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Bruhat graphs and pattern avoidance

Christopher Conklin and Alexander Woo

We characterize permutations whose Bruhat graphs can be drawn
in the plane and those whose Bruhat graphs can be drawn on the
torus. In particular, we show these properties are characterized by
avoiding finitely many permutations.
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1. Introduction

The set of all permutations (of an arbitrary finite number of elements) ad-
mits a partial order known as pattern containment order. This partial order
is known to admit infinite antichains [23, 20]. On the other hand, in almost
all cases where the set of permutations satisfying some property has been
characterized by pattern containment, the number of permutations involved
is finite. For some properties, such as in [25, 9, 6, 7], the number of permuta-
tions is moderate to quite large, so this phenomenon seems to involve more
than merely the natural inclination of mathematicians to study simpler ex-
amples. Our goal in this paper is to begin the exploration of one possible
explanation for this finiteness.

Associated to each permutation is a directed graph known as the Bruhat
graph. (For definitions see Section 2.) Whenever a permutation π is con-
tained in a permutation σ (so π ≤ σ in pattern containment order), the
Bruhat graph of π is a subgraph of the Bruhat graph of σ. While not all
properties characterized by pattern containment can be reduced to prop-
erties of Bruhat graphs, many of the properties that have been so charac-
terized, especially those coming from algebraic geometry or representation
theory, have a graph theoretic description. For example, the permutations
w avoiding 3412 and 4231 are exactly the ones whose Bruhat graphs are
regular, meaning that they have the same number of edges at each vertex;
these are also the ones associated with smooth Schubert varieties [19, 13].
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In this paper we study the permutations whose Bruhat graphs can be
drawn (without crossings) on the plane or on the torus. We show that the
planar permutations are precisely the ones that avoid 321 and have length
at most 3, and their Bruhat graphs are either a single point, a single edge,
(the edge graph of) a square, or a cube. We give an analogous character-
ization of permutations whose Bruhat graphs can be drawn on the torus;
the additional possible graphs are K3,3 (the complete bipartite graph on two
sets of three vertices) and the 4-cube. By an old theorem of Atkinson [1], our
characterizations imply that these properties are characterized by avoidance
of finitely many patterns. A computer calculation shows that 29 patterns are
needed to characterize planar permutations, and 92 are needed to charac-
terize toroidal ones.

The motivation for considering Bruhat graphs is the Graph Minor The-
orem, a deep and surprising result of Robertson and Seymour [22] stating
that graph minor order, the partial order on graphs generated by deleting
and contracting edges, has no infinite antichains. In particular, the graphs
satisfying any property which is preserved under deletion and contraction
are characterized by avoiding finitely many graphs. An important special
case of the Graph Minor Theorem is the one involving the class of graphs
which can be drawn without crossings on a surface of genus g [21], and
the original inspiration for graph minor theory was Kuratowski’s Theorem,
which characterizes graphs that cannot be drawn in the plane. Our results in
this paper can therefore be seen as potential first steps towards using graph
minor theory to establish either directly or by analogy a possible finiteness
result for pattern avoidance under yet unknown hypotheses involving Bruhat
graphs.

In particular, we also expect that the set of permutations whose Bruhat
graphs can be drawn on a surface of genus g can be characterized by avoid-
ance of a finite number of patterns. However, it appears that any character-
ization of these permutations, even if not directly in terms of the patterns
to be avoided, will be fairly long even for the case g = 2.

We were particularly inspired by the question of Billey and Weed [9]
concerning whether, for a fixed integer k, having Kazhdan–Lusztig polyno-
mial Pid,σ(1) ≤ k is characterized by the permutation σ avoiding some finite
list of patterns. (Billey and Braden previously showed in [5] that this prop-
erty is characterized by avoiding a possibly infinite set of patterns.) This
Kazhdan–Lusztig polynomial is known to be a property depending only on
the Bruhat graph of σ [17, 12, 15], although the aforementioned property
is not preserved by deletion and contraction on Bruhat graphs (nor is its
negation).
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Our work is in some sense orthogonal to earlier work of Atkinson, Mur-
phy, and Ruskuc [1, 2, 3] on finitely generated order ideals in pattern con-
tainment order. Their work takes the viewpoint that a permutation is a
string consisting of distinct integers. Our viewpoint considers permutations
as elements of a Coxeter group. Therefore our results are complementary to
theirs. Furthermore, pattern avoidance has alternative definitions within the
framework of Coxeter groups [8]. We believe it should not be too difficult
to extend our work to other Coxeter groups by characterizing the elements
with planar or toroidal Bruhat graphs using these Coxeter-theoretic notions
of pattern avoidance.

Section 2 is devoted to definitions, while Sections 3 and 4, respectively,
give proofs for our theorems about permutations whose Bruhat graphs are
planar and toroidal.

2. Definitions

We begin with definitions from the combinatorics of Coxeter groups applied
to the specific case of the symmetric group Sn; a standard reference for this
material is [10].

By a transposition t we mean some 2-cycle (i j) in the symmetric
group. An adjacent transposition is one of the form (i i+ 1).

Let π ∈ Sn be a permutation. The length of π, denoted �(π), is the
minimum number of adjacent transpositions si1 , . . . , si� such that π can be
written as their product si1 · · · si� . An inversion of π is a pair of indices i < j
with π(i) > π(j); note that �(π) is also equal to the number of inversions of
π.

The absolute length of π, denoted a(π), is the minimum number of
transpositions ti1 , . . . , tia , not necessarily adjacent transpositions, such that
π = ti1 · · · tia . If π ∈ Sn has c disjoint cycles (counting fixed points as 1-
cycles), then a(π) = n − c. By definition, a(π) ≤ �(π) for any permutation
π.

Permutations are written in one-line notation unless stated otherwise.

Example 2.1. The permutation π = 3412 has length �(π) = 4, and absolute
length a(π) = 2.

The symmetric group Sn has a partial ordering known asBruhat order.
Define π ≺ σ if �(π) < �(σ) and there is a transposition t such that tπ = σ
(or equivalently a transposition t′ such that πt′ = σ). Bruhat order is the
transitive closure of ≺, so π ≤ τ if there exist permutations σ1, . . . , σk ∈ Sn

such that π ≺ σ1 ≺ · · · ≺ σk ≺ τ .
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Figure 1: The Bruhat graph B(2341).

The Bruhat graph for Sn is the directed graph whose vertices are the
elements of Sn, with edges defined as follows. Given permutations σ and τ ,
there is an edge σ → τ if σ ≺ τ , meaning that �(σ) < �(τ) and there exists
a transposition t with σ = τt. (Note �(τ) − �(σ) need not equal 1.) Given
a permutation π, the Bruhat graph for π, denoted B(π), is the induced
subgraph whose vertices are those labeled by permutations σ with σ ≤ π;
this is the largest subgraph with unique sink π.

Figure 1 shows the Bruhat graph for 2341. For another example, see
Figure 2 (later in the paper).

The length of π is the length of the longest directed path (necessarily
from the identity to π) in B(π), and the absolute length of π is the length
of the shortest directed path in B(π) from the identity (which is graph
theoretically the unique source) to π (the unique sink). Sometimes absolute
length is defined as the length of the shortest undirected path, but a theorem
of Dyer [16] shows these two definitions are equivalent.

Now we give various definitions related to the notion of pattern con-
tainment; a standard reference for this subject is [11]. Let π ∈ Sk and
τ ∈ Sn with k ≤ n. We say that τ (pattern) contains π if there exist in-
dices 1 ≤ i1 < · · · < ik ≤ n such that τ(ia) < τ(ib) if and only if π(a) < π(b).
We say that τ (pattern) avoids π if τ does not contain π.

Example 2.2. The permutation 5736241 contains the permutation 3412
in three different ways using the bolded entries: 5736241, 5736241, and
5736241.

In contrast, 135246 avoids 3412.

We need an analogous notion from graph theory. Given some subset W
of the set of vertices of a graph G, the subgraph induced by W is the
graph containing the vertices in W and every edge of G which connects two
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vertices of W . Any subgraph H ⊂ G that can be formed in this manner (or,
in other words, any subgraph H where every edge of G between two vertices
of H is also in H) is called an induced subgraph.

Given this definition, the following proposition is immediate.

Proposition 2.3. If τ contains π, then B(π) is isomorphic to an induced
subgraph of B(τ) which includes the sink vertex τ .

Proof. Let i1 < · · · < ik be the indices by which π is contained in τ . Consider
the induced subgraph given by the vertices of B(τ) labelled by permutations
σ for which σ(j) = τ(j) for all j not among the containment indices, meaning
that j �= ia for all a.

Pattern containment is a partial order relation; the poset of permutations
under pattern containment is sometimes called pattern order.

Finally, we need some basic ideas from topological graph theory. A graph
is planar if it can be drawn in the plane without edges crossing, and a graph
is toroidal if it can be drawn on the surface of a torus without edges crossing.
The following theorem is classical and known as Kuratowski’s Theorem.

Theorem 2.4. A graph is planar if and only if it contains no subgraph
isomorphic to a subdivision of K3,3 (the complete bipartite graph with 3
vertices on each side) or K5 (the complete graph on 5 vertices).

The precise statement of the analogous theorem for toroidal graphs is
not known. The minimal list of graphs to avoid is finite by the Graph Minor
Theorem, and a by-no-means exhaustive part of this minimal list with tens
of thousands of graphs was computed in [14].

3. Planar Bruhat graphs

In this section we give a number of characterizations of permutations with
planar Bruhat graphs, beginning with the following.

Theorem 3.1. Let σ be a permutation. Then the Bruhat graph B(σ) is
planar if and only if σ avoids 321 and �(σ) ≤ 3.

Proof. The Bruhat graph B(321) is the complete bipartite graph K3,3, which
is not planar. Furthermore, B(3412) contains (as a subgraph) B(1432) since
1432 < 3412 in Bruhat order, and 1432 contains 321, so B(3412) is also not
planar. Therefore, if σ contains 321 or 3412, then B(σ) is not planar.

On the other hand, Tenner showed [24, Thm. 5.3] that if σ avoids both
321 and 3412, then the interval in Bruhat order between the identity and σ
is isomorphic to the Boolean lattice. In this case, all the edges in the Bruhat
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graph come from covering relations in the Bruhat order, so the Bruhat graph
is the edge graph for a cube of dimension �(σ). (One way to see this is by
noting that σ avoids 3412 and 4231, so its Bruhat graph has exactly �(σ)
edges at each vertex, and the covering relations in the Boolean lattice already
provide �(σ) edges.) The edge graph of an n-dimensional cube is planar if
and only if n ≤ 3. Therefore, B(σ) is planar if and only if σ avoids 321 and
3412 and �(σ) ≤ 3. Since �(3412) = 4, the condition that σ avoid 3412 is
encompassed in the condition that �(σ) ≤ 3.

We can also prove the above theorem without relying on [24] by directly
analyzing the vertices of distance at most 2 from σ in B(σ). We show that, if
σ avoids 321 and 3412, any vertex of distance 2 from σ must be connected to
exactly 2 vertices of distance 1 from σ, which suffices to prove the theorem.

The following characterization in terms of the Bruhat graph itself follows
immediately from the above proof.

Corollary 3.2. The graph B(σ) is planar if and only if it is a point, a single
edge, or the edge graph of a square or a cube.

To state our characterization purely in terms of pattern avoidance, we
use the following theorem of Atkinson [1, Thm. 2.3].

Theorem 3.3. Given a permutaton π ∈ Sk, the set of permutations con-
taining π at most m times is characterized by avoiding a finite set of per-
mutations, all of which are in Sn for some n ≤ k(m+ 1).

Since the length of a permutation is precisely the number of times it
contains the permutation 21, combining Theorems 3.3 and 3.1 produces the
following corollary.

Corollary 3.4. The graph B(σ) is planar if and only if σ avoids 321 and
all permutations π ∈ Sm where m ≤ 8 and �(π) ≥ 4.

A computer calculation to reduce the set of permutations given by Corol-
lary 3.4 to a minimal avoidance set produces the following.

Corollary 3.5. The graph B(σ) is planar if and only if σ avoids all of the 29
permutations in the following list: 321, 3412, 23451, 23514, 24153, 25134,
31452, 31524, 41253, 51234, 234165, 231564, 231645, 241365, 214563,
214635, 215364, 216345, 314265, 312564, 312645, 412365, 2315476,
2143675, 2143756, 2145376, 2153476, 3125476, 21436587.

Finally, we record the number of permutations whose Bruhat graphs are
planar according to length, which follows from [24, Cor. 5.5]:

Corollary 3.6. For any m ≥ 1, there are
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Figure 2: The Bruhat graph B(3412).

1. 1 permutation in Sm of length 0,
2. (m− 1) permutations in Sm of length 1,

3. (m+1)(m−2)
2 permutations in Sm of length 2, and

4. (m+4)(m−1)(m−3)
6 permutations in Sm of length 3

which have planar Bruhat graphs.

4. Toroidal Bruhat graphs

Now we characterize the permutations whose Bruhat graphs are toroidal.

Theorem 4.1. Let σ be a permutation. Then the Bruhat graph B(σ) is
toroidal if and only if all three of the following conditions hold:

• σ avoids 3412,
• If σ contains 321, then �(σ) = 3,
• �(σ) ≤ 4.

Proof. First we show that the graph G = B(3412), drawn in Figure 2, is
not toroidal. Consider the subgraph H = B(3214) ⊆ G and the induced
subgraph K ⊆ G formed by the vertices not in H; these subgraphs are
drawn with thicker lines in the figure, with H to the left and K to the right.
The subgraph H is isomorphic to the complete bipartite graph K3,3, and, in
any drawing of K3,3 on the torus, each face is homeomorphic to the plane.
This is because, if there is a face not homemorphic to the plane, we can take
a loop representing a nontrivial element of the fundamental group of this
face and, without disturbing the drawing, cut the torus along this loop and
cap both resulting holes, resulting in an embedding of K3,3 on the sphere,
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violating Theorem 2.4. Furthermore, each vertex in H is connected to at
least one vertex of K. The subgraph K is isomorphic to the edge graph of
a cube, which cannot be drawn on the plane with all the vertices appearing
on a single face. (In other words, it is not outerplanar.)

Suppose for contradiction we have a drawing of G on a torus with no
edges crossing. If vertices ofK are found on two different faces of the drawing
of H, then there must be a crossing between an edge of K and an edge of
H. On the other hand, if all the vertices of K are found on a single face Φ
of the drawing of H, then recall that (assuming this drawing of H has no
crossings), Φ is homeomorphic to the plane. Since K cannot be drawn on
the plane with all the vertices appearing on a single face, there must be a
vertex v ∈ K which is not on the unbounded face of K as drawn in Φ. There
is an edge between v and some vertex of H, and this edge must cross some
edge of K. Hence, if σ contains 3412, B(σ) is not toroidal.

Now we show that, if σ contains 321 and �(σ) ≥ 4, then B(σ) is not
toroidal. We first find a transposition t such that �(σt) < �(σ) and σt also
contain 321. Fix indices i1 < i2 < i3 such that σ(i1) > σ(i2) > σ(i3). Since
�(σ) ≥ 4, there must be an inversion of σ involving some index j �∈ {i1, i2, i3}.
If there is such an inversion involving two indices j1, j2 �∈ {i1, i2, i3}, let t
be the transposition t = (j1 j2). Otherwise, we divide first into three cases,
where j < i1, where i1 < j < i3, and where i3 < j. If j < i1, let i ∈ {i1, i2, i3}
be the minimum index such that σ(j) > σ(i) (so that indices i and j form
an inversion), and let t = (j i). If j > i3 let i ∈ {i1, i2, i3} be the maximum
index such that σ(i) > σ(j) (so that indices i and j form an inversion), and
let t = (j i). If i1 < j < i3, we need several further subcases. If j and i2 form
an inversion, then let t = (j i2). Otherwise, if j < i2, then, since j and i2 do
not form an inversion, σ(j) < σ(i2) < σ(i1), so j and i1 form an inversion,
and we let t = (j i1). Finally, if i2 < j < i3 and σ(i2) < σ(j), let t = (j i3).
Since t corresponds to an inversion of σ, �(σt) < �(σ). In the case where
i1 < j < i3, the permutation σt contains 321 at the indices t(i1), t(i2), and
t(i3); in the other cases, the permutation σt contains 321 at the indices i1,
i2, and i3.

Given such a transposition t, we note that, by Proposition 2.3, B(σ)
includes two disjoint subgraphs isomorphic to B(321), one with the sink at
vertex σ and the other with the sink at vertex σt. (In the case where σ
and σt contain 321 at the same indices i1 < i2 < i3, the two subgraphs
are disjoint since the sets {σ(i1), σ(i2), σ(i3)} and {σt(i1), σt(i2), σt(i3)} are
not equal. In the last case where σ and σt contain 321 at different in-
dices, the two subgraphs are disjoint since the sets {σ(i1), σ(i2), σ(i3)} and
σt(t(i1)), σt(t(i2)), σt(t(i3))} are the same.) Hence B(σ) contains two disjoint
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subgraphs neither of which are planar. Since B(σ) is connected, a theorem
of Battle, Harary, Kodama, and Youngs [4] (see also [18, Thm. 3.5.3]) now
implies that B(σ) cannot be toroidal.

If σ contains 321 and �(σ) = 3, then B(σ) is isomorphic to B(321), which
is K3,3. This graph is well known to be toroidal.

Finally, due to a theorem of Tenner [24] previously mentioned in the
proof of Theorem 3.1, if σ avoids both 321 and 3412, then B(σ) is the edge
graph of a cube of dimension �(σ). The edge graph of the 4-dimensional cube
is toroidal, but the edge graph of the 5-dimensional cube is not.

As before, we can give this characterization in terms of the Bruhat graph.

Corollary 4.2. The graph B(σ) is toroidal if and only if it is a point, a
single edge, the edge graph of a square, a cube, or a 4-cube, or the complete
bipartite graph K3,3.

Using Theorem 3.3, we see the following.

Corollary 4.3. The graph B(σ) is toroidal if and only if σ avoids all per-
mutations π ∈ Sm where m ≤ 10 and B(π) is not toroidal.

A computer calculation produces the following explicit minimal list of
92 permutations that must be avoided.

Corollary 4.4. The graph B(σ) is toroidal if and only if σ avoids all of the
following permutations: 3412, 4321, 4213, 4312, 3241, 4231, 4132, 3421,
2431, 32154, 21543, 234561, 234615, 235164, 236145, 241563, 241635,
251364, 261345, 314562, 314625, 315264, 316245, 412563, 412635, 512364,
612345, 2145673, 2145736, 2146375, 2147356, 2153674, 2153746, 2163475,
2173456, 2315674, 2315746, 2316475, 2317456, 3125674, 3125746, 3126475,
3127456, 2341675, 2413675, 3142675, 4123675, 2341756, 2413756, 3142756,
4123756, 2345176, 2351476, 2415376, 2513476, 3145276, 3152476, 4125376,
5123476, 23416587, 24136587, 31426587, 41236587, 21456387, 21463587,
21536487, 21634587, 21436785, 21436857, 21437586, 21438567, 23156487,
23164587, 31256487, 31264587, 23154786, 23154867, 31254786, 31254867,
21453786, 21453867, 21534786, 21534867, 231547698, 312547698,
214537698, 215347698, 214367598, 214375698, 214365897, 214365978,
21436587A9.

The number of permutations with toroidal Bruhat graphs, enumerated
by length, is as follows.

Corollary 4.5. For an m ≥ 1, there are

1. 1 permutation of length 0,
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2. (m− 1) permutations of length 1,

3. (m+1)(m−2)
2 permutations of length 2,

4. (m+4)(m−1)(m−3)
6 + (m− 2) permutations of length 3, and

5. (m+1)(m−4)(m2+5m−18)
24 permutations of length 4

which have toroidal Bruhat graphs.

Proof. A permutation σ ∈ Sm which contains 321 and has length 3 must be
a transposition of the form (i i + 2) for some i with 1 ≤ i ≤ m − 2. The
rest of the enumeration follows from [24, Cor 5.5], as in the case of planar
Bruhat graphs.
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