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On the asymptotic statistics of the number of
occurrences of multiple permutation patterns

SVANTE JANSON, BRIAN NAKAMURA, AND DORON ZEILBERGER

We study statistical properties of the random variables X, (), the
number of occurrences of the pattern o in the permutation 7. We
present two contrasting approaches to this problem: traditional
probability theory and the “less traditional” computational ap-
proach. Through the perspective of the first approach, we prove
that for any pair of patterns o and 7, the random variables X,
and X, are jointly asymptotically normal (when the permutation
is chosen from S,,). From the other perspective, we develop algo-
rithms that can show asymptotic normality and joint asymptotic
normality (up to a point) and derive explicit formulas for quite a
few moments and mixed moments empirically, yet rigorously. The
computational approach can also be extended to the case where
permutations are drawn from a set of pattern avoiders to produce
many empirical moments and mixed moments. This data suggests
that some random variables are not asymptotically normal in this
setting.

KEYWORDS AND PHRASES: Permutation pattern, random permutation,
joint asymptotic normality, mixed moments.

1. Introduction

The primary area of interest in this article is the study of patterns in per-
mutations. We will denote the set of length n permutations by S,. Let
aias . ..a be a sequence of k distinct real numbers. The reduction of this
sequence, which is denoted by red(a;...ag), is the length k& permutation
71 ...7T; € S such that order relations are preserved (i.e., m; < 7; if and
only if a; < a; for every i and j). Given a (permutation) pattern 7 € Sy, we
say that a permutation m = w1 ...7m, € S, contains the pattern 7 if there
exists 1 <1y < iy < --- < i < nsuch that red(m;, 7, ... m;, ) = 7. Each such
subsequence in w will be called an occurrence of the pattern 7. If @ con-
tains no such subsequence, it is said to avoid the pattern 7. Additionally,
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we will denote the number of occurrences of the pattern 7 in permutation 7
by N:(r) (e.g., m avoids the pattern 7 if and only if N (7) = 0).
For any pattern 7 and integer n > 0, we define the set

(1) Sp(7) :={m €S, : 7 avoids the pattern 7}

Sn(7)|. The patterns o and 7 are said to be Wilf-

and also define s, (1) := |
= sp(7) for all n > 0. We may also consider the more

equivalent if sy (o)
general set

(2)  Sp(r,r):={m €S8, : 7 contains exactly r occurrences of 7}.

We will analogously define s, (7,7) := |S, (7, 7).

A classical problem in this area is how to find an enumeration for these
sets or, at the least, to study properties of the generating function encoding
the enumerating sequence (for example, is it rational /algebraic/holonomic?).
However, it is not even known if these generating functions are always holo-
nomic. In general, the enumeration problem gets very difficult very quickly.
Patterns up to length 3 are well understood, but there are basic unresolved
questions even for length 4 patterns. For example, it is known that there are
three Wilf-equivalence classes for length 4 patterns: 1234, 1324, and 1342.
While the enumeration problems have been solved for 1234 and 1342, no
exact enumeration (or even asymptotics) is known for 1324.

A (probabilistic) variation of this problem was posed by Joshua Cooper
[6]: Given two (permutation) patterns o and 7, what is the expected number
of copies of ¢ in a permutation chosen uniformly at random from S,,(7)? We
note that if the enumeration of S,,(7) is known, this question is equivalent to
counting the total number of occurrences of ¢ in permutations from S, (7),
or, put more precisely, to compute

(3) To(o,7):= Z Ny (7).

776811, (T)

Boéna first addressed the question for 7 = 132 when o is either the
increasing or decreasing permutation in [2]. He shows how to derive the gen-
erating functions for 7,(12...%,132) and T, (k...21,132), the total num-
ber of occurrences of 12...k in S,,(7) and occurrences of k...21 in S,(7),
respectively. In [4], Béna also shows that T),(213,132) = T,,(231,132) =
T,(312,132) for all n and provides an explicit formula for them. Rudolph
[13] also proves some conditions on when two patterns, say p and ¢, occur
equally frequently in S,,(132) (i.e., T, (p, 132) = T,,(q, 132) for all n).
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In [9], Homberger answers the analogous question when 7 = 123 and
shows that there are three non-trivial cases to consider: T,,(132,123),
T,.(231,123), and T,,(321,123). He finds generating functions and explicit
formulas for each one.

We will consider a more general problem. Given the pattern 7, suppose
that a permutation 7 is chosen uniformly at random from S, (7). Given an-
other pattern o, we define the random variable X, (7) := N, (), the number
of copies of o in 7. Observe that 1), (o, 7)/s,(7) = E[X,], the expected value
of X, (i.e., the first moment of the random variable). The focus of this paper
is studying higher moments for X, as well as mixed moments between two
such random variables that count different patterns. We will consider the
case where the permutation 7 is randomly chosen from §,, as well as some
cases where 7 is chosen from S, (7) (for various patterns 7).

In this paper, we approach the problem from two different angles. On
one end, we will present (human-derived) results proving that the random
variables are jointly asymptotically normal when the permutations are cho-
sen at random from S,,. Unfortunately, the techniques do not naturally ex-
tend to the scenario when the permutations are chosen from S, (7). On the
other end, we present a computational approach that can quickly and easily
compute many empirical moments for the general case (permutations cho-
sen from S,(7)). In addition, for the case where permutations are chosen
from &, the computational approach can rigorously produce closed-form
formulas for quite a few moments and mixed moments of the random vari-
ables.

This paper is organized as follows. In Section 2, we show that the random
variables X, are jointly asymptotically normal when the permutations are
randomly chosen from S,,. In Section 3, we review and outline the functional
equations enumeration approach developed in [10, 11]. In Section 4, we derive
both rigorous results and empirical values for higher order moments and
mixed moments for various random variables X,. In Section 5, we conclude
with some final remarks and observations.

2. Joint asymptotic normality of multiple patterns

In this section we let w be a permutation chosen uniformly at random from
S, (without any condition) and we study the joint distribution of the random
variables X, ,, := X, (), the number of copies of o in 7, for different patterns
o € 8, :=Jg—; Sk- We consider asymptotics as n — oo for (one or several)
fixed o.
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Each X, , has an asymptotic normal distribution, as was shown by Béna
[1] (see also [3]).! We give another (perhaps simpler) proof of this; moreover,
we extend the result to joint asymptotic normality for several patterns o.

The asymptotic variances and covariances depend on the patterns in a
slightly complicated way, so we begin with some definitions. For £ > 1 and
1 <1 <k, define

(4) Gri(T) = (I;: 11>$i_1(1 — )kt

For a permutation o € Sy, define

k
(5) Go(z,y) = ﬁ (Z Ire,i (@) Gk .o (i) (Y) — %) .
i=1

Let Z,, 0 € Sy, be jointly normal random variables with E Z, = 0 and
(co)variances

(6) o
Cov(Zs, Zr) = Yo r := (Go, Gr) 12([0,1]2) = /0 /0 Go(z,y)Gr(x,y) dzdy.

(Such normal random variables exist since the matrix (¥,;)s- is non-
negative definite. As is well known, the joint distribution is uniquely defined
by the means and covariances.)

We denote the length of a permutation o by |o|, and let 95 denote
convergence in distribution of random variables.

Theorem 2.1. For every pattern o € Sk, as n — 00,

1 n
Xo,n - EXo,n . XU:” o W(kf\) d
(7) Yy Y » Zo-

Moreover, this holds jointly for any finite family of patterns o. Further-
more, all (joint) moments converge; in particular, for any permutations o,

COV(Xa,ny XT,n) oy
oI 1 o

(8)

Tt is interesting to note that computing P(X,, = 0) amounts to computing
sp (o), but, unfortunately, convergence in the distribution of X ,, does not give us
the asymptotic behavior of s, (o).
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Before giving the proof we give some comments. First, as noted above,
if o has length |o| = k,

1 1
(9) EXyn = (Z) i Wnk, as n — oo.

The asymptotic covariances ¥, ; can be computed explicitly. By a beta
integral,

! (k= I\T@I(k—i+1) 1
(10) /0 Gr,i(z) do = <Z B 1) NS

and similarly, for any £,/ >1land 1 <i<k, 1 <5</,

(11)

/Olgw(x)g“(x) dz = (’5:11) <f - 1) D(i+j— 1)5((:12— i—j+1)

()

It follows from (10) that, if |o| = k,

ko1

which implies, using (11) twice, if further |7] = ¢,

1,1 k 1
/0 /0 > 9 (@) o) (v Zgz,g T)Go7 (5 )_Z dz dy
i=1
1,1 k 1
= i o(i - dedy — —
/0 /O ;gk T) G0 (i) (Y de,] ) ge,7(j)(y) do dy 7
k

1 1
1
/ gr,i(%)gej () dz /0 ko) )9e7G) () Ay = -5

i=1

I
]
-

k

:i:ljzi;(k(_k?!z(—gl_)!i)p(i_;iIQ)<k+]i:z:_j>
. U(Z)T)() 2) (k—i—f—a(z)z)—f(]))_i

k—oli A
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Consequently, by (6) and (5), if |o| = k and || = ¢, then

(13)

e () ()
' <U(i)aJ(ri)T(—j)1_ 2) (kM/-c_—US-zz)_ T(j)) (k- 1)!1@!1@ —1)ler

Proof of Theorem 2.1. Let Uy,...,U, be independent and identically dis-
tributed (i.i.d.) random variables with a uniform distribution on [0, 1]. It is
a standard trick that (by symmetry) the reduction red(Uy,...,U,) is a uni-
formly random permutation in S, (note that Uq,...,U, almost surely are
distinct), so we can take this as our random 7 and obtain the representation,
with k = |o|,

(14) Xon = Xo(m) = Z 1[red(Us;,,...,U;,) = o].

1< <lp

This is an example of an asymmetric U-statistic, and (a rather simple
instance of) the general theory in [14, Section 11.2] can be used to show
the theorem. However, the details are a bit technical, particularly the cal-
culation of the asymptotic covariances, so we will instead use another, more
symmetric representation. (See [14, Remark 11.21].)

Let V1,...,V, be another sequence of i.i.d. random variables, uniformly
distributed on [0,1] and independent of Uy, . .., Uy,. Let 7’ be the permutation
that sorts these numbers such that Vi) < -+ < Vi) and let m be the
reduction of Uy (1), ..., Up(n). Then 7 is still uniformly random, and it is
easy to see that

(15) Xop=Xo(r):= > 1[red(Up)s--- Upi) = 0]

*
= Z 1[red(Uj,,...,U;,) =0]-1[V;, <--- < V],
JiseorJ
where Z* denotes summation over all distinct indices ji, ..., ji. This rep-

resentation, while in some ways more complicated than (14), has the great
advantage that we sum over all ordered n-tuples of distinct indices; this is
thus an example of a U-statistic, and we can apply the basic central limit
theorem by Hoeffding [8, Theorem 7.1], see also [15] and [14, Section 11.1].
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In order to compute the (co)variances, we follow the path of Hoeffding’s
proof.

The main idea of Hoeffding’s proof of his central limit theorem is to use
a projection. In our case we let W; := (U;, V;) € [0,1]% and write (15) as

(16) Xo,n: Z fU(ij"'?ij)?

JiseensJie

for a certain (indicator) function f,. We then take the conditional expecta-
tion of f,(W7i,...,Wy) given one of the variables W;:

(17) foi(,y) = E(fo(Wi,...,Wi) | Wi = (2,y));

we also take the expectation
(18) M= Efo-(Wb...,Wk) :Efaﬂ(Wl)

Hoeffding then replaces f, by f.(Wh,..., W) := M+Zf:1(fgyi(Wi) —p),

and notes that if f := f, — f/, then the resulting error in the sum has
variance
* 2
w (X f:<Wj1,...7ij>>
J1se-Jk
Z Z ]17"')ij)fc/r/(w/l1)'"7VVZ;¢))'
JseesJie by li

By the construction of f., E(fY(W;j,,...,W;,) | Wj,) = 0 for each 4, and thus
each term in the sum in (19) with |{i1,..., ik} N {j1,.-.,Jk}| < 1 vanishes.
Thus, the sum in (19) is O(n?*=2), which is negligible with the normaliza-
tion used in Theorem 2.1. Consequently, we can approximate X, , —E X, ,

by

.k
200 D> > (fou(Wy) — p)

Jiseensgn =1

(n— 1)k;12(f0;i(wj) - N) =(n— 1)EZFU(W])
j=1

I

s
I
—
.
I
—
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where (n — 1)2=L=(n—1)---(n — k+ 1) and

k

(21) Fo(z,y) =Y (foila,y) — ).

=1

The asymptotic normality of X, , now follows by the standard central
limit theorem for the i.i.d. random variables Fi,(W}), which yields (X, —

Hi‘an,n)/nk_l/2 BN N(0,%, ) where

1 1
(22) Yoo = E(FU(Wl)g) :/0 /0 Fy(z,y)*dz dy.

Joint normality for several patterns o (possibly of different lengths) fol-
lows in the same way, with the asymptotic covariances

1 1
@) Ser = BEWEMW) = [ [ FlenFie) dedy

It remains to compute the functions F, defined in (21). In order to do
this, we see that from (17) and the definition of f, as an indicator function,
cf. (15)—(16),

(24)
fa;i(m,y) = ]P’(red(Ul,. . .,Uk) =0 ‘ U, = {E) ]P)(Vl <<V | V.= y)

For the second probability in (24) we require that Vi,...,V;—1 <y and
Vit .-, V& > y, and furthermore that these two sets of variables are in-
creasing; since the variables are independent and uniformly distributed, the
probability is, recalling the notation (4),

yl -yt 1

(25) oD ol o)

Similarly, for the first probability in (24) we require that the o(i):th
smallest of Uy, ...,U is x, and that the others come in the order specified
by o, and the probability of this is (k — 1)!*1gk70(i)(x). Consequently,

1
(26) fU;i(xv y) = W k.o (i) (x)gkz(y)
Furthermore,
(27)
1
pi=E f(Wh,...,Wi) =P(red(Us,...,Up) =0)P(Vi < --- < V) = —.
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It follows from (21), (26), (27) and (5) that F,(z,y) = G,(y,z). Hence
(22)—(23) agree with (6), and Hoeffding’s theorem yields (7).

Hoeffding’s theorem (and its proof sketched above) yields also the con-
vergence (8) of the covariances. To see that moment convergence holds also
for higher moments, let m be a positive integer. By (16),

*

(28) E(Xon—EXon)" = > - Z E]T(feWis oo, W) —p)
=1

JitseesJr1 JimseesJm 1

where the expectation on the right-hand side vanishes unless each index set
{Jj1i,- -, Jmi} contains at least one index shared by another such set. In this
case, however, there are at most mk — m/2 distinct indices, and it follows
that the moment (28) is a polynomial in n of degree at most mk —m/2. In
particular, the normalized central moment E((X,, — E X,,)/nfF~1/2)m =
O(1). If m is an even integer, this implies, by standard results on uniform
integrability, that all moments of lower order converge to the corresponding
moments of the limit Z,, and the same holds for joint moments. Since m is
arbitrary, this shows convergence of all moments. O

Example 2.2. The case £ = 1 is trivial, with Xy, = n deterministic.
Indeed, (4)—(5) yield g1,1(z) =1 and Gy 1(z,y) = 0.

Example 2.3. The simplest non-trivial example is £ = 2, where Xo1(7)
is the number of inversions in w. The distribution of this random variable,
for m uniformly at random in S, is called the Mahonian distribution, and
it is well known that it is asymptotically normal, see e.g. [7, Section X.6].
(See [5] for the case of permutations of multi-sets; it would be interesting
to obtain similar results for other patterns in multi-set permutations.) A
simple calculation using (4)—(5) yields

(29) Gori(z,y) = —2(z - 3) (v — 3)

and (6) or (13) yields X9 21 = 1/36. Hence Theorem 2.1 in this case yields
the well-known

Xorn = 5(3)

(30) L

4, N(0,1/36).

Example 2.2 is the only case when the limit Z, in Theorem 2.1 vanishes,
as we show next.

Theorem 2.4. If k > 1, then ¥, , > 0 and thus Z, is non-degenerate, for
every g € S.
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Proof. By (4),

k
(31) > gralz) =1.
i=1

Hence (5) may be written, using Kronecker’s delta d; ;,

kK k
3 Golw.w) = w2 O (et — )iy W)

i=1 j=1

For a fixed k, the polynomials g ;, 1 < i < k, are linearly independent
(and form a basis in the k-dimensional vector space of polynomials of degree
< k—1). Hence the k? tensor products g ;(x)gx j(y) are linearly independent
in L?([0,1])?), and it follows from (32) and (6) that if & > 2, then G, is not
identically 0 and thus X5, = [[ Go(2,y)? > 0. O

For a given k we have k! patterns ¢ € S and thus k! limit variables
Zy. We have just seen that (if £ > 1) these are all non-degenerate; however,
they are not linearly independent. For example, the sum ) S Xo(m) = (Z)
for every 7, so the sum is deterministic and it follows that > s Z, = 0.
Many non-trivial linear combinations vanish too, as is seen by the following
theorem.

Theorem 2.5. Let k > 1. The k! limit random variables Z,, o € Sk, span
a linear space of dimension (k —1)2.

Proof. By the definition (6), this linear space, V say, is isomorphic (and
isometric for the appropriate L?-norms) to the linear space V; spanned by
the functions G, on [0,1]%. Furthermore, by (32) and the comments after
it, V; is isomorphic to the linear space V5 of k X k matrices spanned by the
matrices Ay = (0} 5(;) — %)szl Let V3 be the space of all k x k matrices with
all row sums and column sums zero. Then each matrix A, € V3 and thus
Vo C V3. Conversely, it is easily seen that each matrix in V3 is a linear com-
bination of matrices A,, for example using the well-known fact that every
doubly stochastic matrix is a convex combination of permutation matrices.
Hence Vi = V3. Finally, dim(V3) = (k — 1)? since a matrix in V3 is uniquely
determined by its upper left corner (kK — 1) x (k — 1) submatrix obtained
by deleting the last row and column, and conversely this submatrix may be
chosen arbitrarily. O
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Example 2.6. There are 6 patterns of length £ = 3. Taking them in lexi-
cographic order 123, 132, 213, 231, 312, 321, and using Maple to calculate
the covariance matrix of the limit variables Z, by (4)—(6), we find

(33) (Cov(Zs,2r)) ,res, = (Borr)pres,

26 12 12 —13 —13 —24
2 14 -1 -6 -6 -13
112 -1 14 -6 -6 -13
52 |-13 -6 -6 14 -1 12
~13 -6 -6 -1 14 12
—24 —13 —-13 12 12 26

We note that the asymptotic variances differ between different patterns;
they are 13/7200 (for 123 and 321) or 7/7200 (for the other patterns).
The eigenvalues of the covariance matrix (33) are

3
(34) W(25’5’5’1’0’0)’

verifying that this matrix has rank 4 as given by Theorem 2.5. A choice of
pairwise orthogonal eigenvectors (in the corresponding order) is

2 0 0 2 1 1

1 1 0 -1 —1 1

1 -1 0 -1 —1 1

(35) _1 Y O Y 1 Y _1 Y 1 9 1
-1 0 -1 -1 1 1

-2 0 0 2 —1 1

Remark 2.7. The last eigenvector in (35) corresponds to the trivial fact
mentioned above that the sum of all Z, vanishes. The fifth eigenvector, also
with eigenvalue 0, says that

(36) 2193 + Zog1 + Z312 — Z132 — Z213 — Z321 = 0.
Let Y () be the corresponding number
(37) Y(m) := Xi3(m) + Xaz1(m) + X312(7m) — Xiz2(m) — Xo13(m) — X391 (7),

and let Y;, := Y (m) with 7w chosen uniformly at random in S,. (Note that
Y (m) is the sum of the signs of the (%) permutations red(m;, i, m;,).) The-

orem 2.1 and (36) thus say that, as n — oo, n~%/2Y,, 0. However, in
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this case, the random variable Y,, does not vanish identically. (Take 7 as the
identity permutation.) Using the same methods as in Section 4.1, we can
show that

n?(n —1)(n — 2)‘
18

(38) Var(Y,,) =

In particular, we have that the leading term of Var(Y},) is 1—18714, i.e. of
order n?=2 instead of n?*~! as in the cases when Theorem 2.1 yields a
non-degenerate limit. In such cases, one can use a more advanced version
of Hoeffding’s argument above and show that there is an asymptotic dis-
tribution that can be represented as an (infinite) polynomial of degree 2 in
normal random variables; this polynomial can further be diagonalized as a
linear combination of squares of independent normal variables, see e.g. [15]
and [14, Section 11.1]. In the present case this leads to

o0
(39) n2Y, Syt= Y

£, m=—o00
£,m#£0

1
2m20m

(gt?,m - 1) 5

where &, are i.i.d. standard normal random variables. (We omit the de-
tails but note that the bilinear form in [14, Corollary 11.5(iii)] in this case
after some calculation turns out to correspond to the convolution operator
on L?(T?) given by convolution with H(z,y) = %(2:5 —1)(2y — 1) (where we
identify the group T with [0, 1)); hence its eigenvalues are the Fourier coef-
ficients H(¢,m) = —1/(672¢m), which yield the coefficients in (39).) Note
that, since Var(fam) =2,

oo

N 2 1
(40) VarY :Z Z_ mzﬁ7
£,m#£0

in accordance with the asymptotic formula Var(Y;,) ~ n/18. Furthermore,
the representation (39) of the limit Y yields its moment generating function
as

o0 o
. 2t \—1/2 2 N1
tY* __ _
(41) Ee™ = H <1 B 271'2€m> - H (1 B 7r4€2m2>
fm=—o00 fm=1
£,m#0
o
t
Y | AL V)

o] sin(t/mm)’
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This type of limit is typical of the degenerate cases that can occur for
certain linear combinations of pattern counts. It is also possible to obtain
higher degeneracies in special cases, with variance of still lower order and a
limit that is a polynomial of higher degree in infinitely many normal vari-
ables; one example is to generalize (37) by taking, for any fixed k > 3, the
sum of the signs of the (Z) patterns of length k£ occurring in 7. It can be
seen that for this example, Var(Y},) is a polynomial in n of degree k + 1 only
(instead of the typical 2k — 1), because all higher order terms cancel in this

highly symmetric example.

Example 2.8. There are 24 patterns of length & = 4. A calculation as
in Example 2.6 of the covariance matrix yields a 24 x 24 matrix of rank
(4 —1)? = 9. The 9 non-zero eigenvalues are
8
(42) 555(441,147,147,49,21,21,7,7,1).
Similarly, for £ = 5 the covariance matrix is a 120 x 120 matrix with the
4% = 16 non-zero eigenvalues

30
(43) §T§(7056,3024,3024,1296,756,756,324,324,84,84,81,36,36,9,9,1)

The fact that the eigenvalues in (34), (42) and (43) all are simple ratio-
nal numbers suggests that there is a general structure (valid for all k) for
these eigenvalues, and presumably also for the corresponding eigenvectors;
it would be interesting to know more about this.

3. Enumerating with functional equations

For various patterns 7, functional equations were derived for enumerating
permutations with r occurrences of 7 in [10, 11, 12]. These functional equa-~
tions were then used to derive enumeration algorithms. We briefly review the
relevant results in this section.? We will then use this to compute moments
for various permutation classes in the next section.

3.1. Functional equations for single patterns

Given a (fixed) pattern 7 and non-negative integer n, we define the polyno-
mial:

(44) fulrs )= > ),

TES,

2The curious reader can see [10, 11, 12] for more details.
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Recall that the coefficient of ¢" is exactly s, (7,r). For certain patterns 7, a

multivariate polynomial P, (7; t; z1,...,x,) was defined so that P,(7; t; 1,
.., 1) = fu(7; t) and that functional equations could be derived for the P,
polynomial.

The pattern 7 = 123 was considered in [11, 12], and the polynomial P,
was defined to be:
(45)

n
Pn(123; t; x17 . 7.%,”) — Z <tN123(7T) H:UL{(GJ)) M 7Ta:l<7rb, 1§(I<b§’l’b}> .

TES, i=1

It was shown that this P, satisfies the functional equation:
Theorem 3.1. For the pattern T = 123,

n

P,(123; t; x1,...,2p) = Zx"il —1(123; t; @1, ..o i1, tTi4 1, - - ETp).

)
i=1

To provide some intuition, we sketch the proof here.

Sketch of proof of Theorem 3.1. Let m = 71 ...m, be a typical permutation
of length n and suppose that m; = ¢. Note that the number of 123 patterns
in 7 is equal to the number of 123 patterns in 75 ... 7w, plus the number
of 12 patterns in 7y ... m, where the “1” term is at least (i 4+ 1). This gives

us the P,_1(123; ¢; x1,...,2-1,txiy1,...,txy,) portion. Also, since 7 is the
first term in the permutation, there are (n — i) occurrences of the pattern
12 where the “1” is exactly ¢ (which gives the ™" term). O

Since P;(123; t; z1) = 1, the functional equation can be used to recur-
sively compute our desired quantity P,(123; t; 1,...,1) = f,(123; t). For
example, the first few terms of this are:

fi(123; 1) =1, f2(123; ¢) =2, f3(123; 1) =1 +5
f4(123; t) = t* + 3t> + 6t + 14.

Similarly, in [10], the polynomial P,, was defined for the pattern 7 = 132
so that it satisfied the functional equation:

Theorem 3.2. For the pattern T = 132,

P,(132; t; x1,...,xy)

n
== E 19 ... T5-1 * Pn,1(132; t; LlyeeoyLj—1, tl‘i+1, e ,t.’En).
i=1
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Again P;(132; t; x1) = 1, so the functional equation can be used to
recursively compute our desired quantity P,(132; t; 1,...,1) = f,(132; ¢).

The same was also done for the pattern 7 = 231 in [10]. Although
fn(231; t) = f,(132; t), redeveloping the approach directly for the pattern
231 allows us to consider the patterns 132 and 231 simultaneously. For 231,
the polynomial P, was defined so that it satisfies the functional equation:

Theorem 3.3. For the pattern T = 231,

P, (231; t; xy1,...,xy)

n
0.1 i—1 -
= E o Ty ... xp - Pao1(231; iy, @1, BT, T, - -, )
i=1

We again have that P;(231; ¢; x1) = 1, so the functional equation can
be used to recursively compute our desired quantity P,(231; t; 1,...,1) =
fn(231; ).

The approach for the pattern 123 was also extended to the pattern 7 =
1234 in [11]. The polynomial P, (1234; t; z1,...,Zn; Y1, -.,Yn) was defined
so that P,(1234; t; 1 [n times]; 1 [n times]) = f,(1234; ¢) and in such a
way that it satisfies the functional equation:

Theorem 3.4. For the pattern T = 1234,

Pn(12347 t; T1,.. ., Tn; yla"'7yn)
n
= Zyzn_l P 1(12345 t; w1, .. w1, t T4, - B
i—1

YLy« s Yie s Tillit1s - - - TiYn)-

Since P;(1234; t; x1; y1) =1, the functional equation can be used to re-
cursively compute our desired quantity P,(1234; ¢; 1 [n times]; 1 [n times]) =
Fn(1234; 1),

3.2. Merging functional equations for multiple patterns

It is also straightforward to consider multiple patterns simultaneously if
their corresponding functional equations are known, as shown in [10]. For
example, suppose that we want to consider the two patterns ¢ = 123 and
7 = 132 simultaneously. We can extend the f, polynomial in the natural
way to:

(46) fn(UaT; S,t) = Z SNG(TF)tNT(Tr).

7'('6871
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n [10], the polynomial P,(123,132; s,t; 1,...,Zn; Y1,---,Yn) Was de-
fined so that

(47) P,(123,132; s,t; 1 [n times]; 1 [n times]) = f,(123,132; s,t).

The following functional equation was then derived:

Theorem 3.5. For the patterns o = 123 and 7 = 132,
P, (123,132; s,t; 1,y Tp; Y1y -+ Yn)
= zn: 2 gy i1 Pae1(123,132; s, t;
iL'l_, i1y STy - s ST YLy ey Yie s tYid 1y -« tYn)-

Observe that we combined the functional equations for the individual
patterns 123 and 132 by relabeling the x; variables for 132 to y;, merg-
ing the reductions in the P,_; in the natural way, and multiplying the
coefficient terms for the P,_; within the summands. We again have that
Py(123,132; s,t; x1; yi1) = 1, so the functional equation can be used
to recursively compute our desired quantity P,(123,132; s,t; 1 [n times];
1 [n times]) = f,,(123,132; s,t).

More generally, we can similarly extend f,(7; t) to k different patterns

T1,T2,..., Tk and the corresponding variables t1,to, ..., t; as:
N-
(48)  fulTiy ooy i tastay o ty) o= 3 4 0 )
TeES,

The generalized polynomials P,, can be similarly defined and analogous func-
tional equations can be derived.

For example, suppose that we want to consider all length 3 patterns
simultaneously. We will consider the patterns in lexicographical order (i.e.,

71 =123, 9 =132, ..., 76 = 321). Our f,, polynomial now becomes:
(49) fa(123,132,...,321; ty,ta,... tg) = 3 ¢y =Py g fen (™,
TES,

For notational convenience, the polynomial f,(123,132,...,321; t,ts,

., tg) will be denoted by f,(Ss; t1,...,ts). In [10], we discuss how to ex-
tend this to the generalized polynomial P, and derive analogous functional
equations.
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The previous polynomial could also be refined further to consider all
length three patterns and the pattern 1234 simultaneously. We will again
consider the length 3 patterns in lexicographical order. Our f,, polynomial
now becomes:

(50)
Fa(1234,83; 5,11, b, tg) = Y sMasa(myphas(my Ryl (m)
TES,

Just like the previous case, this polynomial can be extended to the analogous
generalized polynomial P, and similar functional equations can be derived.

3.3. Adapting multi-pattern functional equations

The previously described f,, polynomials (and their corresponding general-
ized P, polynomials and functional equations) can be easily specialized to
consider a variety of scenarios. This allows us to quickly extract functional
equations (and fast enumeration algorithms) in a number of cases.

The polynomial f,(Ss; t1,...,ts) (in Eq. 49) can be specialized to
consider any subset of S3 by setting some t; variables to 1. For example,
fn(Ss; t1,t2,1,1,1,1) would give us the polynomial tracking 123 and 132
simultaneously. Setting ¢t; = 1 for 3 < ¢ < 6 in the generalized polynomial
P, and its functional equation would reproduce Theorem 3.5. This approach
actually allows us to quickly compute the bivariate polynomial

(51) fulo,T; s,1) ZN

TES,

for any patterns o, 7 € S3 (with o # 7).
The polynomial f,(Ss; t1,...,ts) can actually be specialized in other
ways. Suppose that we wanted to compute the bivariate polynomial

(52) z lezs(W)thzl(W).

mES, (132)

Observe that this is exactly f,(Ss; $,0,1,1,1,¢). In other words, we may
find the coefficient of t9 in f,(Ss; t1,...,ts) and then set t3 = t4 = t5 = 1
and t; = s,tg = t. We can further specialize this by setting t = 1 to compute
the polynomial

(53) > sl

€S, (132)
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This would give us the distribution of 132-avoiding permutations over the

statistic “number of occurrences of 123.” For example, our approach can

compute all polynomials up to n = 20 in 124 seconds on our computer.?
The same approach can be used to compute the polynomial

(54) > Nt
T€S,(132)

as well as the polynomial

(55) > s

T€S,(132)

for any patterns o, 7 € S3\{132} (with o # 7).
The analogous specialization can be done to quickly compute

(56) > N
€S, (123)

for any patterns o, 7 € S3\{123} (with o # 7). In general, for any p € Ss,
we can quickly compute

(57) 3 NN

TESy(p)

for any patterns o, 7 € Ss\{p} (with o # 7).
We can also adapt the polynomial f,,(1234, Ss; s,t1,t2,...,ts) from (50)
similarly. In particular, we can quickly compute the polynomial

(58) Y N,

r€S, (1234)

for any patterns o, 7 € S3 (with o # 7) by setting s = 0 (i.e. extracting the
coefficient of s%) and setting the appropriate ¢;’s to 1 in f,,(1234, S3; s, t1, ta,
oy tg).

The previously discussed functional equation approaches have been im-
plemented in the Maple packages PDSn, PDAV132, PDAV123, and PDAV1234.

3Sample outputs can be found on the website accompanying this article: http://
www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml /smp.html.


http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/smp.html
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/smp.html
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4. Computing moments for random permutations
4.1. Moments for random permutations from S,

The previously discussed functional equations approach allows us to com-
pute both rigorous and empirical statistical properties on permutations.

For some fixed n and fixed pattern o € Sy, suppose that a permutation
m € S, is chosen uniformly at random. Let the random variable X, () be
the number of occurrences of the pattern ¢ in «. It is not hard to compute
the expected value (i.e., the first moment of the random variable X): E[X] =
(})/k!. More generally, it was shown in [16] that each of the higher moments
of X is a polynomial in n. In particular, the r-th moment about the mean
of X, which is E[(X — E[X])"], is a polynomial of degree |r(k —1/2)] for
r>24

For the patterns o that were discussed in the previous section, the func-
tional equations approach allows us to recursively, yet quickly, compute
fn(o; t). For example, all polynomials f,,(123; ¢) up to n = 18 can be com-
puted in 372 seconds on our computer. Observe that f,(o; t)/n! gives us
the polynomial where the coefficient of #* is the probability that a randomly
chosen m € §,, will have exactly ¢ copies of . The important point is that
we can (rigorously) find a closed-form expression (in n) for the higher order
moments of X by computing sufficiently many terms to fit the polynomial.

For example, it was shown in [16] that the exact expression for the second
moment (about the mean) of the random variable X123 (over Sp,) is:

n(n —1)(n — 2)(39n2 + 102n — 157)

(59) 21600

and that the third moment (about the mean) of the random variable Xjo3
(over S,) is:

(60) n(n —1)(n — 2)(1437n* 4 5592n% — 11277n% — 33990n + 34082)
6350400 '

Similarly, the exact expression for the second moment (about the mean)
of the random variable X132 (over S,) is:

n(n —1)(n — 2)(21n? + 78n + 77)
21600

(61)

4This corrects a minor inaccuracy in [16].
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and that the third moment (about the mean) of the random variable Xj3o
(over S,) is:

(62) n(n —1)(n — 2)(129n* 4 37051°% + 535512 + 86551 + 11356)
12700800 '

We may also consider mixed moments for two patterns ¢ and 7. Suppose
that a permutation 7 is chosen uniformly at random from &,, and again
let the random variable X,(7) be the number of occurrences of pattern
o in 7 (and equivalently for X.(m)). It was also shown in [16] that the
mixed moments of the random variables X, and X, (about their respective
means) are also polynomials in n. This allows us to rigorously find closed-
form expressions (in n) for the higher order mixed moments by computing
enough terms to find the polynomial.

For example, the covariance of the two random variables X723 and X392
is:

n(n —1)(n — 2)(18n2 — 51n — 109)
21600

(63)

while the covariance of the two random variables X793 and X319 is:

_nn—1)(n— 2)(39n2 — 48n — 7)

4
(64) 43200

and the covariance of the two random variables Xj93 and X397 is:

nn — n — n2 n —
(65) ~n(n = 1)( ziﬁgo +12n—92)

Similar results for other random variables can be derived using the Maple
packages available on the authors’ website.

4.2. Moments for random permutations from S, (7)

There has been a flurry of recent activity studying occurrences of patterns in
the set of permutations avoiding specific patterns. Many of the recent articles
focus on counting the total number of occurrences of a pattern in S, (132) or
in §,(123). Some examples (as previously mentioned) include [2, 4, 9, 13].
It is important to note that finding the total number of occurrences of a
pattern o in the set S,,(7) is equivalent to picking a permutation uniformly
at random from S,,(7) and finding the expected value E[X,] (assuming that
the enumeration of S,,(7) is known).
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In the previous section, we were able to rigorously derive closed-form ex-
pressions for moments of the random variable X, (7) when the permutation
7w was randomly chosen from §,,. While we currently cannot derive similar
rigorous results for random permutations from S,,(7), we can still compute
numerical moments for a variety of cases. Interestingly, a number of such
random variables appear to not be asymptotically normal (as opposed to
when 7 € §,, where Miklés Béna showed that such random variables are
asymptotically normal [1], see also Section 2).

4.2.1. Permutations from S§,(132) Suppose a permutation is chosen
uniformly at random from §,,(132). Using the Maple packages that accom-
pany this article, we can compute many empirical moments. The expected
values of the random variables X703, X312, and X391 for 1 < n < 10 can be
found in Table 1.

Table 1: Expected values (first moments) of Xjo3(7), X312(7), and X391 (7),
where 7 is chosen uniformly at random from S,,(132)

Pattern | n=1,2{n=3|n=4|n=5|n=6|n=7|n=8|n=9|n=10
123 0] 0.200| 0.714 | 1.619 | 2.970 | 4.809 | 7.171|10.083 | 13.570
312 0] 0.200| 0.786 | 1.929 | 3.790 | 6.513 | 10.244 | 15.115 | 21.253
321 0] 0.200 | 0.929 | 2.595 | 5.667 | 10.653 | 18.097 | 28.572 | 42.672

The second moments (about the mean) of the random variables X3,
X319, and X391 for 1 < n < 10 can be found in Table 2.

Table 2: Second moments (about the mean) of Xia3(m), Xgi2(7), and
X321(m), where 7 is chosen uniformly at random from S,,(132)

Pattern|[n=1,2|n=3|n=4|n=5|n=6|n=7|n=8 | n=9 |n=10
123 0] 0.160 | 1.204 | 4.617|12.757|28.933 | 57.463 | 103.720 | 174.140
312 0] 0.160 | 1.026 | 3.733|10.213 |23.392| 47.403| 87.787|151.710
321 0] 0.160 | 1.352| 6.003 | 19.101 | 49.313|110.180 | 221.360 | 409.960

Data for the higher moments can be found on the authors’ websites.
For example, the r-th standardized moments for X312 when 3 < r < 6 and
15 < n < 20 can be found in Table 3.

It is interesting to note that the random variable X312 does not appear
to be asymptotically normal since the third and fifth standard moments
appear to be increasing (as opposed to going to 0 as a normal distribution
would) and the sixth moment appears to be larger than 15 (the value for a
normal distribution).
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Table 3: r-th standardized moments for Xsio(7) for 3 < r < 6, where 7 is
chosen uniformly at random from S,,(132)

r-th moment | n =15 n =16 n =17 n=18 n =19 n =20
r=3 0.41867 | 0.42461 | 0.43073 | 0.43690 | 0.44303 | 0.44906
r=4 2.92652 | 2.95682 | 2.98412 | 3.00889 | 3.03152 | 3.05231
r=>5 3.59958 | 3.69377 | 3.78619 | 3.87633 | 3.96389 | 4.04860
r==~6 14.79293 | 15.24562 | 15.66679 | 16.06007 | 16.42853 | 16.77483

This approach can also be used to consider the mixed (i,j) moments.
For example, the mixed (7,j) moments of the random variables Xj93 and
X391 for 3 < n <10 can be found in Table 4.

Table 4: Mixed (7,j) moments of Xj93(7) and Xso1(7), where 7 is chosen
uniformly at random from S,,(132)

(1,j){n=3|n=4|n=5| n=6| n="7 n=3 n=9 n =10

(1,1)|—0.040|—0.663|—3.392|—11.162| —28.714| —62.970| —123.370| —222.180
(1,2)|—0.024|—0.350|—1.445| —0.404| 21.587| 127.800| 478.610| 1417.300
(2,1)|—0.024|—0.644|—6.657|—38.272|—154.230| —491.000|{—1322.000| —3140.400
(2,2)| 0.011| 1.288| 33.666| 382.200| 2650.400|13264.000| 52628.000{175500.000

Analogous data and outputs can be found on the authors’ websites.

4.2.2. Permutations from S,(123) Suppose a permutation is chosen
uniformly at random from S,,(123). Using the Maple packages that accom-
pany this article, we can compute many empirical moments. The expected

values of the random variables X302, X312, and X391 for 1 < n < 10 can be
found in Table 5.

Table 5: Expected values (first moments) of Xi32(m), X312(7), and X391 (),
where 7 is chosen uniformly at random from S,,(123)

Pattern | n=1,2|n=3|n=4|n=5|n=6|n=7|n=8|n=9 |n=10
132 0] 0.200 | 0.643 | 1.357 | 2.364 | 3.678 | 5.314| 7.281| 9.589
312 0] 0.200| 0.786 | 1.929 | 3.788 | 6.513 | 10.244 | 15.115 | 21.253
321 0| 0.200 | 1.143 | 3.429 | 7.697 | 14.618 | 24.884 | 39.208 | 58.317

The second moments (about the mean) of the random variables X32,
X312, and X391 for 1 < n < 10 can be found in Table 6.

Data for the higher moments can be found on the authors’ websites.
For example, the r-th standardized moments for X130 when 3 < r < 6 and
15 < n < 20 can be found in Table 7.
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Table 6: Second moments (about the mean) of Xisa(m), Xsi2(7), and
X321(m), where 7 is chosen uniformly at random from S,,(123)

Pattern | n=1,2{n=3|n=4|n=5|n=6|n=7|n=8| n=9 |n=10
132 0] 0.160| 0.801 | 2.468 | 5.959|12.344|22.978| 39.506 | 63.877
312 0] 0.160| 0.740 | 2.114 | 4.804| 9.532|17.303| 29.501| 48.000
321 0] 0.160| 1.122| 4.293|12.423 | 30.287 | 65.419 | 128.910 | 236.250

Table 7: r-th standardized moments for Xi32(7) for 3 < r < 6, where 7 is
chosen uniformly at random from S, (123)

r-th moment | n =15 n =16 n=17 n=18 n=19 n =20

r=3 1.53492| 1.54020| 1.54458| 1.54823| 1.55129| 1.55385
r=4 6.28717| 6.33967| 6.38469| 6.42356| 6.45735| 6.48687
r=>5 23.59568 | 23.99423 | 24.34048 | 24.64315| 24.90923 | 25.14433

r==6 108.90240 | 111.90699 | 114.55548 | 116.90184 | 118.99022 | 120.85698

It is interesting to note that the random variable X732 does not appear to
be asymptotically normal since the third and fifth standard moments appear
to be increasing (as opposed to going to 0 as a normal distribution would),
the fourth moment appears to be larger than 3 (the value for a normal
distribution), and the sixth moment appears to be substantially larger than
15 (the value for a normal distribution).

This approach can also be used to consider the mixed (i,7) moments.
For example, the mixed (7,j) moments of the random variables Xj32 and
X319 for 3 < n <10 can be found in Table 8.

Table 8: Mixed (7, j) moments of Xy32(m) and X312(7), where 7 is chosen
uniformly at random from S, (123)

(i,7)) [ n=3|n=4|n=5|n=6| n=7 | n=28 n=9 n =10
)| —0.040 | —0.219 | —0.641 | —=1.362| —2.332| —3.326| —3.890| —3.269
)| —0.024 | —0.099 | —0.039| 0.841 3.917| 11.254 25.372 48.890
)| —0.024 | —0.386 | —2.261 | —8.566 | —24.874 | —60.099 | —126.620 | —239.570
)| 0.011| 0.551| 6.309| 39.592| 172.880| 592.420 | 1709.800 | 4350.100

Analogous data and outputs can be found on the authors’ websites.

4.2.3. Permutations from S,,(1234) Suppose a permutation is chosen
uniformly at random from §,,(1234). Using the Maple packages that accom-
pany this article, we can compute many empirical moments. The expected
values of the random variables X123, X132, X312, and X391 for 1 < n < 10
can be found in Table 9.
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Table 9: Expected values (first moments) of Xj93(m), X132(7), X312(7), and
X321(m), where 7 is chosen uniformly at random from S,,(1234)

Pattern | n=1,2|n=3|n=4|n=5|n=6|{n=7|n=8|n=9 |n=10
123 0] 0.167| 0.522| 1.049 | 1.739 | 2.592 | 3.611| 4.796 | 6.153
132 0] 0.167 | 0.696 | 1.709 | 3.279 | 5.457 | 8.283 | 11.789 | 16.004
312 0] 0.167 | 0.696 | 1.796 | 3.684 | 6.575 | 10.679 | 16.202 | 23.341
321 0] 0.167| 0.696 | 1.942 | 4.335 | 8.344 | 14.466 | 23.223 | 35.158

The second moments (about the mean) of the random variables Xja3,
X312, and X391 for 1 < n < 10 can be found in Table 10.

Table 10: Second moments (about the mean) of Xjo3(7), X132(7), X312(7),
and X391 (), where 7 is chosen uniformly at random from S, (1234)

Pattern [n=1,2|n=3|n=4|n=5|n=6|n=7|n=8| n=9 |n=10
123 0]0.139| 0.510| 1.172| 2.236| 3.863| 6.257| 9.654| 14.324
132 0] 0.139| 0.820 | 2.828 | 7.332|15.959|30.863 | 54.767| 91.002
312 0]0.139| 0.820| 2.667| 6.524|13.484|24.911| 42.468| 68.157
321 0] 0.139| 0.994 | 3.764 | 10.566 | 24.936 | 52.338 | 100.740 | 181.280

Data for the higher moments can be found on the authors websites. For
example, the r-th standardized moments for X793 when 3 < r < 6 and
13 < n < 18 can be found in Table 11.

Table 11: r-th standardized moments for Xj93(m) for 3 < r < 6, where 7 is
chosen uniformly at random from S,,(1234)

r-th moment | n =13 n=14 n =15 n =16 n=17 n =18
r=3 1.14140 | 1.16076 | 1.17518 | 1.18585 | 1.19365 | 1.19926
r=4 5.14732 | 5.21356 | 5.26297 | 5.29971 | 5.32683 | 5.34656
r=>5 16.61123 | 17.07925 | 17.43934 | 17.71522 | 17.92523 | 18.08348
r==6 74.59126 | 77.40043 | 79.60569 | 81.33022 | 82.67201 | 83.70841

It is interesting to note that the random variable X123 does not appear to
be asymptotically normal since the third and fifth standard moments appear
to be increasing (as opposed to going to 0 as a normal distribution would),
the fourth moment appears to be larger than 3 (the value for a normal
distribution), and the sixth moment appears to be substantially larger than
15 (the value for a normal distribution).

This approach can also be used to consider the mixed (i,j) moments.
For example, the mixed (7,j) moments of the random variables X123 and
X391 for 3 < n <10 can be found in Table 12.
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Table 12: Mixed (i,7) moments of Xj93(7) and X391 (7), where 7 is chosen
uniformly at random from S,,(1234)

(,j) | n=3|n=4|n=5|n=6| n=7 | n=38 n=9 | n=10

(1,1) | —0.028 | —0.363 | —1.298 | —3.258 | —6.892 | —13.121 | —23.171 | —38.611
(1,2) | —0.019 | —0.266 | —1.674 | —5.958 | —15.301 | —31.716 | —55.546 | —82.648
(2,1) | —0.019 | —0.166 | —0.505 | —1.531 | —4.798 | —13.664 | —34.352 | —77.387
(2,2)| 0.007| 0.386| 4.969| 33.937| 159.600 | 593.990 | 1880.700 | 5274.100

Analogous data and outputs can be found on the authors’ websites.

In summary, we were able to compute higher moments and mixed mo-
ments for n < 10 in the previous three cases. This gave us three specific
instances where the random variable appears to not be asymptotically nor-
mal (Xglg(ﬂ') for m € Sn(132), X132(7T) for T € Sn(123), and X123(7T) for
m € 8,(1234)). In each instance, the 3-rd and 5-th standard moments ap-
pear to be increasing (instead of going to 0, as would happen in a normal
distribution). This is in contrast to X, (m) when 7 € S,,, which is asymptot-
ically normal for any pattern o (as shown in [1]).

5. Conclusion

In this article, we studied the moments and mixed moments of the ran-
dom variables X, (7) for a number of patterns o, where m may be chosen
from S,, or a pattern avoiding set S, (7). In addition, we prove that for any
two patterns, the corresponding random variables are joint asymptotically
normal when the permutations are drawn from S,,. The contrasting compu-
tational approach can compute a number of moments and mixed moments
as well as derive (rigorous) formulas for the lower moments. We anticipate
that this approach could be extended to provide an alternative proof to the
joint asymptotic normality of multiple random variables, but we leave this
as “future work.”

In the setting where the permutations are chosen from the pattern avoid-
ing set S, (7) (for some fixed pattern 7), much less is known. Others have
recently studied the total number of occurrences of a pattern in these sets,
which is equivalent to the expected value (i.e., the first moment) of the ran-
dom variable X,, generally for when both o, 7 € S3. Our approach allows us
to quickly compute many empirical moments, far beyond the first moment.
We expect that a more thorough analysis of these higher moments will un-
cover interesting properties and that in some cases, these higher moments
will also have closed-form formulas. In addition, the random variables for
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some patterns appear to not be asymptotically normal (whereas in the case
where permutations are drawn from S, they are asymptotically normal for
every pattern [1]). It would be interesting to understand which patterns (if
any) have corresponding random variables that are asymptotically normal
when permutations are drawn from S, (7).

1]
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