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Divisors and specializations of Lucas polynomials
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Three-term recurrences have infused a stupendous amount of re-
search in a broad spectrum of the sciences, such as orthogonal
polynomials (in special functions) and lattice paths (in enumera-
tive combinatorics). Among these are the Lucas polynomials, which
have seen a recent true revival. In this paper one of the themes of
investigation is the specialization to the Pell and Delannoy num-
bers. The underpinning motivation comprises primarily of divis-
ibility and symmetry. One of the most remarkable findings is a
structural decomposition of the Lucas polynomials into what we
term as flat and sharp analogs.
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1. Introduction

In this paper, we focus on two themes in Lucas polynomials, the first of
which has a rather ancient flavor. In mathematics, often, the simplest ideas
carry most importance, and hence they live longest. Among all combina-
torial sequences, the (misattributed) Pell sequence seem to be particularly
resilient. Defined by the simple recurrence

Pn = 2Pn−1 + Pn−2 for n ≥ 2,(1.1)

with respect to initial conditions P0 = 0, P1 = 1, Pell numbers appear
in ancient texts (for example, in Shulba Sutra, approximately 800 BC).
The first eight values of Pn are given by (0, 1, 2, 5, 12, 29, 70, 169), and the
remainders modulo 3 are

(P0, P1, P2, P3, P4, P5, P6, P7) ≡3 (0, 1, 2, 2, 0, 2, 1, 1).(1.2)

It is hard not to appreciate (1.2), since the sequence (Pn mod 3 : n ≥ 0) is
periodic, of period 8. This fact is easily proven by inducting on n, and by
using the recurrence from (1.1).
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Let m,n be two positive integers, and let p be a prime number. By the
Fundamental Theorem of Arithmetic, there exists a unique expression of the
form m/n = pf11 · · · pfrr for some integers fi ∈ Z, and prime numbers pi. The
p-adic valuation of m/n is then defined by

νp

(m
n

)
=

{
fi if p = pi,

0 otherwise.

Although the ancients did not document their p-adic arithmetic, it is fair
to assume that the tools for proving the following interesting consequence
of the 8-periodicity were at their disposal: the 3-adic valuation of the Pell
sequence is of the form

ν3(Pn) =

{
ν3(3k) if n = 4k,

0 otherwise.
(1.3)

Indeed, the case 4 � n is evident from the periodicity and (1.2). For the other
cases, we use the following well-known consequence

(1.4) Pm+n = PmPn+1 + Pm−1Pn

of the recurrence (1.1).
Suppose n = 4(3k + 1). From (1.4), P12k+4 = P12kP5 + P12k−1P4. By

induction, ν3(P4(3k)) = 2 + ν3(k), ν3(P12k−1) = 0. By direct calculation
ν3(P5) = 0, ν3(P4) = 1. So,

ν3(Pn) = 1 = ν3(4(3k + 1)).

Suppose n = 4(3k + 2). From (1.4), P12k+8 = P12kP9 + P12k−1P8. By
induction, ν3(P4(3k)) = 2 + ν3(k), ν3(P12k−1) = 0. By direct calculation
ν3(P9) = 0, ν3(P8) = 1. So,

ν3(Pn) = 1 = ν3(4(3k + 2)).

Suppose n = 4(3k + 3). Once more, apply (1.4) repeatedly to obtain

P12k+12 = P8k+8P4k+5 + P8k+7P4k+4

= (P4k+4P4k+5 + P4k+3P4k+4)P4k+5 + P8k+7P4k+4

= P4k+4[(P4k+5 + P4k+3)P4k+5 + P8k+7]

= P4k+4[(P4k+5 + P4k+3)P4k+5 + P4k+3P4k+5 + P4k+2P4k+4]

= P4k+4[2(P4k+4 + P4k+3)P4k+5 + P4k+3P4k+5 + P4k+2P4k+4]

= P4k+4[(2P4k+5 + P4k+2)P4k+4 + 3P4k+3P4k+5].
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Since ν3(3P4k+3P4k+5) = 1, ν3(P4k+4) = 1 + ν3(k + 1) and 3 | (2P4k+5 +

P4k+2), it follows that the terms in [(2P4k+5 + P4k+2)P4k+4 + 3P4k+3P4k+5]

are divisible by exactly 3. Combining these facts,

ν3(Pn) = ν3(P4k+4) + 1 = ν3(3(k + 1)) + 1 = ν3(4(3k + 3)).

The proof of (1.3) is complete.

We denote by N the set of all non-negative integers, and by P the set of

positive integers.

Corollary 1.5. Given k ∈ P, let n = 4k. Then P 2
n does not divide Pn2 .

Proof. A simple use of (1.3) leads to ν3(Pn2) = 1 + 2ν3(k) < ν(P 2
n) =

2 + 2ν3(k).

The hypothesis of Corollary 1.5 is restrictive in the sense that n is as-

sumed to be a multiple of 4. Our effort to remove the restriction has led

us to consider the same question in a more general context, for a family of

polynomials Ln = Ln(s, t) ∈ N[s, t], known as Lucas polynomials,1 defined

by

Ln = sLn−1 + tLn−2, subject to the initial conditions L1 = 1, L0 = 0.

Obviously, when s = 2, t = 1 we recover Pell numbers. At the same time,

Lucas polynomials have many other interesting specializations:

1. Ln(1, 1) = fn, n-th Fibonacci number;

2. Ln(2,−1) = n, for all n ≥ 0;

3. Ln(s, 0) = sn−1, for all n ≥ 1;

4. L2n(0, t) = 0, and L2n+1(0, t) = tn, for all n ≥ 0;

5. Ln(q + 1,−q) = 1 + q + · · ·+ qn−1, the standard q-analog of n.

The main result that motivated our paper is the following truly remarkable

multiplicity-free property of Lucas polynomials:

Theorem 1.6. Let d �= 1 be a divisor of n ∈ P. Then L2
d does not divide

Ln.

Note that, by evaluating Ln at s = 2, t = 1, we obtain Corollary 1.5

without any restriction on n.

1In [9], Ln is denoted by {n}.
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From an algebraic point of view, “binomial coefficients” are the special
values of the Q-valued function(

xn
xk

)
=

xnxn−1 · · ·xn−k+1

xkxk−1 · · ·x2x1
, (when 1 ≤ k ≤ n)(1.7)

defined on a sequence (xi)i∈P of non-negative integers xi. For an arbitrary
integer sequence, the binomials in (1.7) need not be integral. However, it
follows from well-known combinatorial reasons that for the sequence xi = i,
for all i ∈ N, the binomial coefficients are integers. When xn is the n-
th Fibonacci number, the associated binomial-like coefficients, customarily
called fibonomials, are integers as well.

In general, to understand the nature of integer sequences, it is often
helpful to study them by introducing extra parameters. For Fibonacci num-
bers there are many polynomial generalizations, and the family of Lucas
polynomials is one of them. In analogy, the Lucas polynomial analog of the
fibonomials are defined by(

Ln

Lk

)
:=

LnLn−1 · · ·Ln−k+1

LkLk−1 · · ·L1
.

The tapestry(
Lm+n

Lm

)
= Ln+1

(
Lm+n−1

Lm−1

)
+ tLm−1

(
Lm+n−1

Ln−1

)
,(1.8)

which is a consequence of the definitions, shows that
(
Lm+n

Lm

)
are indeed poly-

nomials in N[s, t]. Sagan and Savage in [9] call these expressions lucanomial
coefficients,2 and they furnish a combinatorial interpretation for them.

One of our goals in this paper is to better understand these polynomials
by analyzing their factorizations. To this end, suppose n = pe11 · · · perr is the
prime factorization of n. We define the n-th flat Lucas polynomial to be the
product

L�
n = Lp1

Lp2
· · ·Lpr

,(1.9)

and the n-th sharp Lucas polynomial to be

L�
n =

Ln

L�
n

.(1.10)

2In [9],
(
Ln

Lk

)
is denoted by

{
n
k

}
.
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Obviously, a flat Lucas polynomial is a polynomial. Less obvious is that a
sharp Lucas polynomial is indeed a polynomial (in s and t). We prove this
fact in Corollary 3.10.

We define flat and sharp factorials in a conventional manner, as follows:

L�
n! = L�

nL
�
n−1 · · ·L�

1 and L�
n! = L�

nL
�
n−1 · · ·L

�
1.

Accordingly, let us introduce

(
Ln

Lk

)�

=
L�
n!

L�
n−k!L

�
k!

and

(
Ln

Lk

)�

=
L�
n!

L�
n−k!L

�
k!
,

and call
(
Ln

Lk

)�
and

(
Ln

Lk

)�
, respectively, flat and sharp lucanomial coefficients.

For all 0 ≤ k ≤ n, we observe the following “flat and sharp” decomposition
of lucanomials: (

Ln

Lk

)
=

(
Ln

Lk

)�(Ln

Lk

)�

.

What is really intriguing is that

Theorem 1.11. Both the flat and sharp lucanomials are polynomials in
N[s, t].

While the proof of polynomiality of
(
Ln

Lk

)�
follows from a much more

general fact about polynomials, when specialized to integral values of s and
t, it provided us with the following challenge.

Let s and t be two fixed integers. In this case, we denote the numerical
sequence (L�

n(s, t))n∈P by (ev(L�
n))n∈P in order to distinguish from the poly-

nomials L�
n. Empirical evidence suggests, for a prime number p, that there

exists a constant θ = θs,t(p) ∈ N such that

νp(ev(L
�
n)!) =

⌊n
θ

⌋
.

We do not pursue this question here, however, the interested reader might
do so. Note that when s = 2, t = −1, the number ev(L�

n) is nothing but n�,
the product of all prime numbers dividing n. In this case, θ2,−1(p) = p, and

hence νp(n
�!) =

⌊
n
p

⌋
.

Question: Does there exist an explicit expression for θs,t(p)?

The second theme of our paper is on certain symmetry, which is lacking
from Lucas polynomials. The specialization of Ln at s = x+1, t = x (denoted
here by Dn) has a happy ending in the sense that
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Theorem 1.12. For all 0 ≤ k ≤ n, the delannomial coefficient(
Dn

Dk

)
=

DnDn−1 · · ·Dn−k+1

Dk · · ·D1
.

is symmetric and unimodal in the variable x.

Remark 1.13. When x = 1, the numbers Dn evaluate to Pell numbers, which
were our original motivation for the present work.

Wishing for more, we apply divided-difference calculus to Lucas poly-
nomials and obtain various interesting corollaries, one of which we men-
tion here. Let ∂s,t : N[s, t] → N[s, t] denote the operator ∂s,t(F (s, t)) =
(F (s, t)− F (t, s))/(s− t). Let α ∈ N and define modified Lucas polynomials
by L0(s, t : α) = L1(s, t : α) = α. For n ≥ 2, define

Ln(s, t : α) = sLn−1(s, t : α) + tLn−2(s, t : α).

Let Sn(s, t : α) denote the divided-difference polynomial ∂s,tLn(s, t : α).

Theorem 1.14. The following hold true:

(i) Sn(s, t : α) = αSn(s, t : 1) for all α ∈ N;
(ii) (s+ t− 1) divides Sn(s, t : α) for all n ∈ N;

(iii) Sn(s,t:α)
s+t−1 has non-negative integral coefficients, only.

An important connection between multiplicative arithmetic functions
and symmetric polynomials, which we were not aware of at the time of writ-
ing this paper was pointed out to us by an anonymous referee. In the articles
[4, 5, 6, 7], MacHenry and et al. develop the idea that the convolution alge-
bra of multiplicative arithmetic functions is representable by the evaluations
of certain Schur polynomials. It would be interesting to investigate our flat
and sharp Lucanomials in the context of arithmetic functions in relation
with symmetric functions.

We conclude our introduction with an observation on further potential
interpretation of the Lucas polynomials in the context of representation
theory. We plan to pursue this in the future, so we keep it brief here.

Let q be a variable and K denote a field of characteristic zero. Consider
the polynomial ring P = K[q][x1, . . . , xn] in n variables over the ring K[q].
If σi : P → P , 1 ≤ i < n, denotes the K[q]-linear operator interchanging xi
with xi+1, define the operators on the ring P by

Ti = (q − 1)

[
xi − xi+1σi
xi − xi+1

]
+ σi (1 ≤ i < n).
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Then the Ti’s generate a faithful representation of a particular deforma-
tion Hn of the group ring K[Sn] of the symmetric group Sn. In fact, it is
isomorphic to a specialization of the Iwahori-Hecke algebra of Sn.

Let ρ(n−1,1) denote the irreducible representation of Hn on the space
V of linear polynomials without constant terms modulo x1 + · · · + xn = 0,
having the polynomials {xn−1+ · · ·+x1, . . . , x2+x1, x1} as a basis. Consider
the following element of Hn:

H =

n−1∑
i=1

(Ti − q).

If ρ(n−1,1)(H) is the image of H under the representation ρ(n−1,1) with
respect to the above basis, then the matrix form of the image is ρ(n−1,1)(H) =
Mn−1(q)−(1+q)In−1, where In−1 is the identity matrix, andMn(q) is the tri-
diagonal matrix (with super-diagonal all q’s, diagonal all 0’s, sub-diagonal
all 1’s, and everything else 0). For example,

ρ(4,1)(H) =

⎡
⎢⎢⎣

−(1 + q) q 0 0
1 −(1 + q) q 0
0 1 −(1 + q) q
0 0 1 −(1 + q)

⎤
⎥⎥⎦ .

Furthermore, the characteristic polynomial of ρ(n−1,1)(H) takes the form
Chn−1(x, q) = det[(x + 1 + q)In−1 − Mn−1(q)]. If we replace q = t and
s = x+1+ q, then Chn−1(s, t) = det[sIn−1−Mn−1(t)]. These determinants
are easy to compute recursively by

Chn = sChn−1 + tChn−2.

Comparing initial conditions reveals a surprising connection: Chn−1(s, t) =
Ln(s, t), the Lucas polynomials!

2. Preliminaries

A closely-related family of polynomials, defined by the same recurrenceKn =
sKn−1+tKn−2 with respect to the initial conditions K0 = 2,K1 = s is called
the family of circular Lucas polynomials.3 The ordinary and circular Lucas
polynomials are interwoven by the identity:

(2.1) 2Lm+n = KnLm +KmLn for all m,n ∈ N.

3In [9], Kn is denoted by 〈n〉.
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Table 1: A list of Lucas and circular Lucas polynomials

Lucas polynomials Circular Lucas Polynomials
L0 = 0 K0 = 2
L1 = 1 K1 = s
L2 = s K2 = s2 + 2t
L3 = s2 + t K3 = s3 + 3st
L4 = s3 + 2st K4 = s4 + 4s2t+ 2t2

L5 = s4 + 3s2t+ t2 K5 = s5 + 5s3t+ 5st2

L6 = s5 + 4s3t+ 3st2 K6 = s6 + 6s4t+ 9s2t2 + 2t3

Table 1 gives a short list of Kn’s and Ln’s for small n. Due to their recursive

nature, the polynomials Kn and Ln, as well as
(
Ln

Lk

)
have nice combinatorial

interpretations:

1. For all n ≥ 1,

Kn =
∑
T∈Cn

w(T ),

where w(T ) = smtd such that m is the number of monominos and d

is the number of dominos and Cn is the set of all circular tilings of a

1× n rectangle with disjoint dominos and monominos.

2. For all n ≥ 1,

(2.2) Ln =
∑

T∈Ln−1

w(T )

where w(T ) = smtd such that m is the number of monominos and d

is the number of dominos and Ln−1 is the set of all linear tilings of a

1× (n− 1) rectangle with disjoint dominos and monominos.

3. For a partition λ, let Lλ denote the set of all possible linear tilings

of the rows of the Young diagram of λ, and for λ ⊆ m × n, let λ∗

denote the the complimentary Young diagram of λ in m × n. Also,

let L′
λ denote the set of all linear tilings of the rows of λ that do

not start with a monomino. Finally, the weight w(T ) of an element

T = (T1, T2) ∈ Lλ ×Lμ is defined as the product of the weights of the

rows of T1 and T2. It is shown in [Theorem 3, [9]] that if m and n are

two positive integers, then(
Lm+n

Ln

)
=

∑
λ⊆m×n

∑
T∈Lλ×L′

λ∗

w(T ).(2.3)



Divisors and specializations of Lucas polynomials 77

3. Prime divisors of Lucas polynomials

Proposition 3.1. Let N be a positive integer. Then N is even if and only
if L2 divides LN . Moreover,

(3.2)
L2N

LN
= KN for any N ≥ 1.

Proof. Equation (3.2) is immediate from (2.1). When N is even, the linear
tiling corresponding to LN has length N−1, which is odd. Thus, each linear
tiling must contain at least one monomino. The converse statement is easy
to show by induction and the recurrence for LN .

Corollary 3.3. Let N = 2rn for some positive integers r, n. Then

LN = Ln

r∏
i=1

KN

2i
.

In particular, when N = 2r with r ≥ 2, we have LN =
∏r

i=1KN

2i
.

Proof. This follows from a repeated use of Proposition 3.1.

Example 3.4. When n = 6:

L6

L3
=

s5 + 4s3t+ 3st2

s2 + t

=
(s3 + 3st)(s2 + t)

s2 + t

= K3.

Theorem 3.5. Let N be a positive integer. Then

(i) If a | N , then La | LN . More precisely,

(3.6)
LN

La
=

b∑
i=1

KN−iaK
i−1
a

2i
.

(ii) If La | LN , then a | N .

Proof. To prove (i), it suffices to prove the identity (3.6). If a · b = N , we
write

LN = La+(N−a)(3.7)

=
KN−a

2
La +

Ka

2
LN−a.
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Since N − ia = N − (i+1)a+ a for any i = 1, . . . , b, we repeatedly use (2.1)
in (3.7) to get:

LN =

b∑
i=1

KN−ia

2i
LaK

i−1
a .(3.8)

For part (ii), we already know from Proposition 3.1 that our claim is
true when a = 2, so we assume that a > 2.

Observe that LN at s = t = 1 is the N -th Fibonacci number fN . Thus,
if La divides LN , then a-th Fibonacci number fa divides fN . On the other
hand, it is well known that, for n > 2, fn | fN if and only if n | N (see [2]).
Hence, the proof is complete.

Example 3.9.

L6 = s5 + 4s3t+ 3st2 = L2L3(s
2 + 3t).

Corollary 3.10. Let N be a positive integer with prime factorization N =
pe11 · · · perr , where e1, . . . , er are some positive integers. Then LN is divisible
by

∏r
i=1 Lpi

.

Proof. By Theorem 3.5 and induction, we rewrite LN in the form LN =
Lp1

· · ·Lpr−1
p(s, t) for some polynomial p(s, t).

Now, if a prime factor of the polynomial Lpr
divides any of Lp1

, Lp2
, . . . ,

Lpr−1
, then a prime factor of the pr-th Fibonacci number divides one of

fp1
, . . . , fpr−1

. However, it is well known that Fibonacci numbers that have
a prime index do not share any common divisor greater than 1, since [8]

gcd(fn, fm) = fgcd(n,m).(3.11)

Therefore, Lpr
divides p(s, t), and hence, the proof is complete.

Although L2 divides L8, it is not true that higher powers of L2 divide
L8:

L8

L2
2

=
(s2 + 2t)(s4 + 4s2t+ 2t2)

s
.

More generally, in our next result we are going to show that LN is not
divisible by the square of any of its divisors.

Theorem 3.12. Let p �= 1 be a (not necessarily prime) divisor of N ∈ P.
Then L2

p does not divide LN .
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Proof. Let n be such that N = np. We claim that

LN ≡ ntn−1Ln−1
p−1 mod L2

p.(3.13)

We show this by proving that LN/Lp ≡ ntn−1Ln−1
p−1 mod Lp. Obviously, if

n = 1, then there is nothing to prove. To use induction, assume that our
claim is true for n. After some cancellations, equation (1.8) implies that

La+b = LaLb+1 + tLa−1Lb for all a, b ≥ 0.(3.14)

Replacing a by np and b by p in (3.14), we have Lnp+p = LnpLp+1+tLnp−1Lp.
Combining this with the defining recurrence Lp = sLp−1 + tLp−2, induction
assumption and one more application of (3.14), we get:

L(n+1)p

Lp
≡ Lnp

Lp
Lp+1 + tLnp−1 mod Lp

≡ ntn−1Ln−1
p−1 (sLp + tLp−1) + tLnp−1 mod Lp

≡ ntnLn
p−1 + tLnp−1 mod Lp.

Thus, it remains to show that Lnp−1 ≡ tn−1Ln
p−1 mod Lp. We use induction

on n once more. If n = 1, there is nothing to prove. Assuming validity for n
and using (3.14) once again, we see that

Lnp+p−1 = LnpLp + tLnp−1Lp−1 ≡ tnLn
p−1 mod Lp.

Hence, we have our claim proven.
Since Lp−1 is not divisible by Lp as p and p− 1 are relatively prime, we

see that the right-hand side of (3.13) is not zero, hence LN is not divisible
by L2

p.

4. Flat and sharp decomposition

4.1. Flat and sharp Lucas polynomials

We know from Corollary 3.10 that the sharp Lucas polynomials are indeed
polynomials. Due to prime involvement, finding a combinatorial interpreta-
tion for sharp polynomials is a challenging problem. Equivalently difficult
is the problem of describing all monomials of a sharp (or of a flat) polyno-

mial. Note that, if n itself is a prime number, then L�
n is trivial (= 1). More

generally, suppose n = pe11 · · · perr is the prime decomposition of n. It is easy
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to see from the recursive definition of Ln that Ln is monic in s with degree
n− 1 (for n ≥ 1). Therefore, the s-degree of L�

n is equal to

degs L
�
n = n− 1−

r∑
i=1

(pi − 1) = n−
r∑

i=1

pi + r − 1.

For the t-degree, we have

degt L
�
n =

⌊
n− 1

2

⌋
−

r∑
i=1

⌊
pi − 1

2

⌋
.

When N ∈ P is a power of 2, L�
N reveals itself rather explicitly. Indeed,

we have a precise analogue of Corollary 3.3: suppose N = 2rn for some
positive integers r, n. Then

L�
N =

L�
n

L2

r∏
i=1

KN

2i
.

In the special case when N = 2r for r ≥ 2, then

L�
N =

∏r
i=1K2i

L2
.

Lemma 4.1. For any prime number p, and an arbitrary positive integer N ,
we have

gcd(Lp, L
�
N ) = 1.

Proof. If p does not divide N , then there is nothing to prove. So, we proceed
with the assumption that p divides N . Suppose N = np for some n ∈ N,
and let g = g(s, t) ∈ N[s, t] denote gcd(Lp, L

�
N ). Obviously, we may assume

that g is a non-constant polynomial. It is also evident that g is a divisor of
LN/Lp. We know from the proof of Theorem 3.12 that LN/Lp ≡ ntn−1Ln−1

p−1

mod Lp, hence,

LN

Lp
≡ ntn−1Ln−1

p−1 mod g.(4.2)

Therefore, g divides the right-hand side of (4.2). In particular, specializing
at s = t = 1, we see that g(1, 1) divides fn−1

p−1 , hence, a prime factor of g(1, 1)
divides fp−1. But this means fp = Lp(1, 1) and fp−1 have a common prime
divisor, which is absurd. Therefore g = 1.
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Recall that gcd(Lm, Ln) = Lgcd(m,n). Divisibility properties of Lucas
polynomials carry over to the flattened and sharpened versions:

Theorem 4.3. Let m and n be two positive integers such that m | n. Then

(i) L�
m | L�

n in N[s, t],

(ii) L�
m | L�

n in N[s, t].

Proof. Part (i) follows from Theorem 3.5. Part (ii) follows from part (i)
combined with Lemma 4.1.

4.2. Flat and sharp lucanomials

Theorem 4.4. For all 0 ≤ k ≤ n, we have

(
Ln

Lk

)
=

(
Ln

Lk

)�(Ln

Lk

)�

.

Proof. This is immediate from

L�
n! =

Ln!

L�
n!
,

which itself is a consequence of equation (1.10).

Clearly, the remarkable combinatorial interpretation (2.3) of
(
Ln

Lk

)
exists

because of polynomiality. A natural question to ask at this point is whether
or not the flat/sharp lucanomials are polynomials. The answer is affirmative.

We proceed with a rather general result on “binomial coefficients” for
the flattened polynomial sequences. Although we state this for polynomials
only, it stays valid for sequences in an integral domain.

Theorem 4.5. Let R be a polynomial algebra over a field of characteristic
zero. Let {Pn}n∈N be a sequence of polynomials from R with P0 = 0 and
P1 = 1. For each n ∈ P, let P �

n denote the flattening of Pn, that is P �
n =

Pp1
· · ·Ppr

, whenever n = pe11 · · · perr is the prime factorization of n. Then

the associated flat binomial
(
Pn

pk

)�
:=

P �
n···P �

n−k+1

P �
k ···P �

1

is a polynomial.

Proof. If p ∈ P is a prime number, then with an abuse of terminology call
Pp “prime.” We define the Pp-valuation of Pn to be the highest exponent
of Pp in the factorization of Pn in R. Since P �

n is a product of primes, the
Pp-valuation of P �

n! := P �
nP

�
n−1 · · ·P �

1 is equivalent to the p-adic valuation of

n�!, which is
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νPp
(P �

n!) = νp(n
�!) =

⌊
n

p

⌋
,

hence

νPp

((
Pn

Pk

)�
)

=

⌊
n

p

⌋
−
⌊
k

p

⌋
−
⌊
n− k

p

⌋
≥ 0.(4.6)

To prove the inequality in (4.6) write n = mp + r, k = lp + t where 0 ≤
t, s ≤ p. So,⌊

n

p

⌋
−
⌊
k

p

⌋
−
⌊
n− k

p

⌋
= m− l − (m− l)−

⌊
r − t

p

⌋
= −

⌊
r − t

p

⌋
≥ 0

since r − t < p (possibly negative). In fact, this argument shows that

νPp
(
(
Pn

Pk

)�
) is 0 or 1. Therefore, the a priori rational function

(
Pn

Pk

)�
is a

polynomial.

Theorem 4.7. Both the flat and sharp lucanomials are polynomials in
N[s, t].

Proof. Polynomiality of the flat lucanomials follows from Theorem 4.5, so,
we proceed with the sharp lucanomials. Since

(
Ln

Lk

)
is a polynomial, by The-

orem 4.4 it is enough to show that the denominator of
(
Ln

Lk

)�
has no divisor

shared with the polynomial
(
Ln

Lk

)�
. In light of Lemma 4.1 this is now obvi-

ous.

4.3. Catalanomials

In this section we extend the discussion to an s, t-version of the classical
Catalan numbers.

Definition 4.8. A general binomial version of Catalan, the (s, t)-Catalan,
is defined to be

CLn
:=

1

Ln+1

(
L2n

Ln

)
.

The flat and sharp (s, t)-Catalan polynomials, C�
n, C

�
n are defined similarly,

by replacing Li’s with L�
i ’s, and with L�

i ’s, respectively.

Theorem 4.9. The (s, t)-Catalans CLn
, C�

n, C
�
n are all polynomials in

N[s, t].
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Proof. The first assertion is immediate from

CLn
=

(
L2n−1

Ln−1

)
+ t

(
L2n−1

Ln−2

)
,

which is one of the properties found in [9]. The proof is completed by double
induction on n and k. For the second, it is enough to observe that L�

n+1

divides
(
L2n

Ln

)
and gcd(L�

n+1,
(
L2n

Ln

)�
) = 1 (by Lemma 4.1). The proof of the

third assertion follows from that of the second.

5. Delannomials

Let a, b ∈ P be two positive integers. The Delannoy number D(a, b) is the
number of lattice paths starting at (0, 0) and ending at (b, a) moving with
unit steps (1, 0), (0, 1), or (1, 1). These numbers are given by the recurrence
relation

D(a, b) = D(a− 1, b) +D(a, b− 1) +D(a− 1, b− 1)(5.1)

and the initial conditions D(a, 0) = D(0, b) = D(0, 0) = 1. The beautiful
symmetry of the generating series

D(x, y) =
∑

a+b≥1
a, b∈N

D(a, b)xayb =
1

1− x− y − xy

is indicative of a rich combinatorics associated with these numbers. Of par-
ticular interest is the paper [3], where Delannoy numbers find a prominent
place in number theory (especially, in the discussion on the notion of the
so-called local Riemann Hypothesis).

Let x be a new variable, and define the polynomial Dn(x), n ∈ N by

Dn(x) = Ln|s=x+1,t=x.

It is immediate from the defining recurrence of Lucas polynomials that D0 =
0, D1 = 1 and

Dn(x) = (x+ 1)Dn−1 + xDn−2,(5.2)

for n ≥ 2. If there is no danger of confusion we remove the argument x and
write simply Dn in place of Dn(x).

The next result shows that the coefficients of Dn(x) are the classical
Delannoy numbers.



84 Tewodros Amdeberhan et al.

Lemma 5.3. For each n ≥ 1, we have

Dn(x) =

n∑
i=1

D(n− i, i− 1)xi−1.(5.4)

Proof. Write Dn =
∑n−1

i=0 dni x
i. Then by the recurrence (5.2) we see that

n−1∑
i=0

dni x
i = (x+ 1)

n−2∑
i=0

dn−1
i xi + x

n−3∑
i=0

dn−2
i xi,

or equivalently, for 1 ≤ i ≤ n− 3,

dni = dn−1
i−1 + dn−1

i + dn−2
i−1 .(5.5)

Assume by induction that dni = D(n − i, i − 1). Then the recurrence (5.2)
together with the induction hypothesis implies that

D(n− i, i− 1) =D((n− 1)− (i− 1), i− 2)

+D((n− 1)− i, i− 1) +D((n− 2)− (i− 1), i− 2),

which is equivalent to (5.5).

Lemma 5.6. Preserve the notation from the proof of Lemma 5.3, and write
Dn =

∑n−1
i=0 dni x

i. Then dni = dnn−i−1.

Proof. By Lemma 5.3, we know that dnn−i−1 = D(n−1−(n−i−1), n−i−1)
and that dni = D(n− 1− i, i). Obviously these are equal quantities.

Definition 5.7. The (n, k)-th delannomial is defined to be(
Dn

Dk

)
=

DnDn−1 · · ·Dn−k+1

Dk · · ·D2D1
.

Let p(x) =
∑r

i=0 aix
i be a polynomoial. If r is odd, then the central

monomial of p(x) is defined to be ajx
j , where j = (r + 1)/2. If r is even, it

is defined to be ajx
j with j = �r/2�.

Theorem 5.8. For all m and n, the delannomial
(
Dm+n

Dm

)
is symmetric and

unimodal.

Proof. The recurrence (1.8) induces the same recurrence on
(
Dm+n

Dm

)
. Since

product of symmetric and unimodal polynomials is symmetric and unimodal,
we only need to show that the degree of the central monomial ofDm+1

(
Dm+n

Dm−1

)
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matches with the central monomial of xDm−1

(
Dm+n

Dn−1

)
. This follows from in-

duction.

Remark 5.9. For
(
Dm+n

Dm

)
, there exists a combinatorial interpretation, along

the lines of [9], by using dominos (weighted by x) and two kinds of monomi-
nos (weighted by x and x2).

6. Divided-differences

The Lucas polynomials bring in many interesting features, but they fail to
be symmetric in the variables s and t. For example, L2 = s. To remedy this
deficit, we consider their behavior under the divided-difference operator. To
be precise, we associate the sequence of polynomials defined by

Sn(s, t) =
Ln(s, t)− Ln(t, s)

s− t
.

Of course, Sn(s, t) = Sn(t, s) for all n ≥ 0. Let’s record some basic properties
of Sn(s, t). The next result shows a simple algebraic relation between the
two sequence of polynomials via generating functions.

Lemma 6.1. Suppose S(x; s, t) =
∑

n Sn(s, t)x
n and L(x; s, t) =∑

n Ln(s, t)x
n. Then

S(x; s, t) = (1− x)L(x; s, t)L(x; t, s).

Proof. It is well known that L(x; s, t) = x
1−sx−tx2 . Now, proceed as follows:

L(x; s, t)− L(x; t, s)

s− t
=

1

s− t

[
x

1− sx− tx2
− x

1− tx− sx2

]

=
1

s− t

[
(s− t)(1− x)x2

(1− sx− tx2)(1− tx− sx2)

]
.

The proof is complete.

Corollary 6.2. There is a recurrence relation linking Ln(s, t) with Sn(s, t):

Sn(s, t) = sSn−1(s, t) + tSn−2(s, t) + Ln−1(s, t)− Ln−2(s, t).

Proof. Rewrite Lemma 6.1 in the form: (1 − sx − tx2)S(x; s, t) = (x −
x2)L(x, s, t). Taking the coefficients of xn on both sides of this equation
reveals that

Sn(s, t)− sSn−1(s, t)− tSn−2(s, t) = Ln−1(s, t)− Ln−2(s, t),

which is equivalent to desired conclusion.
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The generating function for second order Fibonacci numbers, as de-
fined in

http://oeis.org.A010049,

is x(1− x)/(1− x− x2)2. The next statement connects these numbers with
the divided-differences Sn(1, 1).

Corollary 6.3. Let an denote the specialization of Sn(s, t) at s = t = 1.
Then

(i) an is the (n− 1)-th second order Fibonacci number;
(ii) an = fn−1 +

∑n−2
k=0 fn−2−kfk.

Proof. (ii) Recall that L(x; 1, 1) =
∑

n fnx
n, where fn are the Fibonacci

numbers. Observe also that given any F (x) =
∑

n cnx
n, the partial sums∑n

k=0 cn have generating function F (x)
1−x . From Lemma 6.1, we have S(x;1,1)

1−x =

L(x; 1, 1)2. Extract the coefficients of xn to obtain
∑n

k=0 ak =
∑n

k=0 fn−kfk
(where Cauchy’s product formula has been utilized). Since fn−k − fn−1−k =
fn−2−k, it is easy to see that

an =

n∑
k=0

ak −
n−1∑
k=0

ak =

n∑
k=0

fn−kfk −
n−1∑
k=0

fn−1−kfk

= fn−1 +

n−1∑
k=0

(fn−k − fn−1−k)fk

= fn−1 +

n−2∑
k=0

fn−2−kfk.

To get (i), use S(x; 1, 1) = (1 − x)L(x; 1, 1)2 = x
[

x(1−x)
(1−x−x2)2

]
. The proof

follows.

In the next result we obtain a recurrence for the divided-difference
Sn(s, t).

Corollary 6.4. Preserve the notations from Lemma 6.1. Write Sn for
Sn(s, t). For n ≥ 4, we have

Sn = (s+ t)Sn−1 + (s+ t− st)Sn−2 − (s2 + t2)Sn−3 − stSn−4.

Proof. Once more, Lemma 6.1 implies (1−sx− tx2)(1− tx−st2)S(x; s, t) =
x2 − x3. Equivalently,

[1− (s+ t)x− (s+ t− st)x2 + (s2 + t2)x3 + stx4]S(x; s; t) = x2 − x3.
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Now, simply compare the coefficients of xn on both sides of the last equa-

tion.

Here is an amusing corollary with beautiful symmetry.

Corollary 6.5. For s, t ∈ P, we have the numerical series evaluation

∑
n≥0

Sn(s, t)

(s+ t)n+1
=

1

st(s+ t− 1)
.

Proof. Corollary 2.6 of [1] states that

∑
n

Ln(s, t)

(s+ t)n+1
=

1

t(s+ t− 1)
.

Thus,

∑ Sn(s, t)

(s+ t)n+1
=

∑ Ln(s, t)− Ln(t, s)

(s− t)(s+ t)n+1

=
1

s− t

[
1

t(s+ t− 1)
− 1

s(s+ t− 1)

]
=

1

st(s+ t− 1)
.

Remark 6.6. Despite the above plethora of facts, one aspect of the symmetric

functions Sn(s, t) remains undesirable from a combinatorial viewpoint: the

coefficients are not all non-negative. Fortunately, all is not lost because there

is a quick fix as will be seen below.

Let α ∈ N. While maintaining the recursive relation for Lucas polyno-

mials, we make a slight alteration to the initial conditions: assumeL0(s, t :

α) = L1(s, t : α) = α. For n ≥ 2, define

Ln(s, t : α) = sLn−1(s, t : α) + tLn−2(s, t : α).

Let Sn(s, t : α) denote the divided-difference polynomial that is associated

with Ln(s, t : α).

Theorem 6.7. The following hold true:

(i) Sn(s, t : α) = αSn(s, t : 1) for all α ∈ N;

(ii) (s+ t− 1) divides Sn(s, t : α) for all n ∈ N;

(iii) Sn(s,t:α)
s+t−1 has non-negative integral coefficients, only.
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Proof. (i) The defining recurrence and initial conditions imply the homo-

geneity Ln(s, t : α) = αLn(s, t : 1). From here, it is evident that Sn(s, t : α)

inherits the same property. Routine standard methods give

L(s, t : 1) :=
∑
n

Ln(s, t : 1)x
n =

1− (s− 1)x

1− sx− tx2
.

One can easily verify that
∑

n Sn(s, t : 1)x
n = (s+t−1)x3

(1−sx−tx2)(1−tx−sx2) . In par-

ticular,

∑
n

Sn(s, t : 1)

s+ t− 1
xn =

x3

(1− sx− tx2)(1− tx− sx2)
= xL(s, t)L(t, s)

simultaneously demonstrates the divisibility in (ii) as well as the claim in

(iii).

Remark 6.8. It is worthwhile to note that Ln(s, t : 1) = Ln(s, t)+tLn−1(s, t).

As a result, the modified Lucas polynomials also retain a combinatorial

interpretation much as the ordinary ones. Such as simultaneous tiling of a

pair of rectangles, one 1 × (n − 1) and the other 1 × n, where the latter

always begins with a domino.
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