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Two examples of unbalanced Wilf-equivalence

Alexander Burstein and Jay Pantone
∗

We prove that the set of patterns {1324, 3416725} is Wilf-equivalent
to the pattern 1234 and that the set of patterns {2143, 3142, 246135}
is Wilf-equivalent to the set of patterns {2413, 3142}. These are the
first known unbalanced Wilf-equivalences for classical patterns be-
tween finite sets of patterns.
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A pattern is an equivalence class of sequences under order-isomorphism. Two
sequences π1 and π2 over totally ordered alphabets are order-isomorphic
if, for any pair of positions i and j, we have π1(i) < π1(j) if and only if
π2(i) < π2(j). We identify a pattern with its canonical representative, in
which the kth-smallest letter is k. We say that a permutation π contains a
pattern σ if π has a subsequence order-isomorphic to σ, otherwise we say
that π avoids σ.

We denote the set of permutations of length n by Sn, the set of per-
mutations in Sn avoiding pattern π by Avn(π), and the set of permuta-
tions in Sn avoiding every pattern in a set Π by Avn(Π). We say that
two (sets of) patterns π′ and π′′ are Wilf-equivalent, denoted π′ ∼ π′′, if
|Avn(π

′)| = |Avn(π
′′)| for all n ∈ N. We call a Wilf-equivalence unbalanced

if the two sets of patterns do not contain the same number of patterns
of each length. We will sometimes talk about the type of an unbalanced
Wilf-equivalence, defined by the lengths of the patterns: for example, the
two Wilf-equivalences proved in this paper, 1234 ∼ {1324, 3416725} and
{2413, 3142} ∼ {2143, 3142, 246135}, have types (4) ∼ (4, 7) and (4, 4) ∼
(4, 4, 6), respectively.

In Section 1, we prove that {1324, 3416725} ∼ 1234. In Section 2, we
prove that {2143, 3142, 246135} ∼ {2413, 3142}. In Section 3, we conjecture
a few other unbalanced Wilf-equivalences.
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1. A (4) ∼ (4, 7) Wilf-equivalence

Theorem 1.1. {1324, 3416725} ∼ 1234.

We note that this is not the first Wilf-equivalence between a singleton
pattern and a set of more than one pattern. In [4], the authors proved
that the pattern 1342 is Wilf-equivalent to the infinite set of patterns B =
{(2, 2m − 1, 4, 1, 6, 3, 8, 5, . . . , 2m, 2m − 3) | m = 2, 3, 4, . . . }. However, we
prove a Wilf-equivalence between a singleton pattern and a finite set of more
than one pattern. Our proof is an extension of an idea of Bóna [5] in his
proof that |Avn(1324)| > |Avn(1234)| for n ≥ 7. In other words, we shall
reduce the bijection on permutations to a bijection on certain (0, 1)-filled
skew-Ferrers boards.

Given a permutation σ ∈ Sn, consider an n×n board Mσ filled with 0’s
and 1’s, so that the 1’s are in cells in column i (from left to right) and row
σ(i) (from bottom to top), for 1 ≤ i ≤ n, and 0’s are in all other positions.

We say that σ has a left-to-right (LR) minimum at position i if σ(j) >
σ(i) for all j < i. Likewise, we say that σ has a right-to-left (RL) maximum
at position i if σ(j) < σ(i) for all j > i. Note that every RL-maximum
is either a LR-minimum or is above and to the right of a LR-minimum.
Additionally, the leftmost entry of a permutation is always a LR-minimum
and the rightmost entry is always a RL-maximum.

Given a permutation matrix Mσ, remove all the boxes of Mσ that are
not both above and to the right of some LR-minimum and below and to the
left of some RL-maximum, as well as the rows and columns of Mσ containing
the LR-minima and RL-maxima. Denote the resulting (0,1)-filled board by
Bσ. Note that different permutations σ may give rise to the same Bσ, e.g.,
B23145 = B1234.

It is easy to see that Bσ is a (possibly empty) skew-Ferrers board, with an
equal number of rows and columns, that contains the antidiagonal. (We will
call such boards nice.) This is because if Bσ contains cells (a, b) and cell (c, d)

Figure 1: Boards B1234, B1324, and B3416725. Positions of 1’s are denoted
by the dots. The remaining positions are filled with 0’s. Positions of the
corresponding (removed) LR-minima and RL-maxima are denoted by circles.
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(with rows and columns renumbered consecutively after the cell removal as
above) then Bσ contains all cells (k, l) with a ≤ k ≤ c and b ≤ l ≤ d. To
see that Bσ contains the antidiagonal, suppose that an antidiagonal cell c
with coordinates (j, r − j + 1) is not in Bσ, where r is the number of rows
and columns in Bσ. Then we have two possibilities: (1) there is no cell in Bσ

either below or to the left of c (or both), or (2) there is no cell in Bσ either
above or to the right of c (or both). Without loss of generality, assume the
former. Then every 1 in the j leftmost rows of Bσ is also contained in the
j−1 topmost columns of Bσ (from r− j+2 through r), which is impossible.

Define avoidance on boards as follows.

Definition 1.2. A nice board B contains a nice board B′ if B′ can be ob-
tained from B by deleting an equal number of rows and columns. Otherwise,
we say that B avoids B′.

We note the following fact.

Lemma 1.3.

1. A permutation σ avoids pattern 1234 if and only if Bσ avoids pattern
B1234.

2. A permutation σ avoids patterns 1324 and 3416725 if and only if Bσ

avoids patterns B1324 and B3416725.

Proof. Clearly, if σ contains an occurrence of 1234 (respectively, 1324), then
Bσ contains B1234 (respectively, B1324) as a sub-board. Likewise, if Bσ con-
tains B1234 (respectively, B1324) as a sub-board, thenMσ has a LR-minimum
below and to the left, and a RL-maximum above and to the right, of that
occurrence of B1234 (respectively, B1324); in other words, σ contains pattern
1234 (respectively, 1324). Thus, σ avoids 1234 (respectively, 1324) if and
only if Bσ avoids B1234 (respectively, B1324).

Consider a B1324-avoiding board Bσ. It is easy to see that if Bσ contains
B3416725, then Mσ has at least two LR-minima in nonconsecutive rows and
columns and at least two RL-maxima in nonconsecutive rows and columns
above and to the right of those LR-minima; these four entries correspond to
the circles on the border of B3416725. Given the position of 1’s in B3416725,
this implies that Mσ contains M3416725, i.e., σ contains 3416725.

Conversely, suppose that a 1324-avoiding permutation σ contains an
occurrence (σi1 , . . . , σi7) of 3416725 with 1 < i1 ≤ · · · ≤ i7 ≤ n, that is,
σi3 < σi6 < σi1 < σi2 < σi7 < σi4 < σi5 . We will show that in this case
σ also contains an occurrence of 3416725 where the “3” and the “1” are
LR-minima of σ and the “7” and the “5” are RL-maxima of σ.
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Define positions j and k as follows. If σ has a LR-minimum at position
i3, let j = i3. If not, let j < i3 be such that σj is the rightmost LR-minimum
to the left of σi3 . Then σj < σi3 . If j < i2, then σ contains an occurrence
of 1324 at positions (j, i2, i3, i4), which is impossible. Therefore, i2 < j < i3
(since σi2 is not a LR-minimum of σ). Similarly, if σ has a LR-minimum at
position i1, let k = i1; otherwise, let k < i1 be such that σk is the smallest
LR-minimum to the left of σi1 . Then σk < σi1 . If σk < σi6 , then σ contains an
occurrence of 1324 at positions (k, i1, i6, i7), which is impossible. Therefore,
σi6 < σk < σi1 (since σi6 is not a LR-minimum of σ).

Therefore, σ contains an occurrence of pattern 3416725 at positions
(k, i2, j, i4, i5, i6, i7), where the “3” and the “1” (that is, σk and σj) are
LR-minima of σ. Similarly, we can find an occurrence of 3416725 in σ where
σi5 and σi7 (the “7” and the “5”) are also (replaced with) RL-maxima of σ.
But if σ contains occurrence of 3416725 with LR-minima as the “3” and the
“1” and RL-maxima as the “7” and the “5”, then Bσ contains B3416725.

Thus, σ avoids both 1324 and 3416725 if and only if Bσ avoids both
B1324 and B3416725.

Finally, we note that Lemma 2 of Bóna [5] is equivalent to the following
statement.

Lemma 1.4. Every nice board B has a unique B1234-avoiding (0,1)-filling
with a single 1 in each row and each column.

Proof. Clearly, the 1’s have to be placed exactly in all the cells on the
antidiagonal of B, otherwise B1234 is created.

This means that to prove Theorem 1.1 we only need to prove the follow-
ing lemma.

Lemma 1.5. Every nice board B has a unique (B1324, B3416725)-avoiding
(0,1)-filling with a single 1 in each row and each column.

Proof. Note that only the cells with 1’s need to be specified, since the rest
of the cells are filled with 0’s.

We will insert the 1’s into cells of B recursively as follows. Suppose that
the bottom row of B has k cells, and the rightmost column of B has l cells.
Then put a 1 in the leftmost cell in the bottom row if k ≤ l and into the top
cell in the rightmost column if k > l. Remove the row and column containing
this 1 and continue according to the same rule until no cells remain.

Proceeding inductively, we only need to prove that the position for the
first 1 inserted into B is unique under the above avoidance conditions. In-
deed, it is easy to see that a 1 inserted as described above cannot be part
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of any occurrence of B1324 or B3416725. Thus, it is easy to see by induction
that the whole filling of B as above avoids both B1324 and B3416725.

Suppose that a 1 is inserted in a different position in the bottom row
(if k ≤ l) or the rightmost column (if k < l). Without loss of generality,
we can assume that k ≤ l (otherwise, reflect B across the antidiagonal), so
that the 1 is inserted in the bottom row. Then this 1 is not in the leftmost
column intersecting the bottom row of B, but it is in the bottom row in
the mth column from the right, where m < k. Suppose the mth rightmost
column is of height h. Then h ≥ l. Consider the (m + 1)-st column of B
from the right. It contains the bottom row cell immediately to the left of
the 1 in the bottom row. Therefore, the 1 in the (m + 1)-st column from
the right cannot be in the bottom h cells of that column (or else B would
contain B1324). Thus, the (m + 1)-st column from the right should contain
more than h cells, and the 1 in that column should be in row h1 from the
bottom for some h1 > h. Therefore, B contains the sub-board

B14523 =

in the columns m and (m + 1) from the right and rows 1 and h1 from the
bottom.

Now consider the l − 1 rows immediately above the bottom row of B,
i.e., those that also intersect with the rightmost column. Let l1 ∈ [2, l], and
suppose the 1 in row l1 from the bottom is in a column m1 from the right.
If m1 ∈ [m + 1, k], then B contains the pattern B1324 in the intersections
of rows 1 and l1 from the bottom and columns m and m1 from the right. If
m1 > k, then B contains the pattern B3416725 in the intersections of rows 1,
l1 and h1 from the bottom and columns m, m + 1 and m1 from the right.
Therefore, to avoid both B1324 and B3416725, we must have m1 ≤ m.

Thus, in every one of the l bottom rows, the 1’s are contained in the m
rightmost columns. But this is a contradiction, since m < k ≤ l. This ends
the proof.

Such a (B1324, B3416725)-avoiding filling of a nice board B is similar to
the constructions of Simion and Schmidt [12] and Krattenthaler [10] of 132-
avoiding permutations starting from their LR-minima.

Finally, note that all the permutations in a class in the sense of Bóna [5]
are exactly those that have the same nice board (but different fillings). As
a result, the single filling that avoids (B1324, B3416725) corresponds to ex-
actly one permutation in Av(1324, 3416725) corresponding to the considered
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board. The same applies to the single filling that avoids 1234. Thus, the sets
Avn(1324, 3416725) and Avn(1234) have the same cardinality for all n ≥ 0.
This ends the proof of Theorem 1.1.

A permutation σ is called an involution if σ−1 = σ. Let In(π) denote
the subset of involutions in Avn(π).

Theorem 1.6. The set of patterns {4231, 5276143} is Wilf-equivalent to
pattern 4321 on involutions. Moreover, for all n ≥ 0, |In(4231, 5276143)| =
|In(4321)| = Mn, the nth Motzkin number.

Proof. Note that if a board B as in Lemma 1.5 is symmetric about the an-
tidiagonal then the (B1324, B3416725)-avoiding (0,1)-filling of B is also sym-
metric about the antidiagonal (since it is unique, and reflection across the
antidiagonal preserves B).

Reversing B, we obtain a board B′ with equal numbers of rows and
columns that contains the main diagonal. Thus, by Lemmas 1.4 and 1.5,
each such B′ contains a unique filling that avoids B4321 and a unique filling
that avoids (B4231, B5276143). Moreover, if B′ is symmetric about the main
diagonal, then both of those fillings are symmetric about the main diagonal
as well. Note that if σ is an involution, then Bσ−1 = Bσ is symmetric about
the main diagonal. Thus, |In(4231, 5276143)| = |In(4321)|, and it is known
[11] that |In(4321)| = Mn. This ends the proof.

2. A (4, 4) ∼ (4, 4, 6) Wilf-equivalence

We start with a few preliminaries that will be needed in this section. A per-
mutation class is a set of permutations which is closed downward under the
pattern containment order, i.e., C is a class if whenever π ∈ C and σ ≤ π, we
have σ ∈ C. Every permutation class can be described by the unique set of
minimal permutations which it does not contain, called its basis. The class
of permutations avoiding a set of patterns Π is then denoted Av(Π).

A permutation π of length n is sum decomposable if there exists 1 ≤ i < n
such that {π(j) : j ≤ i} = {1, 2, . . . , i}. Otherwise, π is said to be sum
indecomposable. Similarly, π is said to be skew decomposable if there exists
1 ≤ i < n such that {π(j) : j > i} = {1, 2, . . . , n− i}, and is otherwise skew
indecomposable.

An interval of a permutation is a nonempty contiguous set of indices
{i, i + 1, . . . , j} such that the set of values {π(i), π(i + 1), . . . , π(j)} is also
contiguous. A permutation of length n is said to be simple if it does not
contain any intervals other than those of lengths 1 and n. For instance, the
permutations 2413 and 3142 are the only simple permutations of length 4.
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Given a class C, we use Si(C) to denote the set of simple permutations in
the class C.

Simple permutations represent the fundamental building blocks of per-
mutations via the operation of inflation. Given a permutation σ of length
k and a sequence of nonempty permutations (τi)

k
i=1, the inflation of σ by

(τi)
k
i=1, written as σ[τ1, τ2, . . . , τk], is the permutation of length |τ1|+· · ·+|τk|

such that each entry σ(i) is replaced by the interval τi. For example,

3142[123, 1, 21, 312] = 567198423.

Note that the sum decomposable (resp., skew decomposable) permuta-
tions are exactly those which are inflations of 12 (resp., 21). Moreover, we
write 12[σ, τ ] as σ ⊕ τ and 21[σ, τ ] as σ � τ .

The following lemma allows us to derive information about a class of
permutations by looking at the simple permutations in the class.

Proposition 2.1 (Albert and Atkinson [2]). Given a permutation π, there
exists a unique simple permutation σ such that π = σ[τ1, . . . , τk]. When
σ �∈ {12, 21}, the intervals τ1, . . . , τk are uniquely determined. When σ = 12
(resp., σ = 21), the intervals are unique if we require the first of the two
intervals to be sum (resp., skew) indecomposable.

We can now prove the main theorem of this section. We do this by finding
a structural description of the class, then using this description to set up a
functional equation satisfied by the generating function for the class.

Theorem 2.2. {2143, 3142, 246135} ∼ {2413, 3142}.
Define C = Av(2143, 3142, 246135). It is well known that the set of per-

mutations which avoid the patterns {2413, 3142}, known as the separable
permutations, are counted by the large Schröder numbers. Accordingly, we
prove Theorem 2.2 by showing directly that C is also counted by the Schröder
numbers, as has recently been conjectured by Egge [7].

The skew-merged permutations are the class of permutations which are
the union of an increasing sequence and a decreasing sequence. Stankova [13]
proved that the skew-merged permutations are exactly Av(2143, 3412). Re-
cently, Albert and Vatter [3] enumerated the simple skew-merged permuta-
tions, noting that precisely half of them contain 2413 and avoid 3142 while
the other half contain 3142 and avoid 2413. (While they were not the first
to provide this enumeration, it is their technique which we adapt here.) Re-
markably, the simple permutations of C coincide exactly with the simple
skew-merged permutations which contain 2413, as we now prove.
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Lemma 2.3. Si(Av(2143, 3142, 246135)) = Si(Av(2143, 3142, 3412)).

Proof. Since 246135 contains 3412, it is trivial that

Si(Av(2143, 3142, 246135)) ⊇ Si(Av(2143, 3142, 3412)).

We will now prove the reverse inclusion. Suppose toward a contradiction that
σ ∈ Si(Av(2143, 3142, 246135)) and that σ contains 3412. Without loss of
generality, we may pick the 3412 pattern so that the “3” is as leftmost as
possible, the “4” is as topmost as possible (i.e., has value as great as possible)
for the chosen “3”, the “1” is as bottommost as possible (i.e., has value as
small as possible) for the chosen “3” and “4”, and the “2” is as rightmost
as possible for the given “3”, “4”, and “1”.

The figure below shows this situation as illustrated by a permutation di-
agram, generated using Albert’s PermLab [1] application. The dots represent
permutation entries while the squares represent possible insertion locations
for future entries: white squares represent valid insertion locations, dark
gray squares represent insertion locations that are forbidden because such
an insertion would form a basis element, and light gray squares represent in-
sertion locations that we have assumed are empty (for example, by assuming
that the “3” is as leftmost as possible).

As σ is a simple permutation, the two entries in the bottom-right must
be separated by an entry in either the white square directly above them, the
white square directly to their left, or the white square to their far left. One
can quickly see that any attempt to split them using the two adjacent white
cells will eventually require a entry located to the left of the 12 interval in
the top-left of the permutation diagram. This additional entry is shown in
the following permutation diagram.
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Such an entry now limits the ways that we may split the remaining 12
interval. Entries placed in the white squares directly below or to the right of
the 12 interval will only create larger intervals that cannot be separated. This
implies that σ will always contain a nontrivial interval, which contradicts
the assumption that σ is simple.

In describing a permutation class, it is often helpful to consider four
different types of permutations: the single permutation of length 1, the sum
decomposable permutations, the skew decomposable permutations, and the
permutations that are inflations of simple permutations of length at least 4.

The previous lemma allows us to count the permutations in C which are
inflations of simple permutations of length at least 4. Consider the simple
permutation of C shown below. The black entries are part of the increasing
subsequence, the gray entries are part of the decreasing subsequence, and
the circled entry is the central point which may or may not exist in a simple
skew-merged permutation.

Entries in the increasing subsequence can only be inflated by increasing
permutations, since a decrease would form a 2143 pattern. Entries in the
decreasing subsequence and the central point can all be inflated by any
permutation in the class.

The generating function for the simple skew-merged permutations given
by Albert and Vatter does not distinguish between the entries in the in-
creasing and decreasing subsequences. Fortunately, we can easily adapt their
method to count each type of entry separately, in the same way that Bóna,
Homberger, Pantone, and Vatter [6] adapted the method Albert and Vatter
used to count 321-avoiding simple permutations, distinguishing between en-
tries in each of the two increasing subsequences. Performing this calculation,
which we omit due to its similarity to the aforementioned references, one
finds that the simple 3142-avoiding skew-merged permutations are counted
by the generating function

s(u, v) =
2u2v2(1 + v)

1− 2uv(u+ 2)− uv2(u+ 2) + (1− uv)
√

1− 2uv(2u+ 3)− uv2(3u+ 4)
,
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where u counts entries in the increasing subsequence (omitting a central
point if one exists) and v counts entries in the decreasing subsequence (in-
cluding a central point if one exists). Let f denote the generating function
for the class C. By our earlier observations about the allowed inflations,
we conclude that the permutations in C which are inflations of the simple
permutations of length at least 4 are counted by

s

(
x

1− x
, f

)
.

It only remains to count the sum and skew decomposable permutations
of C. Let f⊕ and f� denote the sum decomposable and skew decomposable
permutations in C, respectively. As in the case studied by Albert and Vat-
ter [3], the sum decomposable permutations in this class all have the form
1⊕ π or π ⊕ 1. Counting these, and making sure not to double-count those
permutations of the form 1⊕ π ⊕ 1, we see that

f⊕ = 2xf − x2(f + 1).

Moreover, the class C is closed under the operation of skew sum (which
is readily derived from the fact that C has no skew decomposable basis
elements) from which it follows in the usual manner that

f� =
f2

1 + f
.

Combining these results, f satisfies the functional equation

f = x+ f⊕ + f� + s

(
x

1− x
, f

)

= x+ 2xf − x2(f + 1) +
f2

1 + f
+ s

(
x

1− x
, f

)
.

(1)

It can then be verified by a computer algebra system that one solution
to (1) is

f =
1− x−

√
1− 6x+ x2

2
,

which is the generating function for the large Schröder numbers. In fact,
f is the unique formal power series solution to (1). To see this, note that
substituting x = 0 into (1) implies that any solution f must have constant
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term 0. It follows then that the coefficient of xn in the power series of f at

x = 0 is uniquely determined by the coefficients of x1, x2, . . . , xn−1.

Therefore, the permutation class Av(2143, 3142, 246135) is counted by

the large Schröder numbers, and hence is Wilf-equivalent to Av(2413, 3142).

3. Some conjectures

There appear to be more Wilf-equivalences between a singleton pattern and

a set of more than one pattern. In fact, we conjecture the following Wilf-

equivalence.

Conjecture 3.1. {2143, 246135} ∼ 2413.

Since |Av5(π)| = 103 for all π with |π| = 4, there can be no (4) ∼ (4, 5)

Wilf-equivalence; for if |α| = 4 and |β| = 5 with α �≤ β, then it must follow

that |Av5(α, β)| = 102. Computation has verified that, up to symmetries,

there are no unbalanced Wilf-equivalences of the form (4) ∼ (4, 6) or (4) ∼
(4, 7) other than the (4) ∼ (4, 7) Wilf-equivalence proved in this paper and

the (4) ∼ (4, 6) Wilf-equivalence conjectured above. It follows that there are

no other (4) ∼ (4, k) Wilf-equivalences for any k.

It would be interesting to give a bijection in the proof of Conjecture

3.1 that would also preserve 3142-avoidance. This would yield another proof

that

{2143, 3142, 246135} ∼ {2413, 3142}.

In fact, Egge [7] has conjectured that {2143, 3142, π} ∼ {2413, 3142} for

any permutation π among

246135, 254613, 263514, 362415, 461325, 524361, 546132, 614352.

Additionally, the authors discovered after submission that Jeĺınek [8], in

his doctoral thesis, proved that 1234 ∼ {1324, 3416725} using largely similar

methods. However, this result was never published. Moreover, Jeĺınek [9] has

indicated that he has recently proved the following generalization:

{σ ⊕ 12⊕ τ} ∼ ({σ ⊕ 21⊕ τ} ∪B) ,

where B is a (necessarily finite) set of permutations of length at most 2|σ|+
2|τ |+ 3.



66 Alexander Burstein and Jay Pantone

Acknowledgements

The authors would like to thank Miklós Bóna for his close reading of the
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