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A simple proof of a theorem of Schmerl and Trotter
for permutations
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When specialized to the context of permutations, Schmerl and
Trotter’s Theorem states that every simple permutation which is
not a parallel alternation contains a simple permutation with one
fewer entry. We give an elementary proof of this result.

An interval in the permutation π (thought of in one-line notation) is a
contiguous set of entries whose values also form a contiguous set. Every
permutation of length n has trivial intervals of lengths 0, 1, and n, and per-
mutations with only trivial intervals are called simple. We take a graphical
view of permutations, in which we identify a permutation π with its plot, the
set of points (i, π(i)) in the plane. Three examples of simple permutations
are plotted in Figure 1. Note that 1, 12, and 21 are all simple and that there
are no simple permutations of length 3. A bit more examination shows that
2413 and 3142 are the only simple permutations of length 4.

The second and third simple permutations in Figure 1 are called parallel
alternations. A parallel alternation is, formally, a permutation whose entries
can be divided into two halves of equal length, either both increasing or
both decreasing, such that the entries of the halves interleave perfectly. In
particular, 12, 21, 2413, and 3142 are parallel alternations. While parallel
alternations need not be simple (1324 is a nonsimple parallel alternation),
from any parallel alternation we may obtain a simple permutation by re-
moving at most two entries.

Specialized to permutations1, the main result of Schmerl and Trotter is
as follows.
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1The notions of intervals and simplicity extend naturally to all relational struc-
tures (though with different names, such as modules and primality). Schmerl and
Trotter proved their result for simple, irreflexive, binary relational structures.
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Figure 1: Three examples of simple permutations. The second and third are
parallel alternations.

Figure 2: In both figures, x1 separates x2 and x3.

The Schmerl-Trotter Theorem for Permutations [6]. Every simple
permutation which is not a parallel alternation contains an entry whose re-
moval leaves a simple permutation.

Schmerl and Trotter’s theorem has found wide application both theo-
retically and practically. For example, it has been used in [2, 3] to show
that certain classes of permutations are defined by a finite set of restric-
tions, and in Albert’s PermLab package [1] to efficiently generate the simple
permutations in a permutation class.

In this note we give a short, self-contained proof of the Schmerl-Trotter
Theorem. We use only a few definitions in this proof. First, in order to
simplify the discussion, we say that an entry of the simple permutation
σ is inessential if its removal leaves a permutation which is still simple;
otherwise, entries are essential. The other concept we need is separation:
given a permutation σ and entries x1, x2, and x3, we say that x1 separates
x2 and x3 if x1 lies between x2 and x3 either horizontally or vertically, but
not both, as in Figure 2. We extend this to sets of entries by saying that
x separates the entries X if it lies outside the rectangular hull of X and
separates any two of its entries.

Proof. We prove the theorem by induction on the length of the simple per-
mutation. It is vacuously true for permutations of length 4, as both such
simple permutations are parallel alternations, so suppose that σ is a simple
permutation of length at least 5 which is not a parallel alternation and that



A simple proof of a theorem of Schmerl and Trotter 49

Figure 3: The relative positions of x1, x2, and x3.

Figure 4: The three possible configurations after finding x4.

the theorem holds for all shorter permutations. As we are done otherwise,
we assume throughout the proof that every entry of σ is essential.

We begin by assuming, in order to eliminate this case, that removing
any entry of σ creates a minimal proper interval containing precisely two en-
tries. Let x1 be an arbitrary entry of σ and suppose that σ−x1 contains the
interval {x2, x3}. It follows that x1 must separate x2 and x3 in σ because it is
simple, and furthermore, x1 must be the only entry which separates x2 and
x3 in σ because {x2, x3} forms an interval when x1 is removed. By applying
one of the eight symmetries of the square, we may then assume that these
entries are in the relative order of 231, with x1 on the left. This situation
is depicted in Figure 3. In this and all later figures, the gray areas indicate
regions which cannot contain entries (because of the interval conditions).

Consider the doubleton interval in σ − x3. Because σ − x3 still contains
x2, this doubleton interval must contain at least one of x1 or x2, together
with a new entry x4. Figure 4 shows the three possibilities: the doubleton
interval can consist of {x1, x4} with x4 either to the left or right of x1, or it
can consist of {x2, x4}, but only if x4 lies below and to the left of x2.

Next consider the doubleton interval in σ − x4. In the leftmost case
of Figure 4, there is only one possibility, as the doubleton could only be
{x3, x5} for a new entry x5. Then we see that the doubleton interval in
σ−x5 must be {x4, x6} for a new entry x6. Continuing this process until we
have run out of entries of σ (as indicated on the left of Figure 5) yields the
desired contradiction. The case where x4 lies to the right of x1 (the middle
case in Figures 4 and 5) yields a similar contradiction. This leaves only the
rightmost case of Figure 4. In this case we instead consider the doubleton
interval in σ − x2. As x1 and x4 must be separated by an entry outside
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Figure 5: The three possible configurations after finding x5.

Figure 6: Up to symmetry, the three cases where ι has length 4.

the rectangular hull of {x1, x2, x3, x4} in σ (otherwise these four entries
would form an interval in σ), this doubleton must consist of a new entry x5
together with x3, as shown on the right of Figure 5. However, in that case,
σ−x4 cannot contain a doubleton interval, which completes the contradiction
to our assumption that σ − x contains a doubleton interval for every en-
try x.

The next case we consider is when there is an entry x for which σ − x
contains a minimal proper interval, say ι, of length 4. By symmetry, we
may further assume that x lies to the left of ι, which is itself a copy of
3142, leaving us with three cases. These are depicted in Figure 6. In each
of the three cases, the circled entry in the figure is a potential inessential
entry of σ which can only be essential if its removal creates a doubleton
interval involving an entry of ι together with an entry y which lies adjacent
to ι both horizontally and vertically. Thus we may assume that the entry y
exists when handling these cases.

In the first case, where x separates the ‘1’ and the ‘2’ of ι, the ‘4’ of ι
would be inessential unless its removal were to result in an interval involving
the ‘3’. That possibility could only happen if there were an entry y lying
directly above and to the left of ι in σ − x. However in that case y could
not separate any set of entries not already separated by either x or ι and
thus y would be inessential. In the second case there must be other entries
of σ (because σ is not a parallel alternation), and so there must be an entry
other than y separating ι ∪ {x, y}. The only place such an entry can lie is
vertically between x and y, and this shows that y is inessential. The third
and final case is similar to the first.
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Figure 7: Up to symmetry, the cases where ι is a parallel alternation of
length at least 6.

Next suppose that σ− x contains a minimal proper interval ι which is a
parallel alternation of length 2� ≥ 6. By symmetry we may assume that ι is
in the same relative order as (�+1)1(�+2)2 · · · (2�)� and that x lies either to
the left of or above ι. First suppose that x lies above ι. If x lies horizontally
between ι(1) and ι(2), then we have the situation shown on the top left of
Figure 7, and ι(2) is inessential. Otherwise, x lies horizontally between two
entries from the ‘bottom half’ of ι, say ι(2i) and ι(2i+ 2), and in this case
the entry ι(2i+ 1) is inessential (the top right picture in Figure 7 shows an
example of this).

We may now suppose that x lies to the left of ι. As in the previous case,
if x lies vertically between two entries of the same ‘half’ of ι, say ι(i) and
ι(i + 2), then the entry ι(i + 1) is inessential (the bottom left picture in
Figure 7 shows an example of this). The only remaining case is when x lies
vertically between the first and last entries of ι. In this case the only way
ι(1) can be essential is if its removal creates an interval involving ι(2) and an
entry y lying immediately below and to the left of ι (as shown on the bottom
right of Figure 7). This case is similar to the analogous case where ι is of
length 4; σ must have other entries because it is not a parallel alternation
and in particular, it must contain an entry lying horizontally between x and
y (because there is no other position in which ι ∪ {x, y} can be separated).
This implies that y is inessential, thus completing the analysis of the case
where the interval of σ−x contains an interval which is a parallel alternation.
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Figure 8: Examples of the two cases that can arise after choosing xk+1.

Having dealt with these special cases, we may now suppose that there
is an entry x1 such that σ − x1 contains a minimal proper interval, say ι1,
which is not a parallel alternation (and thus consists of at least five entries).
We construct a sequence x1, x2, . . . of essential entries and a sequence ι1,
ι2, . . . of intervals such that ιk is a minimal proper interval of σ − xk for
every k. Thus xk separates ιk in σ, and the minimality of ιk and simplicity
of σ imply that ιk is itself simple. We are done by the above if any ιk is a
parallel alternation, so we may assume that each ιk contains an inessential
entry by induction, which we take to be xk+1.

Next observe that because ιk − xk+1 is simple and has length at least
four, it does not have any entries on its corners. Therefore σ − xk+1 cannot
contain a minimal proper interval which includes entries from both inside
and outside ιk. Now if xk separates ιk−xk+1, as in the left of Figure 8, then
xk+1 is inessential for σ and we are done. Otherwise, as shown on the right
of Figure 8, xk must separate xk+1 from the rest of ιk, i.e., from ιk − xk+1.
In this case ιk − xk+1 is a proper interval of σ − xk+1, so we take it to be
ιk+1.

This process must terminate because |ιk+1| = |ιk|−1. Moreover, because
each ιk is simple and there are no simple permutations of length 3, when
this process does terminate it must be because we have either found an
inessential entry of σ or because some ιk is a parallel alternation of length
at least 4, and in either case the theorem is proved.

Now that we have proved that ‘almost all’ simple permutations have an
inessential entry, how many entries should we expect to be inessential? The
answer is almost all of them. This fact seems to have been first observed by
Pierrot and Rossin [5], but we include a short sketch below.

It has been shown (see, for example, Corteel, Louchard, and Peman-
tle [4]) that the number of nontrivial intervals in a random permutation of
length n is asymptotically Possion distributed with mean 2 (in fact this is
true for intervals of size 2; the probability of a random permutation having a
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larger proper interval tends to 0 as n → ∞). Therefore the number of simple
permutations of length n is asymptotic to n!/e2. Now we double-count pairs
(σ, x) where σ is a simple permutation of length n+1 and x is an inessential
entry of σ. On one hand, the number of such pairs is asymptotic to

(n+ 1)!

e2
· E[number of inessential entries].

On the other hand, the number of such pairs is equal to the number of pairs
(σ, τ) where σ and τ are simple, σ has length n+1, and τ = σ−x. Consider
inserting a new entry x into a simple permutation τ of length n. There are
naively (n + 1)2 different places to insert x. However, 2n of these places
will create intervals of size two with entries of τ while the four places on
the corners will create an interval of size n. Each of the remaining n2 − 3
places to insert x yields a different permutation, and, if inserted into one of
those positions, x cannot lie in an interval of size strictly between two and
n because τ has no proper intervals. Therefore the number of such pairs is
asymptotic to

n!

e2
(
n2 − 3

)
,

showing that the expected number of inessential entries is asymptotic to n,
as desired.
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