qm

n,k(Ã)

x
p
(1)
1 (σ)

1 y
bl(1)(σ)
1

∏
i≥2

k−1∏
j=1

x
p(i,j)
i,j (σ)

i,j y
bl(i,j)(σ)
i,j

=

n∑
m=1

∑
τ∈Qm(A1)

x
p1(τ)
1 ym1

×

⎛
⎝∫ t

0

⎛
⎝k−1∏

j=1

(
Gshj(Ã),shj(p̃)(u; shj(x̃); shj(ỹ))

)⎞⎠
⎞
⎠

m∣∣∣∣∣∣
tn

n!

= FA1,p1

⎛
⎝y1

⎛
⎝∫ t

0

⎛
⎝k−1∏

j=1

(
Gshj(Ã),shj(p̃)(u; shj(x̃); shj(ỹ))

)⎞⎠
⎞
⎠ , x1

⎞
⎠
∣∣∣∣∣∣
tn

n!

.
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Finally, we see that GA,p(t;x;y) equals

= 1 +
∑
n≥1

tn

n!

∑
σ∈Qn(Ã)

x
p
(1)
1 (σ)

1 y
bl(1)(σ)
1

∏
i≥2

k−1∏
j=1

x
p(i,j)
i,j (σ)

i,j y
bl(i,j)(σ)
i,j

= FA1,p1

⎛
⎝y1

⎛
⎝∫ t

0

⎛
⎝k−1∏

j=1

(
Gshj(Ã),shj(p̃)(u; shj(x̃); shj(ỹ))

)⎞⎠
⎞
⎠ , x1

⎞
⎠

which proves Theorem 6.1.

As in the k = 2 case, this theorem gives us a recursion for n! times
the coefficient of tn in GA,p

k (t;x;y). This is useful when the integral in
Theorem 6.1 cannot be computed easily. However, this recursion is rather
unwieldy, so we will not record it here.

We can compute the integral in Theorem 6.1 in some simple cases. For
example, if we set A3,j = {1} for each j then we obtain Stirling permutations
of height at most 2. With no additional restrictions or enumeration at levels
2 or greater, we can set k = 2 and compute the integral∫ t

0

du

(1− uy2,1)(1− uy2,2)
=

1

y2,1 − y2,2
log

(
ty2,2 − 1

ty2,1

)
.

We could then plug this function into the F corresponding to A1 and p1,
as indicated in Theorem 6.1. This integral remains computable for slightly
larger values of k, although the result gets more and more complicated. An
easier case is when A3,j = {1} and A2,j = {21} for all j, since the resulting
integrand is

exp

⎛
⎝k−1∑

j=1

uy2,j

⎞
⎠ .

If we are willing to set some of the variables equal, we can obtain more
closed-form generating functions. For example, if we set A3,j = {1}, p2,j =
21, x2,j = x2, and y2,j = y2 for all j, then our goal is to compute the
integral

∫ t

0

(
1− x2

exp (uy2(x2 − 1))− x2

)k

du

which can be done for small values of k.
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Finally, we can construct many examples where we restrict the possible
size of blocks of various types. For example, we know that

cosh(y2,1t) =
∑
n≥0

y2n2,1t
2nn

(2n)!

is the generating function of even length permutations and

sinh(y2,2t) =
∑
n≥0

y2n+1
2,1 nt2n+1

(2n+ 1)n!

is odd length permutations. Then

∫ t

0
cosh(y2,1u) sinh(y2,2u)du

=
y2,2 − y2,2 cosh(y2,1t) cosh(y2,2t) + y2,1 sinh(y2,1t) sinh(y2,2t)

y22,1 − y22,2
.

By Theorem 6.1, the generating function of y
bl1(σ)
1 y

bl2,1(σ)
2,1 y

bl2,2(σ)
2,2 over all

3-Stirling permutations of height ≤ 2 such that, for any level 1 block [j, j] of
σ, its type 1 subblock of level 2 has even length and its type 2 level subblock
is of odd length, equals

1

1− y1

(
y2,2−y2,2 cosh(y2,1t) cosh(y2,2t)+y2,1 sinh(y2,1t) sinh(y2,2t)

y2
2,1−y2

2,2

) .
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