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A viewpoint for permutations with a low density
of patterns

Benjamin Fineman

Analyzing block partitions of permutation matrices has proven use-
ful in studying permutations with a low density of patterns. Con-
ditioning on the size and density of various blocks provides a large
amount of control on both the number and type of patterns that
can exist globally in a permutation. Using this technique, we pro-
vide a bound for the number of permutations with a low density
of patterns, and a strengthening of the pattern removal lemma in
a similar vein to to Szemerédi’s removal lemma for graphs. The
term “low density” refers to permutations in Sn containing fewer
than (δn)k copies of a specified pattern of length k, for some δ > 0.
When n is sufficiently large, and δ is small, the number of these
permutations, which we denote by χn

δ (γ), satisfies

ann! ≤ χn
δ (γ) ≤ bnn!

where a and b only depend on δ and k.

AMS 2000 subject classifications: Primary 05A05; secondary 05D05.

1. Introduction

Unless otherwise stated, we use the “one-line notation” for permutations.

A permutation σ ∈ Sn will be written as σ1σ2 . . . σn, where σi = σ(i) for

1 ≤ i ≤ n. Suppose γ ∈ Sk, with k ≤ n. Informally, an occurrence of the

pattern γ in σ is a subsequence of σ that is order-isomorphic to γ. Let

[n] = {1, 2, . . . , n}. A permutation σ ∈ Sn can be viewed as an element

σ = (σ1, . . . , σn) ∈ [n]n. We provide formal definitions in this more general

setting with the aim of increasing clarity and precision in subsequent argu-

ments. For s ∈ [n]r we use the notation s(i) to denote the i-th element in

the sequence s.

Definition 1.1. Let s ∈ [n]r and k ≤ r. Define a map also called s : [n]k →
[n]k by s(z) = (s(z(1)), s(z(2)), . . . , s(z(k))).

103

http://www.intlpress.com/JOC/


104 Benjamin Fineman

Definition 1.2. Let g ∈ [n]k and s ∈ [n]r, with k ≤ r. Define a map
Jg : [n]r → P ([n]k), where P is the power set, by

Jg(s) = {s(z) | z(i) < z(j) and s(z(i)) < s(z(j)) ⇔ g(i) < g(j),

for 1 ≤ i < j ≤ k}.

Each s(z) in Jg(s) is called an instance, copy, or occurrence of the pat-
tern g in s.

For example, the permutation 1432 ∈ S4 contains three instances of the
pattern 132, namely 143, 142, and 132. If σ contains no copies of γ, we say
that σ avoids γ.

The subject of pattern avoidance in permutations has been well studied
(see, e.g., [2], [8], and [10]). Some areas of interest include enumerating
and finding bounds for the number of permutations that avoid designated
patterns or generalized patterns, as well as examining their asymptotics.
Ultimately, the important question of what properties make certain patterns
easier or harder to avoid is still unknown.

The most sweeping result pertaining to pattern avoidance is the Stanley-
Wilf conjecture, proved by Marcus and Tardos [9].

Theorem 1.3 (Stanley-Wilf conjecture, 1980). Let γ be any pattern, and
let |Sn(γ)| be the number of permutations in Sn that avoid γ. Then there
exists a constant c so that for all positive integers, we have |Sn(γ)| ≤ cn.

The goals of this paper are twofold. First, we provide a result similar
to the Stanley-Wilf conjecture, but for permutations with a low density of
a certain pattern. Second, we give a strengthening of the pattern removal
lemma for permutations discussed by Cooper [3].

Both arguments are similar in nature: we form block partitions of the
permutation matrices and use geometric properties of the individual blocks
to control the number of copies of a given pattern that can exist globally.
We state the main theorems here but defer their proofs to later sections,
after introducing the block partition matrices and providing some insight to
their utility.

Theorem 1.4. Let γ ∈ Sk, and let χn
δ (γ) be the number of permutations in

Sn with fewer than δknk instances of γ.
For every k, δ < 1/(2k), there are N , and a ≤ b < 1, such that for

n > N , we have

(an)n! ≤ χn
δ (γ) ≤ (bn)n!.
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In particular, we have a = δk/2, and b = ( e
(k−1)δ )

δ(k−1
k )1/k+ t for any t > 0,

where e is Euler’s number.

Cooper, Lundberg, and Nagle [4] have independently reached a similar
result that applies to generalized patterns. However, their constant b con-
verges to 1 at a much faster rate, as k tends to infinity.

Note that the upper bound we have is indeed nontrivial. The term
( e
(k−1)δ )

δ approaches 1, as δ → 0, and the second term (k−1
k )1/k is a con-

stant smaller than 1, depending only on the length of the permutation γ.
Furthermore, we can choose t and δ small enough, so that the quantity

(
e

(k − 1)δ

)δ (
k − 1

k

)1/k

+ t

is strictly smaller than 1, giving a nontrivial bound. In particular, for a
pattern of length 3, the theorem above, with choice of δ = .001 and t = .01,
implies that for n sufficiently large, there are at most

n!

{(
e

(2)(.001)

).001 (
2

3

)1/3

+ .01

}n

< n!(.9)n

permutations with fewer than (.001n)3 instances of the pattern 132.
Our second result characterizes permutations that have a low density of

a certain pattern, in the same way that Szemerédi’s graph removal lemma
characterizes graphs with a low density of a certain subgraph; by showing
that all instances of the pattern (or subgraph) can be “covered” by a small
number of edges. In the case of graphs, removing those edges destroys all
copies of the subgraph.

To state our second result, we adapt the notion of edges to permutations.

Definition 1.5. Define a map E : [n]r → P ([n]2) by

E(s) = {(s(i), s(j)) | i < j}.

E(s) is called the set of edges of s.

Definition 1.6. A subset E of [n]2 covers a subset J of [n]r if E(s)∩E �= ∅
for all s ∈ J .

Continuing our example with σ = 1432 and γ = 132, the set of edges of
1423 is given by

E(1432) = {(1, 4), (1, 3), (1, 2), (4, 3), (4, 2), (3, 2)}.
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E(1432) trivially covers J132(1432) = {143, 142, 132}, but so does the subset
of edges E = {(1, 4), (3, 2)}. While not unique, E is a subset of minimal size
with this property.

Definition 1.7. Let

d(s, g) = min{|E|/n2 | E covers Jg(s)}.

A permutation σ is ε-far from avoiding γ if d(σ, γ) ≥ ε.

From the discussion above, it can be seen that d(1432,132) = 1/8.

Theorem 1.8. Let γ be a pattern of length k, and σ ∈ Sn. For n sufficiently
large, if σ is ε-far from avoiding γ, then the number of instances of γ in the
permutation σ is at least (δn)k, where

δ =
ε4

16
.

Cooper [3] used his permutation regularity lemma to achieve a similar
result, but with a different value for δ. This result can also be obtained by
using the graph regularity lemma on a k-partite graph, where the cardinality
of each partite set is n, and edges between different sets are determined by
both the permutation and pattern in question, so there is a bijection between
instances of γ in the permutation and copies of Kk in the graph. We omit the
details. The downside to both of these methods lies in the bounds: δ must be
very small compared to ε. Both versions rely on first applying Szemerédi’s
regularity lemma to obtain an ε-regular partition, and then working with
these sets, the size of which could be very small. Indeed, the number of sets
in the partition only has a tower type upper bound (in the size of 1/ε).
Gowers [7] proves that this type of bound is indeed necessary to obtain
regularity, by creating a graph whose vertices must be partitioned into that
many sets in order to create an ε-regular partition. It would be interesting
to see if the same were true in the context of permutations, with respect to
Cooper’s version of regularity, i.e., if there is a permutation that is equally
hard to regularize. We provide a proof where δ and ε have a polynomial
relationship, giving a much stronger result.

Our interest in studying permutations with a low density of a certain
pattern comes from Szemerédi’s regularity lemma on graphs, and its ac-
companying removal lemmas. A good overview is contained in [1] and [5].
Understanding the structure of graphs that contain a low density of trian-
gles (or any other subgraph) was the key to proving several results, including
Szemerédi’s Theorem [11] that sets of positive upper density contain arith-
metic patterns of arbitrary length. Generalizing the results to hypergraphs
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[12] and proving a “sparse” version of Szemerédi’s regularity lemma led to
the celebrated result of Green and Tao [6] that the prime numbers contain
arbitrarily long arithmetic progressions as well.

2. Block partitions of permutation matrices

As is customary in this field, when describing permutation matrices we use
a coordinate system to describe the various entries of the matrix. Thus, the
entry (i, j) refers to the entry in the i-th column from the left, and j-th row
from the bottom.

Definition 2.1. Given σ = σ1σ2 · · ·σn, the permutation matrix Mσ is an
n× n binary matrix with Mσ(i, j) = 1 if and only if σ(i) = j.

When it is clear that we are referring to the entries of the permutation
matrix, we use the notation σi for the entry (i, σi) in the matrix Mσ. Thus
Mσ has a 1 at the positions σ1, . . . , σn, and a 0 at all other positions. The
permutation 352987461 ∈ S9 is represented as:

In the interest of brevity, we only show the positions of the 1’s. Now,
consider them×m block partitioned matrixMm

σ formed fromMσ by placing
lines directly to the right of the 
jn/m�-th column, and directly above the

jn/m�-th row, for 1 ≤ j ≤ m. We use a coordinate system to refer to the
different blocks. Continuing our example, the block matrix M3

352987461 has
nine blocks, each of which is a 3× 3 binary matrix containing between zero
and three 1’s.
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The upshot is that there are collections of blocks which can force the
existence of copies of γ in the permutation. In the example, consider the
blocks B1,1, B2,3, and B3,2; any sequence (σx1

, σx2
, σx3

) with σx1
∈ B1,1,

σx2
∈ B2,3, and σx3

∈ B3,2 must be an instance of 132. In the example
above, there are (2)(3)(2) = 12 patterns that can be formed this way. If the
size of the blocks we use is large, we can create a class of permutations with
a large number of copies of a given pattern, and if we use blocks that are
small enough, we can ensure that most patterns that occur in a permutation
are of this type (entries from blocks in distinct rows and columns). These are
the main ideas respectively behind our two results. We make this concept
more precise below.

Definition 2.2. Let z ∈ [n]k and B = (B1, . . . , Bk) be a sequence of blocks
each in a distinct row and column, ordered from left to right. We say that z
is incident with B if the entry σz(i) ∈ Bi for all i.

Lemma 2.3. Let z be incident with (Bxi,yi
), and let γ ∈ Sk. If

yi < yj ⇔ γ(i) ≤ γ(j)

then σ(z) is an instance of γ.

Proof. By construction, σ(z(i)) < σ(z(j)) if and only if γ(i) < γ(j), imply-
ing the claim.

3. Bounds for the number of permutations with a low
density of patterns

We begin with the upper bound.

Definition 3.1. The order of the block Bx,y is given by

|Bx,y| = |{i | σi ∈ Bx,y}|,

which counts the number of 1’s in Bx,y.

Unless otherwise stated, let n and k be fixed, and assume n is divisible by
k. If n is not divisible by k, the following arguments still hold after making
some small technical adjustments.

Lemma 3.2. Let (Bxi,yi
) satisfy the assumptions of Lemma 2.3. If in addi-

tion,

min{|Bxi,yi
|} ≥ δn,

then σ contains at least δknk instances of γ.
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The contrapositive gives us a one-sided test, which can be used to give an
upper bound for the number of permutations with fewer than δknk instances
of γ.

Lemma 3.3. If σ has fewer than δknk instances of γ, then |Bxi,yi
| < δn for

some i.

Since the set of permutations with fewer than δknk instances of γ must be
a subset of the set of permutations in which one of the above blocks contains
fewer than δn 1’s, finding an upper bound for number of permutations in
the latter set also gives an upper bound for the number of permutations in
the former.

Define for each n, a finite probability space (Ω, 2Ω, P ), where Ω = {Mk
σ |

σ ∈ Sn} and P is the uniform probability measure.

Lemma 3.4. For δ < 1/(2k) and n sufficiently large, there exists c such
that the probability that min{|B1,γ1

|, |B2,γ2
|, · · · , |Bk,γk

|} < δn is at most

cn

[(
e

(k − 1)δ

)δ (
k − 1

k

)1/k
]n

.

In the following proof we use the notation (n)k = (n)(n−1) . . . (n−k+1)

for the falling factorial. It can be seen that (m)k
(n)k

≤ (m/n)k if k < m < n.

Furthermore, we use the well-known fact that
(
n
k

)
≤ ( enk )k. To see this, note

that ek =
∑

i k
i/i! > kk/k!, hence, ekk!/kk > 1. Thus,(

n

k

)
≤ nk

k!
<

nk

k!

(
ekk!

kk

)
=

(en

k

)k
.

Proof. As a first step, we compute the probability that |B1,γ1
| < δn. Mul-

tiplying this probability by k gives an upper bound for the quantity in
question.

Consider the first column of blocks
⋃k

i=1B1,i. Note that
∑k

i=1 |B1,i| =
n/k because the permutation matrix Mσ has a 1 in each column. Thus, if
|B1,a1

| = j there must be n/k − j 1’s in the blocks directly above it. The
probability that B1,a1

contains at most δn 1’s is given by:

1(
n

n/k

) δn∑
j=0

(
n/k

j

)(
(k − 1)n/k

n/k − j

)

=

((k−1)n/k
n/k

)
(

n
n/k

) +

δn∑
j=1

(
n/k

j

)(
(n/k)!

(n/k − j)!

)(
((k − 1)n/k)!

n!

)
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×
(

((k − 1)n/k)!

((k − 2)n/k + j)!

)

=

((k−1)n/k
n/k

)
(

n
n/k

) +

δn∑
j=1

(
n/k

j

)(n/k)j

(
(k−1)n

k

)
n/k−j

(n)n/k

=

((k−1)n/k
n/k

)
(

n
n/k

) +

δn∑
j=1

(
n/k

j

) (n/k)j

(
(k−1)n

k

)
n/k−j(

(k−1)n
k + j

)
j
(n)n/k−j

≤

(
(k−1)n

k

)
n/k

(n)n/k
+

δn∑
j=1

(
n/k

j

)(
1

(k − 1)

)j (
k − 1

k

)n/k−j

≤
(
k − 1

k

)n/k

+

δn∑
j=1

(
n/k

j

)(
k − 1

k

)n/k−j

since 1/(k − 1) < 1

≤
(
k − 1

k

)n/k

+ δn

(
n/k

δn

)(
k − 1

k

)n/k−δn

for δ < 1/2k

≤
(
k − 1

k

)n/k

+ δn
( e

kδ

)δn
(
k − 1

k

)n/k−δn

=

(
1 + δn

(
e

(k − 1)δ

)δn
) (

k − 1

k

)n/k

≤ 2δn

[(
e

(k − 1)δ

)δ (
k − 1

k

)1/k
]n

for n sufficiently large.

The claim follows after multiplication by k.

The following technical lemma allows us to disregard the leading term.

Lemma 3.5. Given a, t, c > 0, there exists an N such that for n ≥ N ,

cnan < (a+ t)n.

Proof. Note that for n sufficiently large, we have

log(cn)/n+ log a < log(a+ t).

Multiplying by n and exponentiating both sides yields the desired result.

The upper bound in Theorem 1.4 is found by combining Lemma 3.4 with
Lemma 3.5.
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Next, we find a lower bound for the number of permutations with a low
density of a given pattern. In order to make the arguments more natural,
we change our notion of low density, from fewer than δknk copies of a given
pattern of length k, to fewer than δnk copies. A simple substitution can then
be used to combine our results in the form of Theorem 1.4. We will create
permutations that have a low density of a given pattern by using skew sums
and direct sums of permutations.

Definition 3.6. Let π ∈ Sm and σ ∈ Sn. The skew sum π�σ and direct
sum π ⊕ σ are permutations in Sn+m defined as follows:

(π � σ)(i) =

{
π(i) + n for 1 ≤ i ≤ m,

σ(i−m) for m+ 1 ≤ i ≤ m+ n,

(π ⊕ σ)(i) =

{
π(i) for 1 ≤ i ≤ m,

σ(i−m) +m for m+ 1 ≤ i ≤ m+ n.

For example, let π = 2314 and σ = 123, then π � σ = 5647123 and
π ⊕ σ = 2314567.

Note that both the skew and symmetric sums are associative, so the

permutations
⊕M

i=1 σi = σ1 ⊕ . . . ⊕ σM and �M

i=1 σi = σ1 � . . . � σM are
well-defined.

Theorem 3.7. Given n sufficiently large, 0 < δ < 1, and a pattern γ of
length k, the number of permutations in Sn with fewer than δnk instances
of γ is bounded below by n!( δ2)

n.

Proof. We will use either the direct or skew sum (depending on γ) to create
a permutation σ with fewer than δnk instances of γ. Let M = 2/δ. As above,
we make the assumption that M is an integer that divides n, in order to
simplify the calculations.

Given γ ∈ Sk, it must be true that either γ(1) > γ(2) or γ(1) < γ(2). In
the case of the former, let σ ∈ Sn be given by σ =

⊕M
i=1 σi where σi ∈ Sn/M

for 1 ≤ i ≤ M . In the latter case, let σ = �M

i=1 σi. For any instance σ(z)
of γ, it must be true that jn/M < z(1) < z(2) ≤ (j + 1)n/M , for some
0 ≤ j ≤ M − 1. Otherwise, the construction forces σ(z(1)) < σ(z(2)) in the
case of the former, and σ(z(1)) > σ(z(2)) in the case of the latter, giving
a contradiction. Therefore, the number of instances of γ in σ is bounded
above by:

M

(
n/M

2

)(
n

k − 2

)
<

nk

M
< δnk by our choice of M.
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Furthermore, the total number of permutations that can be formed using
this construction is given by:

[(n/M)!]M ≥ (2πn/M)M/2

[
(n/M)(n/M)

e(n/M)

]M
by Stirling’s Approximation

≥ e
√
n

(n

e

)n
M−n for n sufficiently large

≥ n!

(
δ

2

)n

which proves the claim.

4. Removal lemma

Next, we use the block partitions of the permutation matrices to prove a
pattern removal lemma for permutations. The following definition allows us
to make our argument structurally similar to the the proof of the graph
removal lemma.

Definition 4.1. The set of edges between blocks B1 and B2, denoted
by E(B1, B2), is given by

E(B1, B2) = {(σi, σj) | σi ∈ B1 and σj ∈ B2}.

Proof of Theorem 1.8. Let σ be ε-far from avoiding γ. As above, assume n is

divisible by
√
m, m to be defined later, and form the block partition M

√
m

σ .
We construct a set E of edges as follows. Let E ⊆ E(σ) contain all edges of
the following types:

1. edges between blocks that share a row or column (corresponding to
the irregular pairs),

2. edges between pairs of blocks in which the order of one block is at
most n

m2 (corresponding to pairs of low density).

Each column or row of blocks contains exactly n√
m

1’s. Thus, the total

number of edges between pairs that share the same row or column is

2
√
m

( n√
m

2

)
<

n2

2m
(2
√
m) =

n2

√
m
.

To count the number of edges of the second type, note that there are m
blocks in total, each of which has order at most n√

m
. Thus, the total number

of edges between pairs with this property cannot exceed
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m2
( n

m2

)(
n√
m

)
=

n2

√
m
.

Note that |E| < 2n2√
m

edges, so a choice of m = 4
ε2 ensures that this

number is less than εn2. Since σ is ε-far from avoiding γ, E does not cover
Jγ(σ), so there exists s ∈ Jγ(σ) such that E(s) ∩ E = ∅. Note that each
edge (s(i), s(j)) occurs between pairs of blocks that each have order at least
n/m2 = ε4n

16 and do not share a row or column; so Lemma 3.2 ensures that
there are at least (

ε4n

16

)k

instances of γ in σ.
The contrapositive is more recognizable as a removal lemma.

Theorem 4.2. Let γ be a pattern of length k. If σ contains fewer than
( ε

4n
16 )

k instances of γ, then d(σ, γ) < ε.

5. Conclusion

There is a large margin between the two bounds that we have found. In
our bound of the form (an)n! ≤ χn

δ (γ) ≤ (bn)n!, a tends to zero as δ → 0,
but b tends to a constant (less than one), dependent on k, the length of
the pattern. We think that the actual value of χn

δ (γ) lies closer to the lower
bound that we have found. The proof of the upper bound only relies on
the fact that a certain region of the permutation matrix must be relatively
sparse, but in the lower bound, the use of skew and direct sums puts a tight
restriction on allowable elements in all parts of the permutation, which we
believe is more aligned with the correct regime. It should be noted that
our bounds only depend on the length k of the permutation γ, while χn

δ (γ)
likely depends on the structure of γ as well, as observed when considering
exclusively pattern avoiding permutations. Indeed, |Sn(1324)| > |Sn(1234)|
[2] and even |Sn(1324)|1/n and |Sn(1234)|1/n are not asymptotically equal.

We believe the block partitions of the permutation matrix will also aid
in understanding the “shape” of permutations with a low density of a given
pattern, as certain blocks with large order can force large regions of the
permutation matrix to be sparse, in order to contain a low density of a
given pattern.
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[11] E. Szemerédi, On sets of integers containing no k elements in arithmetic
progression, Acta Arithmetica, 1975, 27, 199–245. MR0369312

[12] T. Tao, A variant of the hypergraph removal lemma, J. Comb. Theory,
Ser. A, 2006, 113(7), 1257–1280. MR2259060

http://www.ams.org/mathscinet-getitem?mr=2437651
http://www.ams.org/mathscinet-getitem?mr=2078910
http://www.ams.org/mathscinet-getitem?mr=2212495
http://www.ams.org/mathscinet-getitem?mr=3035038
http://www.ams.org/mathscinet-getitem?mr=2744811
http://www.ams.org/mathscinet-getitem?mr=2415379
http://www.ams.org/mathscinet-getitem?mr=1445389
http://www.ams.org/mathscinet-getitem?mr=3012380
http://www.ams.org/mathscinet-getitem?mr=2063960
http://www.ams.org/mathscinet-getitem?mr=3156932
http://www.ams.org/mathscinet-getitem?mr=0369312
http://www.ams.org/mathscinet-getitem?mr=2259060


A viewpoint for permutations with a low density of patterns 115

Benjamin Fineman

310 12th St

Davis, CA 95616

USA

E-mail address: fineman@math.ucdavis.edu

Received 12 February 2014

mailto:fineman@math.ucdavis.edu

	Introduction
	Block partitions of permutation matrices
	Bounds for the number of permutations with a low density of patterns
	Removal lemma
	Conclusion
	Acknowledgments
	References

