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Some Wilf-equivalences for vincular patterns

Andrew M. Baxter and Mark Shattuck

We prove several Wilf-equivalences for vincular patterns of length
4, some of which generalize to infinite families of vincular patterns.
We also present functional equations for the generating functions
for the number of permutations of length n avoiding a single pat-
tern for the patterns 124-3, 134-2, 231-4, 241-3, 132-4, and 142-3.
This nearly completes the Wilf-classification of vincular patterns
of length 4. As a corollary, these results imply Wilf-equivalences
for certain barred patterns of length 5 with a single bar.
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1. Introduction

Vincular patterns were first introduced by Babson and Steingŕımsson in
2000 in [1], and the Wilf-classification for length 3 patterns was completed
soon thereafter by Claesson in [7]. The classification for length 4 vincular
patterns is still incomplete, although progress has been made in [8, 12, 3, 11].
In this paper, we answer the remaining parts of Conjecture 17 of [4]. This
paper, combined with previous literature and computation, suggests that
only two Wilf-equivalences remain for vincular patterns of length 4, listed
in the conclusion as Conjecture 22.

Let [n] = {1, 2, . . . , n}. For a word w ∈ [n]k, we write w = w1w2 · · ·wk

and define the reduction red(w) to be the word obtained by replacing the
i-th smallest letter(s) of w with i. For example red(839183) = 324132. If
red(u) = red(w), we say that u and w are order-isomorphic and write u ∼ w.

A permutation π ∈ Sn contains σ ∈ Sk as a classical pattern if there
exists a subsequence πi1πi2 · · ·πik for 1 ≤ i1 < i2 < · · · < ik ≤ n such
that πi1πi2 · · ·πik ∼ σ. Vincular patterns (also called “generalized patterns”
or “dashed patterns”) resemble classical patterns, except that some of the
indices ij must be consecutive. Formally, we can consider a vincular pattern
as a pair (σ,X) for a permutation σ ∈ Sk and a set of adjacenciesX ⊆ [k−1].
The subsequence πi1πi2 · · ·πik for 1 ≤ i1 < i2 < · · · < ik ≤ n is a copy
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(or occurrence) of (σ,X) if πi1πi2 · · ·πik ∼ σ and ij+1 − ij = 1 for each
j ∈ X. If a copy of (σ,X) appears in π, we say that π contains (σ,X),
and otherwise we say π avoids (σ,X). In practice, we write (σ,X) as the
permutation σ with a dash between σj and σj+1 if j �∈ X and refer to “the
vincular pattern σ” without explicitly writing X. For example, (1243, {3})
is written 1-2-43. The permutation 162534 has a copy of 1-2-43 as witnessed
by the subsequence 1253, but the subsequence 1254 is not a copy of 1-2-43
since the 5 and 4 are not adjacent. Classical patterns are those of the form
(σ, ∅) where no adjacencies are required, while consecutive patterns are those
of the form (σ, [k − 1]) where the copies of σ must appear as subfactors
πiπi+1 · · ·πi+k−1 ∼ σ.

Classical patterns exhibit several trivial symmetries which extend to
vincular patterns as well. The reverse of a permutation π = π1π2 · · ·πn is
given by πr = πnπn−1 · · ·π1 and the complement by πc = (n+ 1− π1)(n+
1−π2) · · · (n+1−πn). For a vincular pattern (σ,X) of length k, the reverse
of (σ,X) is the pattern (σ,X)r = (σr, {k − x : x ∈ X}). Thus the reverse of
13-2-4 is 4-2-31. Similarly, the complement of (σ,X) is the pattern (σ,X)c =
(σc, X). Thus we see (13-2-4)c = 42-3-1. Observe that π contains (σ,X) if
and only if πr contains (σ,X)r and likewise for the complement.

If a permutation π does not contain a copy of a vincular pattern σ, we
say that π avoids σ. The subset of Sn of permutations avoiding σ is denoted
Sn(σ). Two patterns σ and τ are Wilf-equivalent if |Sn(σ)| = |Sn(τ)| for
all n ≥ 0, and we denote this by σ ≡ τ . From the preceding remarks on
symmetry, it is clear that σ ≡ σr ≡ σc ≡ σrc.

The results in this paper translate to Wilf-equivalences for barred pat-
terns. A barred pattern is a permutation σ where some subset of the letters
have bars over them. Let σ′ be the classical pattern formed by the unbarred
letters of σ and let σ′′ be the underlying permutation. A permutation π
avoids a barred pattern σ if every copy of σ′ extends to a copy of σ′′ (in-
cluding the vacuous case where π avoids σ′ entirely). For example, consider
the barred pattern σ = 231̄4, so then σ′ = 123 and σ′′ = 2314. Then we see
that π = 34152 avoids σ, since π1π2π4 = 345 is the only copy of σ′ and it
extends to π1π2π3π4 = 3415 ∼ σ′′. On the other hand, π = 324651 does not
avoid σ since 345 ∼ σ′ cannot extend to create a 2314. We use the analogous
notation Sn(σ) for the permutations avoiding a barred pattern σ, and define
Wilf-equivalence for barred patterns in the obvious way.

It is known that there are (sets of) vincular patterns B such that the
sets Sn(B) can also be characterized by avoiding (sets of) barred patterns.
For example, Sn(413̄52) = Sn(3-14-2). The question of classifying such pat-
terns was raised by Steingŕımsson in [14] and answered by Tenner in [15]
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for avoidance sets classified by avoiding a single vincular pattern. The vin-
cular patterns in Section 5 each happen to correspond to avoiding a barred
pattern, and we state the barred patterns when appropriate.

The paper is divided as follows. Section 2 presents some preliminary work
regarding partitioning the set Sn(σ) according to prefix patterns. These re-
sults are used repeatedly in Sections 3 and 4. Section 3 proves two infinite
families of Wilf-equivalences. Section 4 proves special cases of the fami-
lies from Section 3 by a different method which also produces functional
equations for the appropriate generating functions. Section 5 proves sev-
eral sporadic Wilf-equivalences through a variety of combinatorial methods.
The remaining equivalences to complete the Wilf-classification of vincular
patterns of length 4 are given in the final section.

2. Partitioning by prefixes

Let us make some preliminary observations concerning the partitioning of
avoidance classes according to prefixes, which we will make use of in the two
subsequent sections. Given a permutation p ∈ Sk, let Sn(B)[p] be the set of
permutations π ∈ Sn(B) such that π1π2 · · ·πk ∼ p. For further refinement,
let w ∈ {1, 2, . . . , n}k and define the set

Sn(B)[p;w] = {π ∈ Sn(B)[p] : πi = wi for 1 ≤ i ≤ k}.

Obviously Sn(B)[p;w] is empty unless w ∼ p. For an example, the set of
1-2-3-avoiders of length 5 starting with “53” is:

S5(1-2-3)[21; 53] = {53142, 53214, 53241, 53412, 53421}.

The redundancy of including p in the Sn(B)[p;w] notation is maintained to
emphasize the subset relation. In what follows, we will often use a, b, and c
to denote the first, second, and third letters, respectively, of a permutation
or prefix.

By looking at the prefix of a permutation, one can identify likely “trouble
spots” where forbidden patterns may appear. For example, suppose we wish
to avoid the pattern 23-1. Then the presence of the pattern 12 in the prefix
indicates the potential for the entire permutation to contain a 23-1 pattern.
In fact, one can quickly determine that Sn(23-1)[12; ab] = ∅ if a > 1, since
in that case 1 appears to the right of the prefix and so ab1 provides a
copy of 23-1. This argument generalizes in the obvious way to the following
proposition, which is adapted from Lemma 11 of [3].
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Proposition 1. Let σ = σ1σ2 · · ·σk-σk+1 be a vincular pattern and let p ∈
Sk such that p ∼ σ1σ2 · · ·σk. Then the following conditions each imply that
Sn(σ)[p;w] = ∅:

1. If σk+1 = 1 and m is the index so that σm = 2, then Sn(σ)[p;w] = ∅
if wm > 1.

2. If σk+1 = k+1 and � is the index so that σ� = k, then Sn(σ)[p;w] = ∅
if w� < n.

3. If 1 < σk+1 < k+1, � is the index so that σ� = σk+1− 1, and m is the
index so that σm = σk+1 + 1, then Sn(σ)[p;w] = ∅ if wm − w� > 1.

For readers familiar with enumeration schemes, we note that Proposition
1 is translated from the gap vector criteria for avoiding σ of the given form.

We will make use of bijections Sn(σ)[p;w] → Sn′(σ)[p′;w′] which are
each done by deleting the first few letters from a permutation. Specifically,
we define the following deletion map:

Definition 2. Let R ⊆ {1, 2, . . . , k} and let π ∈ Sn for n ≥ k. Define the
deletion map dR : Sn → Sn−|R| to act by deleting πr for each r ∈ R, and
then reducing the resulting word.

For example, d{1,3}(3154276) deletes the first and third letters, 3 and 5,
to form the word 14276, which is then reduced to the permutation 13254.
Thus d{1,3}(3154276) = 13254.

It is clear that dR : Sn → Sn−|R| is a surjection such that each image

π ∈ Sn−|R| has |R|! ·
(

n
|R|

)
pre-images. If one restricts to specific prefixes,

however, we can get a bijection. For a word w with no repeated letters,
define dR(w) to be the word obtained by deleting wr for each r ∈ R and
subtracting |{r ∈ R : wr < wi}| from each remaining wi. For example,
d{1,3}(63485) = 364. Note that this definition is equivalent to the one given
above when w ∈ Sn. We now see that restricting the domain of dR yields a
bijection dR : Sn[p;w] → Sn−|R|[dR(p); dR(w)].

For certain choices of p, R, and σ, applying dR to a permutation in
Sn(σ)[p;w] results in another σ-avoiding permutation. Such an event moti-
vates the following definition:

Definition 3. The set of indices R is reversibly deletable for p with respect
to B if the map

(1) dR : Sn(B)[p;w] → Sn−|R|(B)[dR(p); dR(w)]

is a bijection for all w such that Sn(B)[p;w] �= ∅.
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In the case of patterns of the form σ1σ2 · · ·σk-σk+1, reversibly deletable
sets are easy to find. The following is a strengthening of Lemma 10 in [3].

Proposition 4. Let σ = σ1σ2 · · ·σk-σk+1 be a vincular pattern and let p ∈
St be a prefix pattern for t ≤ k such that σ1σ2 · · ·σt �∼ p. Let r be the smallest
index such that pr+1pr+2 · · · pt ∼ σ1σ2 · · ·σt−r. Then R = {1, 2, . . . , r} is
reversibly deletable for p with respect to σ.

Note that the r in Proposition 4 is guaranteed to exist since pt ∼ σ1. The
proof of this proposition follows from the fact that for π ∈ Sn(σ)[p;w], the
letter πi could not be part of a copy of σ unless πiπi+1 · · ·πt ∼ pipi+1 · · · pt ∼
σ1σ2 · · ·σt−i+1. In other words, the constructed deletion map d{1,2,...,r} cuts
the permutation just prior to the first letter that a copy of σ could pos-
sibly use based on the limited information provided by the prefix pat-
tern p.

In the case that the entire prefix has length greater than or equal the
initial section of σ, we need the following.

Proposition 5. Let σ = σ1σ2 · · ·σk-σk+1 be a vincular pattern and let p =
p1p2 · · · pt ∈ St, where t ≥ k, such that no consecutive k letters of p are
isomorphic to σ1σ2 · · ·σk except for possibly the final k letters of p. Let
r ≥ t− k + 1 be the smallest index such that pr+1pr+2 · · · pt ∼ σ1σ2 · · ·σt−r.
Then R = {1, 2, . . . , r} is reversibly deletable for p with respect to σ.

Observe that Sn(σ)[p;w] is empty in the case that the final k letters of
w are isomorphic to σ1σ2 · · ·σk and satisfy the conditions given in Propo-
sition 1. By the definition of reversible deletability, we may focus on the
action of dR for prefixes w which make Sn(σ)[p;w] non-empty. We know
that if π ∈ Sn(σ)[p;w], then π1π2 · · ·πr is not part of a copy of σ, and so we
may proceed as in the proof of Proposition 4.

3. Two families of equivalences

We now consider equivalences involving some general classes of vincular
patterns containing a single dash. Our first result concerns a certain class of
vincular patterns having exactly one peak in the initial section.

Theorem 6. Let k ≥ 3 and σ = σ1σ2 · · ·σk-σk+1 denote the vincular pattern
of length k + 1 such that σ1 < σ2 < · · · < σi−1 < σi > σi+1 > · · · > σk and
σk+1 = k+1, where 2 ≤ i ≤ k−1. Let τ = τ1τ2 · · · τk-τk+1 denote the pattern
obtained from σ by interchanging the letters k and k + 1. Then σ ≡ τ and
this equivalence respects the first letter statistic.
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Proof. We will prove that σ ≡ τ and that this equivalence respects the first
letter statistic together by induction.

We start with the following definition. By a block Bi of a permutation
π = π1π2 · · ·πn, we will mean a certain maximal monotonic string of letters
defined recursively as follows. Let B1 be the maximal monotonic initial sub-
factor of π. If j ≥ 2, then let Bj be the maximal monotonic initial subfactor
of the permutation (provided it is non-empty) obtained by removing blocks
B1, B2, . . . , Bj−1 from π. For example, if π = 148769523 ∈ S9, then there
are four blocks B1 = 148, B2 = 76, B3 = 952 and B4 = 3.

Let us describe a block as increasing or decreasing depending on whether
or not its letters are in ascending or descending order. We will often refer
to B1 as the initial block. Given pairwise disjoint subsets B1, B2, . . . , Br of
[n], where the elements of a set may occur in either increasing or decreasing
order, and a pattern ρ, let Sn(ρ)(B1, B2, . . . , Br) denote the subset of Sn(ρ)
whose members contain at least r blocks where the j-th block is Bj for
1 ≤ j ≤ r. Given a permutation π = π1π2 · · ·πn and 1 ≤ i ≤ n − 1, we will
say that π has a descent (ascent) at index i if πi > πi+1 (πi < πi+1).

Let us assume in the following arguments that an initial block starts
with a fixed letter a.

Note first that Sn(σ)(B) and Sn(τ)(B) are both singletons in the two
cases where B = [n] (assuming here either a = 1 or a = n). Furthermore,
since only the final block of a permutation can be a singleton, it follows that
Sn(σ)(B1, B2) and Sn(τ)(B1, B2) are the same set when |B2| = 1. So let us
assume that permutations contain at least two blocks, with the second block
of size at least two. Clearly, we may also assume n ≥ k + 1 in what follows.

We will now show that |Sn(σ)(B)| = |Sn(τ)(B)| for a given decreas-
ing block B. Let b denote the last letter of B and m = n − |B| + 1. By
Proposition 4 or 5, deleting all the letters of B except b results in permu-
tations belonging to Sm(σ) and Sm(τ), which we leave in unreduced form
for convenience. By induction, we know that the total number of members
of Sm(σ)[1; b] is the same as the total number of members of Sm(τ)[1; b].
We also have that the permutations in either of these classes which start
with a descent are equinumerous, by induction, upon deleting the letter b
and considering the resulting permutations of length m− 1. By subtraction,
the number of members of Sm(σ)[1; b] starting with an ascent is the same as
the number of members of Sm(τ)[1; b] starting with an ascent, which implies
|Sn(σ)(B)| = |Sn(τ)(B)|.

If B is increasing with |B| < i, then deleting all of the letters of B
and considering the first letter of the resulting permutations shows that
|Sn(σ)(B)| = |Sn(τ)(B)| in this case, by Proposition 4.
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Now suppose that the initial block B is increasing with |B| ≥ i and that
the second block is also increasing, where we assume 2 ≤ i ≤ k − 2 in this
case. By Proposition 4 or 5, we may delete all of the letters of B from the
members of both Sn(σ)(B) and Sn(τ)(B) to obtain permutations of length
m = n− |B|, which we leave unreduced. Note that m > 1 and suppose that
these shorter permutations start with the letter c, where c < max{B}. By a
subtraction argument similar to the one used above in the case when B was
decreasing, the number of members of Sm(σ)[1; c] starting with an ascent is
the same as the number of members of Sm(τ)[1; c] starting with an ascent.
Since c is arbitrary, it follows that |Sn(σ)(B)| = |Sn(τ)(B)| in this case.

Next suppose that the initial block B1 is increasing with |B1| ≥ i, while
the second block B2 is decreasing with |B2| < k − i. We then delete all
the letters of B1 and all but the last letter of B2. Reasoning as in the
case when the initial block B was decreasing shows that |Sn(σ)(B1, B2)| =
|Sn(τ)(B1, B2)|.

Finally, assume that B1 is increasing with |B1| ≥ i and that B2 is de-
creasing with |B2| ≥ k − i if 2 ≤ i ≤ k − 2 (where the same assumptions
apply for B1 and B2 if i = k − 1 except that B2 is allowed to increase as
well). Note that the last letter of B1 in π ∈ Sn(σ)(B1, B2) must be n in
order to avoid an occurrence of σ, by (a slight extension of) Proposition 1.
Given B1 and B2, let B̃1 be obtained by replacing the n at the end of B1

with max{x, y} + 1, where x is the penultimate letter of B1 and y is the
first letter of B2, and let B̃2 = B2. Assume now that B2 is decreasing.
Deleting all letters belonging to the blocks B1 and B2 except for the last
letter of B2 from each π ∈ Sn(σ)(B1, B2), and doing likewise with B̃1 and
B̃2 for each λ ∈ Sn(τ)(B̃1, B̃2), results in members of Sm(σ) and Sm(τ) all
having the same first letter and starting with an ascent if m > 1, where
m = n − |B1| − |B2| + 1. Previous arguments now show that the cardinal-
ities of these shorter classes of permutations are the same, which implies
|Sn(σ)(B1, B2)| = |Sn(τ)(B̃1, B̃2)|. If i = k − 1 and B2 is increasing, then
a similar argument applies and yields the same conclusion, this time upon
deleting all letters in B1 and B2. Note further that B̃1 and B̃2 range over
all possibilities for the first two blocks of λ ∈ Sn(τ)(S, T ), where |S| ≥ i and
|T | ≥ k − i with S increasing and T decreasing if 2 ≤ i ≤ k − 2 (with T
allowed also to increase if i = k−1), as B1 and B2 range over all possibilities
for the first two blocks of π ∈ Sn(σ) satisfying the same requirements.

Collecting all of the cases above in which a permutation starts with the
given letter a completes the induction and the proof.

Remark: The preceding proof shows further that the equivalence respects
descent sets (and hence the number of descents).
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As special cases of Theorem 6, we get equivalences such as the following:

• 1243-5 ≡ 1253-4

• 1432-5 ≡ 1532-4

• 2431-5 ≡ 2531-4.

We recall the following general result.

Theorem 7 (Kitaev [12], Elizalde [8]). If α and β are consecutive patterns

of length k and α ≡ β, then α-(k + 1) ≡ β-(k + 1).

As a corollary of Theorems 6 and 7, we obtain the following result.

Corollary 8. If τ has the form described in Theorem 6, then τ1τ2 · · · τk-k ≡
τk · · · τ2τ1-k.

Our next result concerns a class of singly-dashed patterns, each of whose

section to the left of the dash is increasing and contains all but one letter.

Theorem 9. If k ≥ 3 and 1 ≤ i ≤ k − 1, then let σi denote the vincular

pattern of length k + 1 given by σi = 12 · · · i(i+ 2) · · · (k + 1)-(i+ 1). Then

σi ≡ σj for all 1 ≤ i, j ≤ k − 1. Furthermore, these equivalences respect the

first letter statistic.

Proof. Given k ≥ 3 and 1 ≤ i ≤ k − 1, let σi denote the vincular pattern

12 · · · i(i + 2)(i + 3) · · · (k + 1)-(i + 1). We will show by induction that the

number of permutations of length n which avoid σi and start with a given

letter is the same for all i. If n < k + 1, then the result is clear, so let us

assume n ≥ k + 1.

First note that the set of permutations of length n avoiding σi and

starting x1 < x2 < · · · < xj > xj+1, where x1, x2, . . . , xj+1 are given and

1 ≤ j < k, have the same cardinality for all i by induction. This can be seen

upon deleting the first j letters, which by Proposition 4 are extraneous con-

cerning the avoidance or containment of any of the σi, and considering the

permutation of [n− j] that results whose first element is fixed (i.e., the ele-

ment corresponding to xj+1 in the reduction of the set [n]−{x1, x2, . . . , xj}).
So assume that the permutations π = π1π2 · · ·πn under consideration

which avoid σi contain at least one descent and have their first descent at

index �, where k ≤ � ≤ n − 1 is given. Let us refine this set further by

assuming π1 = a and π� = b. Note that in order for π = π1π2 · · ·πn to avoid

σi, have its first descent at index �, and satisfy π1 = a and π� = b, the

following conditions must hold concerning the first � letters: (i) a = π1 <



Some Wilf-equivalences for vincular patterns 27

π2 < · · · < πi, (ii) πi+r = πi + r for 1 ≤ r ≤ � − k, and (iii) π�−(k−i−1) <

π�−(k−i−2) < · · · < π� = b.

We will show that the number of permutations π = π1π2 · · ·πn, which
avoid σi and have their first descent at index � with π1 = a and π� = b, does

not depend on i and is hence the same for all i. To do so, it suffices to show

(which is done in the next-to-last paragraph) that the number of possible

subsets S comprising π1π2 · · ·π� and satisfying conditions (1), (2), and (3)

does not depend on i.

To see why, note first that if the initial � letters of a permutation π

satisfy the three conditions above, with π�+1 < π�, then each of the first �

letters are seen to be extraneous concerning the avoidance of σi and thus

may be deleted. Regardless of i and the choice of letters for S, there are

π� − � = b − � choices for π�+1 in the permutation π�+1π�+2 · · ·πn. Note

further that if π�+1π�+2 · · ·πn is reduced to a member of Sn−�, then π�+1

would correspond to a member of [b − �]. Suppose now π = π1π2 · · ·πn
and ρ = ρ1ρ2 · · · ρn are permutations avoiding σi1 and σi2 , where 1 ≤ i1 <

i2 ≤ k − 1, with S and T the subsets of [n] corresponding to the first �

letters and satisfying conditions (1)–(3) above but with i = i1 and i = i2,

respectively. Then there are b − � choices for the letter π�+1 in π and the

same number for ρ�+1 in ρ. Furthermore, if π�+1 corresponds to the same

letter in red(π�+1π�+2 · · ·πn) as does ρ�+1 in red(ρ�+1ρ�+2 · · · ρn), we see that
the number of possibilities concerning the final n− � letters of π or ρ is the

same in this case, by induction. Since π�+1 and ρ�+1 always correspond to

a member of [b − �] ⊆ [n − �], it follows that the number of possibilities

for π�+1π�+2 · · ·πn, given S, is the same as the number of possibilities for

ρ�+1ρ�+2 · · · ρn, given T (in fact, this number is the same for all S and T ).

Since the number of possible S and T is always the same for i1 and i2 as the

parameters b and � vary, it follows that number of permutations of length

n starting with a and having an initial increasing subsequence of length at

least k and avoiding either σi1 or σi2 is the same.

Let us now count the number of subsets S satisfying conditions (1)–(3)

above, where 1 ≤ i ≤ k−1. If i = 1, then π1 = a implies πr+1 = a+r, 1 ≤ r ≤
�−k, so that π� = b implies there are b−1−(a+�−k) letters to choose from

for the k− 2 letters directly preceding the last. Thus, there are
(
b+k−a−�−1

k−2

)
possible S when i = 1. Now assume 2 ≤ i ≤ k − 1. Let πi = t in π1π2 · · ·π�.
Then there are

(
t−a−1
i−2

)
choices for the section π2π3 · · ·πi−1 since π1 = a and

πi = t and
(b−(�−k)−t−1

k−i−1

)
choices for the section π�−(k−i−1)π�−(k−i−2) · · ·π�−1

since all members of the set {t + 1, t + 2, . . . , t + � − k} must be selected.

Note that t can range from i+ a− 1 to i+ b− �. Thus, there are
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i+b−�∑
t=i+a−1

(
t− a− 1

i− 2

)(
b+ k − �− t− 1

k − i− 1

)
=

(
b+ k − a− �− 1

k − 2

)

possibilities for S in all, where we have used identity (5.26) in [10, p. 169].
Therefore, the number of subsets satisfying conditions (1)–(3) does not de-
pend on i, as desired.

Collecting the cases above in which a permutation starts with a given
letter completes the induction and the proof.

Remark: Upon fixing � and allowing a and b to vary in the preceding proof,
one can show by induction that the equivalence respects descents sets.

As special cases of Theorem 9, we get

• 1235-4 ≡ 1245-3 ≡ 1345-2

• 12346-5 ≡ 12356-4 ≡ 12456-3 ≡ 13456-2.

4. Equivalences via umbral operators

In this section we will prove three equivalences, each of which is a special
case of either Theorem 6 or 9:

134-2 ≡ 124-3(2a)

132-4 ≡ 142-3(2b)

231-4 ≡ 241-3.(2c)

We provide alternate proofs by showing that the generating function for the
number of permutations avoiding σ satisfies the same system of functional
equations as the generating function for the number of permutations avoid-
ing τ . The systems of functional equations are adapted from enumeration
schemes as developed in [3] and translated into the language of transfer
matrices as per Zeilberger’s Umbral Transfer Matrix Method developed in
[16].

4.1. 124-3 ≡ 134-2

In this subsection, we will prove Theorem 10, below, which has as a corollary
a special case of Theorem 9.

For either σ ∈ {124-3, 134-2}, Proposition 4 implies that the following
sets are reversibly deletable for the given prefixes with respect to σ:
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1. R = {1} for p = 21
2. R = {1, 2} for p = 132
3. R = {1, 2} for p = 231.

These imply the following maps are bijections for either σ ∈ {124-3,
134-2}:

1. d1 : Sn(σ)[21; ab] → Sn−1(σ)[1; b]
2. d{1,2} : Sn(σ)[132; abc] → Sn−2(σ)[1; c− 1]
3. d{1,2} : Sn(σ)[231; abc] → Sn−2(σ)[1; c].

Proposition 5 tells us that R = {1} is reversibly deletable for p = 123
for either σ ∈ {124-3, 134-2}. It can be proven,1 however, that R = {2} is
also reversibly deletable for p = 123 in this case. Combining the bijectivity
of d{2} with Proposition 1 tells us the following:

(3)
∣∣Sn(124-3)[123; abc]

∣∣ = {
0 c− b > 1∣∣Sn−1(124-3)[12; a(c− 1)]

∣∣ c− b = 1

(4)
∣∣Sn(134-2)[123; abc]

∣∣ = {
0 b− a > 1∣∣Sn−1(134-2)[12; a(c− 1)]

∣∣ b− a = 1,

where in each case the correspondence is performed via the d{2} deletion
map.

We now invert these bijective deletion maps to build up larger per-
mutations from smaller. For example, the deletion d1 : Sn(σ)[21; ab] →
Sn−1(σ)[1; b] is a bijection for a fixed a, and so we can invert it and re-
index to get the maps d−1

1 : Sn(σ)[1; b] → Sn+1(σ)[21; ab] for any a ∈
{b + 1, b + 2, . . . , n + 1}. We may likewise convert each of the other dele-
tion maps above into a collection of insertions.

Let S1 := S1∪
⋃

n≥2 Sn(σ)[21] and S2 :=
⋃

n≥2 Sn(σ)[12], so that the set⋃
n≥1 Sn(σ) is partitioned into S1 ∪ S2. For a permutation in S1 or S2, we

may insert letters at the front according to the inverses of the deletion maps
discussed above. These have the following consequences:

1. Insert a single letter at the front of π ∈ S1 to create a permutation
with prefix pattern 21, which lies in S1.

2. Insert two letters at the front of π ∈ S1 to make a permutation pattern
with prefix pattern 132, which lies in S2.

1For example, the isRevDelSetS procedure from the Maple package gVatter

provides rigorous proof by checking finitely many cases.
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3. Insert two letters at the front of π ∈ S1 to make a permutation pattern
with prefix pattern 231, which lies in S2.

4. Insert a letter in the second position of π ∈ S2 to make a permutation
pattern with prefix pattern 123, which lies in S2.

It is easily seen that every permutation in S1 other than 1 itself starts
with a 21 pattern, in which case it is an image of an insertion of the first
kind above. Likewise, every permutation in S2 other than 12 starts with the
prefix pattern 132, 231, or 123 and thus is an image of one of the insertions
of the second, third, or fourth kind above.

We now convert these insertions into operators on weight-enumerators,
as per the Umbral Transfer Matrix Method of Zeilberger [16] and applied
to enumeration schemes in [2]. Define the weight of a permutation π =
π1 · · ·πn by W (π) = zn xπ1 , and the weight of a set of permutations to
be the sum of the weights of its elements. We then define the following
generating functions:

Fσ
1 (z, x) := W (S1) = z1 x1 +

∑
n≥2

∑
π∈Sn(σ)[21]

znxπ1

Fσ
2 (z, x) := W (S2) =

∑
n≥2

∑
π∈Sn(σ)[12]

znxπ1

Fσ(z, x) := W (S1 ∪ S2) =
∑
n≥1

∑
π∈Sn(σ)

znxπ1 .

(5)

Note that Fσ(z, x) = Fσ
1 (z, x) + Fσ

2 (z, x).
The four insertion maps translate to functional equations as follows. The

map which inserts a letter a at the front of π ∈ S1 to create a permutation
with prefix pattern 21 maps a permutation of weight znxb to a permutation
of weight zn+1 xa. Summing over all possible values of a, we see that the
weight of the set of images of a permutation with weight znxb is given by

n+1∑
a=b+1

zn+1 xa =
zn+1 xn+2

x− 1
− zn+1 xb+1

x− 1
(6)

=
zx2

x− 1
(zx)n − zx

x− 1
zn xb.

Define the linear operator P21 on monomials in Q[[z, x]] by

P21 : z
n xb �→ zx2

x− 1
(zx)n − zx

x− 1
zn xb.
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We then extend P21 linearly to any bivariate power series G(z, x) ∈ Q[[z, x]]
over its basis of monomials znxb to see the action:

P21 ◦G(z, x) =
zx2

x− 1
G(zx, 1)− zx

x− 1
G(z, x)(7)

=
zx

x− 1

(
xG(zx, 1)−G(z, x)

)
.

Similarly, the insertions for the prefix patterns 132 and 231 can be trans-
lated into operators on monomials

P132 : z
n xc �→

c∑
a=1

n+2∑
b=c+2

zn+2xa

P231 : z
n xc �→

n+1∑
a=c+1

n+2∑
b=a+1

zn+2xa,

(8)

which extend linearly to power series G(z, x):

P132 ◦G(z, x) =
z2 x

x− 1

(
G(z, x)−G(z, 1) +Gx(z, 1)−Gx(z, x) +Gz(z, x)

−Gz(z, 1)
)

P231 ◦G(z, x) =
z2 x

(x− 1)2

(
(x− 1)2G(z, x) + (1− x)Gz(z, x)

+ (x− 1)Gx(z, x)
)
.

(9)

Lastly, the insertions for the prefix pattern 123, whether we are avoiding
124-3 or 134-2, yield the operator

P123 : z
n xa �→ zn+1 xa,

since in each case we may insert the b into π ∈ Sn(σ)[12; a(c − 1)] in only
one way: if σ = 134-2 then b = a + 1, or if σ = 124-3 then b = c − 1. This
extends linearly to power series G(z, x) by

P123 ◦G(z, x) = z G(z, x).

Since the operators P21, P132, P231, and P123 track the effects of these
insertions on the weight of permutations, we obtain the following system of
functional equations.
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Theorem 10. We have

(10){
Fσ
1 (z, x) = z x+ P21 ◦ Fσ

1 (z, x)
Fσ
2 (z, x) = z2 x+ P132 ◦ Fσ

1 (z, x) + P231 ◦ Fσ
1 (z, x) + P123 ◦ Fσ

2 (z, x),

where the Pτ operators are as defined above.

Since these operators are the same regardless of whether σ = 124-3 or

σ = 134-2, we have

F124-3(z, x) = F134-2(z, x),

which implies the following result.

Corollary 11. 124-3 ≡ 134-2. Furthermore, this equivalence respects the

first letter statistic.

It should be noted that the above arguments can yield functional equa-

tions for Fσ(z, x) of the form described in Theorem 9 and can provide a

generating function proof of that statement. However, the sets
∑

n≥1 Sn(σ)

must be partitioned further into S1, S2, . . . , Sk according to the location of

their first descent, where Si also contains the monotone permutation 12 · · · i
and Sk contains all permutations with no descents before the k-th position.

4.2. 132-4 ≡ 142-3

In this subsection, we employ the same methods as in the previous to prove

a special case of Theorem 6 via generating functions.

For σ ∈ {132-4, 142-3}, it can be seen from Propositions 4 and 5 that

the following sets are reversibly deletable for the given prefixes with respect

to σ:

1. R = {1} for p = 21

2. R = {1} for p = 123

3. R = {1, 2} for p = 231

4. R = {1, 2} for p = 132.

These imply the following maps are bijections for either σ ∈ {132-4,
142-3}:

1. d1 : Sn(σ)[21; ab] → Sn−1(σ)[1; b]

2. d1 : Sn(σ)[123; abc] → Sn−1(σ)[12; (b− 1)(c− 1)]

3. d{1,2} : Sn(σ)[231; abc] → Sn−2(σ)[1; c].
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Combining the above with Proposition 1, we also get the following equal-

ities, where in each case the correspondence is performed via d{1,2}:

(11)
∣∣Sn(132-4)[132; abc]

∣∣ = {
0 b < n∣∣Sn−2(132-4)[1; c− 1]

∣∣ b = n

(12)
∣∣Sn(142-3)[132; abc]

∣∣ = {
0 b− c > 1∣∣Sn−2(142-3)[1; c− 1]

∣∣ b− c = 1.

As before, let S1 = S1 ∪
⋃

n≥2 Sn(σ)[21] and S2 =
⋃

n≥2 Sn(σ)[12]. For

a permutation in S1 or S2, we may insert letters at the front according to

the inverses of the deletion maps discussed above. These have the following

consequences:

1. Insert a single letter at the front of π ∈ S1 to create a permutation

with prefix pattern 21, which lies in S1.

2. Insert two letters at the front of π ∈ S1 to make a permutation pattern

with prefix pattern 132, which lies in S2.

3. Insert two letters at the front of π ∈ S1 to make a permutation pattern

with prefix pattern 231, which lies in S2.

4. Insert a letter at the front of π ∈ S2 to make a permutation pattern

with prefix pattern 123, which lies in S2.

We now convert these insertions into operators on weight-enumerators

Fσ
1 (z, x), Fσ

2 (z, x), and Fσ(z, x), as in the previous subsection, where again

the weight of a permutation π1 · · ·πn is given by W (π) = zn xπ1 .

As before, the insertions for the prefix patterns 21, 123, and 231 can be

translated into linear operators on power series by first defining their action

on monomials:

P21 : z
n xb �→

n+1∑
a=b+1

zn+1xa

P123 : z
n xb �→

b∑
a=1

zn+1xa

P231 : z
n xc �→

n+1∑
a=c+1

n+2∑
b=a+1

zn+2xa,

(13)

and then extending to power series G(z, x) ∈ Q[[z, x]]:
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P21 ◦G(z, x) =
zx

x− 1

(
xG(zx, 1)−G(z, x)

)
P123 ◦G(z, x) =

z x

x− 1

(
G(z, x)−G(z, 1)

)
P231 ◦G(z, x) =

z2 x

(x− 1)2

(
(1− 2x)G(z, x) + x2G(zx, 1) + (1− x)Gz(z, x)

+ (x− 1)Gx(z, x)
)
.

(14)

Concerning insertions for the prefix pattern 132, it appears a priori that
the operator P132 depends on whether we are avoiding 132-4 or 142-3. Let
P ′
132 be the operator for when we avoid 132-4 and let P ′′

132 be the operator
for when we avoid 142-3. Then, by the same reasoning as above, we see that
these operators are as follows:

P ′
132 : z

n xc �→
c∑

a=1

n+2∑
b=n+2

zn+2 xa

P ′′
132 : z

n xc �→
c∑

a=1

c+2∑
b=c+2

zn+2 xa.

In each case, however, the inside summation works out the same, and so
P ′
132 = P ′′

132. We merge these symbols into the single operator on monomials

P132 : z
n xc �→

c∑
a=1

zn+2 xa,

which extends linearly to power series:

P132 ◦G(z, x) =
z2 x

x− 1

(
G(z, x)−G(z, 1)

)
.

Since the operators P21, P132, P231, and P123 track the effects of inser-
tions on the weight of permutations when σ = 132-4 or σ = 142-3, we obtain
the following system of functional equations.

Theorem 12. We have
(15){Fσ

1 (z, x) = z x+ P21 ◦ Fσ
1 (z, x)

Fσ
2 (z, x) = z2 x+ P132 ◦ Fσ

1 (z, x) + P231 ◦ Fσ
1 (z, x) + P123 ◦ Fσ

2 (z, x),

where the Pτ operators are as defined above.
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Since the operators Pτ are the same regardless of whether σ = 132-4 or
σ = 142-3, we have shown

F132-4(z, x) = F142-3(z, x),

which implies the following result.

Corollary 13. 132-4 ≡ 142-3. Furthermore, this equivalence respects the
first letter statistic.

4.3. 231-4 ≡ 241-3

By methods similar to those above, we prove another special case of Theo-
rem 6.

Propositions 4 and 5 imply that the following sets are reversibly deletable
for the given prefixes with respect to σ ∈ {231-4, 241-3}:

1. R = {1} for p = 21
2. R = {1} for p = 123
3. R = {1, 2} for p = 132
4. R = {1, 2} for p = 231.

These imply the following maps are bijections for σ = 241-3 and for
σ = 231-4:

1. d1 : Sn(σ)[21; ab] → Sn−1(σ)[1; b]
2. d1 : Sn(σ)[123; abc] → Sn−1(σ)[12; (b− 1)(c− 1)]
3. d{1,2} : Sn(σ)[132; abc] → Sn−2(σ)[1; c− 1].

Combining the above with Proposition 1, we also get the following equal-
ities, where in each case the correspondence is performed via d{1,2}:

(16)
∣∣Sn(231-4)[231; abc]

∣∣ = {
0 b < n∣∣Sn−2(231-4)[1; c− 1]

∣∣ b = n

(17)
∣∣Sn(241-3)[231; abc]

∣∣ = {
0 b− a > 1∣∣Sn−2(241-3)[1; c− 1]

∣∣ b− a = 1.

As before, let S1 = S1 ∪
⋃

n≥2 Sn(σ)[21] and S2 =
⋃

n≥2 Sn(σ)[12]. For
a permutation in S1 or S2, we may insert letters at the front according to
the inverses of the deletion maps discussed above. Therefore we have the
following insertions:
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1. Insert a single letter at the front of π ∈ S1 to create a permutation

with prefix pattern 21, which lies in S1.

2. Insert two letters at the front of π ∈ S1 to make a permutation pattern

with prefix pattern 132, which lies in S2.

3. Insert two letters at the front of π ∈ S1 to make a permutation pattern

with prefix pattern 231, which lies in S2.

4. Insert a letter at the front of π ∈ S2 to make a permutation pattern

with prefix pattern 123, which lies in S2.

Defining the generating functions Fσ
1 (z, x), Fσ

2 (z, x), and Fσ(z, x) as

before, we now translate the above insertions into linear operators on power

series in Q[[z, x]]. In this case the actions on monomials are given by:

P21 : z
n xb �→

n+1∑
a=b+1

zn+1xa

P123 : z
n xb �→

b∑
a=1

zn+1xa

P132 : z
n xc �→

c∑
a=1

n+2∑
b=c+2

zn+2xa.

(18)

Analogous to the arguments in the previous subsection, the insertions

for the prefix pattern 231 may yield different operators P231 depending on

whether we are avoiding 231-4 or 241-3. Let P ′
231 be the operator for when

we avoid 231-4 and let P ′′
231 be the operator for when we avoid 241-3. Then,

by the same reasoning as above, we obtain the formulas:

P ′
231 : z

n xc �→
n+1∑

a=c+1

n+2∑
b=n+2

zn+2 xa

P ′′
231 : z

n xc �→
n+1∑

a=c+1

c+2∑
b=c+2

zn+2 xa.

In each case, however, the inside summation works out the same, and so

P ′
231 = P ′′

231. We merge these operators into the single operator

P231 : z
n xc �→

n+1∑
a=c+1

zn+2xa.
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The Pτ operators above extend linearly to power series as follows:

P21 ◦G(z, x) =
zx

x− 1

(
xG(zx, 1)−G(z, x)

)
P123 ◦G(z, x) =

z x

x− 1

(
G(z, x)−G(z, 1)

)
P132 ◦G(z, x) =

z2 x

x− 1

(
G(z, x) +Gx(z, 1) +Gz(z, x)−G(z, 1)−Gx(z, x)

−Gz(z, 1)
)

P231 ◦G(z, x) =
z2 x

x− 1

(
xG(zx, 1)−G(z, x)

)
.

(19)

This implies the following system of equations for σ ∈ {231-4, 241-3}.
Theorem 14. We have
(20){Fσ

1 (z, x) = z x+ P21 ◦ Fσ
1 (z, x)

Fσ
2 (z, x) = z2 x+ P132 ◦ Fσ

1 (z, x) + P231 ◦ Fσ
1 (z, x) + P123 ◦ Fσ

2 (z, x),

where the Pτ operators are as defined above.

Since the operators Pτ are independent of σ = 231-4 or σ = 241-3, we
have shown

F231-4(z, x) = F241-3(z, x),

which implies the following result.

Corollary 15. 231-4 ≡ 241-3. Furthermore, this equivalence respects the
first letter statistic.

5. Other equivalences

In this section, we consider some additional equivalences involving vincular
patterns of length 4. When taken with the results of the prior section and
of previous papers, one almost completes the Wilf-classification of vincular
patterns of length 4. Throughout this section, we let [m,n] = {m,m +
1, . . . , n} if m ≤ n are positive integers, with [m,n] = ∅ if m > n.

5.1. 1-24-3 ≡ 1-42-3

The following result answers in the affirmative Conjecture 17(d) which was
raised in [4].
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Theorem 16. 1-24-3 ≡ 1-42-3. Furthermore, this equivalence respects both
the positions and values of left-to-right minima.

Proof. We will define a bijection f = fn between the sets Sn(1-42-3) and
Sn(1-24-3). To do so, let us first decompose π ∈ Sn(1-42-3) as

π = mtαtmt−1αt−1 · · ·m1α1,

where t ≥ 1 and mt > mt−1 > · · · > m1 are the left-to-right minima of π.
Note that α1 must avoid the pattern 31-2 since m1 = 1 occurs to the left of
it. If t ≥ 2 and 2 ≤ i ≤ t, then let S denote the set of letters occurring to
the right of mi−1 in π and larger than mi.

Suppose that the elements of S, assuming it is non-empty, are s1 <
s2 < · · · < sr. Let T denote the set of letters of π belonging to the section
αi. Let T1 = [s1 − 1] ∩ T , Tj = [sj−1 + 1, sj − 1] ∩ T if 2 ≤ j ≤ r, and
Tr+1 = [sr + 1, n] ∩ T (put T = T1 if S is empty). Then all letters of Tr+1

within π must occur to the right of all letters of Tj for j ≤ r in order to
avoid an occurrence of 1-42-3. To see this, note that the members of T are
partitioned into two parts according to whether a letter is greater or less
than sr. So if some member of Tr+1 occurred to the left of some member of
Tj where j ≤ r, then there would be an occurrence of 1-42-3 in which the
“1” corresponds to mi and the “3” to sr. Reasoning inductively, it follows
that all of the letters of Tj must occur to the right of all the letters of Tk if
j > k, that is, αi may be decomposed as

αi = T1T2 · · ·Tr+1.

Observe that each Tj must avoid 31-2 since mi occurs to the left of and
is smaller than all letters of αi. Furthermore, it is seen that no additional
restrictions concerning the Tj are necessary, since αi can be decomposed as
described and since the elements of each Tj are either all larger or all smaller
than any given member of S.

Note that the patterns 31-2 and 13-2 are equivalent, upon replacing k
with n+ 1− k for all k. Let us denote this bijection by ′. If 2 ≤ i ≤ t, then
let α∗

i be defined by

α∗
i = T ′

r+1T
′
r · · ·T ′

1,

where the ′ mapping is applied to the reduced permutation after which the
original letters are restored. Let us now define f by setting

f(π) = mtα
∗
tmt−1α

∗
t−1 · · ·m2α

∗
2m1α

′
1.

It may be verified that f(π) ∈ Sn(1-24-3) and that f is a bijection that
preserves both positions and values of left-to-right minima.



Some Wilf-equivalences for vincular patterns 39

From [15], we now get that Sn(1-42-3) = Sn(251̄34) and Sn(1-24-3) =

Sn(231̄54). Then we obtain the following corollary, which was originally con-

jectured in Table 2 of [13]:

Corollary 17. 251̄34 ≡ 231̄54.

5.2. 13-4-2 ≡ 31-4-2

In this subsection, we prove the following result.

Theorem 18. 13-4-2 ≡ 31-4-2. Furthermore, this equivalence respects the

last letter statistic.

Proof. Let an and bn denote, respectively, the number of 13-4-2 and 31-4-

2 avoiding permutations of length n. We will show an = bn for all n, by

induction. Let us assume n ≥ 4, the n ≤ 3 cases being trivial. Given S ⊆
[n− 1], let An,S denote the subset of 13-4-2 avoiding permutations of length

n whose set of letters occurring to the right of the letter n is S. Likewise,

define Bn,S in conjunction with the pattern 31-4-2. Let an,S = |An,S | and
bn,S = |Bn,S |. We will show that an,S = bn,S for all subsets S, which would

imply an = bn and complete the induction.

If S = ∅, then the letter n occurs as the last letter and is easily seen to

be extraneous concerning the avoidance of either pattern, implying an,∅ =

an−1 = bn−1 = bn,∅. So assume S �= ∅, and let a1 < a2 < · · · < ai denote the

elements of S. Let π ∈ An,S and T = [n− 1]−S. Let T1 ⊆ T denote the set

of all elements of T smaller than a1. Then all elements of T1 occur after all

elements of T − T1 within π. To show this, suppose to the contrary, and let

a ∈ T1 and b ∈ T −T1, with a occurring to the left of b within π. Then there

would exist c ∈ T1 and d ∈ T − T1 such that c directly precedes d since T

and T − T1 are complementary sets comprising all elements to the left of n

within π. But then the subsequence cdna1 would be an occurrence of 13-4-2

in π.

Next, let T2 ⊆ T − T1 denote those elements that are smaller than the

element a2. By the same reasoning, all members of T2 must occur to the

right of all members of T − T1 − T2 in order to avoid 13-4-2. Repeat for the

subsequent letters aj of S, 2 ≤ j ≤ i, letting Tj ⊆ T − ∪j−1
r=1Tr denote the

subset whose elements are smaller than aj . Let Ti+1 = T−∪i
r=1Tr. Then T is

partitioned as T = ∪i+1
r=1Tr, with all members of Tr greater than all members

of Ts if 1 ≤ s < r ≤ i + 1. Furthermore, within π, all members of Tr occur

to the left of all members of Ts if s < r, that is, the members of T within π
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may be decomposed as a sequence of permutations Pi+1Pi · · ·P1, where Pj

is a permutation of the elements of Tj . Thus, π may be expressed as

(21) π = Pi+1Pi · · ·P1nσ,

where σ is a permutation of the elements of S.
Clearly, σ and each Pj must avoid 13-4-2 since π does. We now argue

that σ and each Pj avoiding 13-4-2 is sufficient for π to avoid 13-4-2, where π
is any permutation of [n] that is decomposed as in (21) and σ and the Pj are
as defined above. By an r-occurrence of the pattern 13-4-2, we will mean one
in which the role of the “4” is played by the letter r. Note that π contains no
n-occurrences of 13-4-2, by construction. Suppose, to the contrary, that π
does not avoid 13-4-2 and thus contains an m-occurrence of 13-4-2 for some
m ∈ [n − 1], which we’ll denote by τ . Clearly, the last letter of τ cannot
occur to the left of n within π since no Pj contains 13-4-2 and since r > s
implies all of the letters in Pr are greater than all letters in Ps. On the other
hand, suppose that the “2” within τ is to the right of n, while the “13” is to
the left of n. Then τ is in fact an n-occurrence of 13-4-2 as well, since one
could replace the m with n. But this contradicts the fact that π contains no
n-occurrences of 13-4-2. Since n clearly cannot be a letter of τ , it follows that
τ must be contained within σ, a contradiction. This establishes the claim.

Thus, once the letters of T have been sorted according to their mem-
bership in the various Tj ’s, each Tj and the set S may be ordered according
to any permutation that avoids 13-4-2. The permutations of these sets are
then arranged according to (21). By similar reasoning, if λ ∈ Bn,S , then it
may be decomposed as

(22) λ = P1P2 · · ·Pi+1nσ,

where each Pj is a permutation of the elements of Tj and σ is a permutation
of S. Likewise, σ and the Pj avoid 31-4-2, with no further restriction re-
quired of these sections. By the induction hypothesis, the number of choices
for σ and each Pj in the decompositions for π and λ in (21) and (22) are the
same, which implies an,S = bn,S and establishes the equivalence. The sec-
ond statement can be obtained from the preceding proof and an induction
argument.

From [15], it follows that Sn(13-4-2) = Sn(15̄342) and Sn(31-4-2) =
Sn(35̄142). Further, Callan shows 24-1-3 ≡ 35̄241 in [6]. Combining the
above with symmetry yields the following equivalences:

Corollary 19. 15̄342 ≡ 35̄142 ≡ 35̄241.

These were first conjectured in [13].
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5.3. 31-2-4 ≡ 13-2-4 and 14-2-3 ≡ 41-2-3

A similar argument applies to the two equivalences featured here.

Theorem 20. 31-2-4 ≡ 13-2-4 and 14-2-3 ≡ 41-2-3.

Proof. For the first equivalence, let An and Bn denote, respectively, the sets
consisting of the 31-2-4 and 13-2-4 avoiding permutations of length n. We will
define a bijection fn between An and Bn in an inductive manner as follows.
For n ≤ 3, we may clearly take fn to be the identity, so assume n ≥ 4. Let
α = α1α2 · · ·αn ∈ An. If αn = 1, then let fn(α) = fn−1(α1α2 · · ·αn−1)1,
so assume αn �= 1. By a j-occurrence of 13-2-4 or 31-2-4, we will mean one
in which the role of “1” is played by the letter j. Consider whether or not
there are any 1-occurrences of 13-2-4 within α. If there aren’t any, then
leave the 1 in its current position and let α′ = α. Otherwise, 1 is followed
by a letter a such that 1a are the first two letters of an occurrence of 13-2-4
in α. We then interchange the positions of 1 and a within α and consider
whether or not there is a 1-occurrence of 13-2-4 in the resulting permutation.
We repeat this process of transposing the letter 1 with its successor until
we first reach the point in which there are no 1-occurrences of 13-2-4 in
the resulting permutation. Let α′ denote in this case the permutation that
results from moving 1 as described.

Note that if 1 is not moved in the procedure above, then there are
no 1-occurrences of 31-2-4 or 13-2-4 in α′, while if there is at least one
transposition performed, then α′ contains no 1-occurrences of 13-2-4, but has
1-occurrences of 31-2-4. One may verify in either case that α′ contains no j-
occurrences of 31-2-4 for j > 1. Let b denote the letter directly following 1 in
α′. We now erase the 1 from α′ and let α∗ denote the resulting permutation
of the set [2, n]. Note that α∗ contains no occurrences of 31-2-4. To see this,
first note that any occurrence of 31-2-4 in α∗ would have to start with the
letter directly preceding 1 in α′. Thus, if α = α′, then α∗ containing a 31-2-4
implies α contains a 1-occurrence of 31-2-4, which it doesn’t. If α �= α′, then
α∗ containing a 31-2-4 implies α contains a b-occurrence of 31-2-4, which is
again not possible.

We now apply the bijection fn−1 to the permutation α∗ (on the letters
{2, 3, . . . , n}). Let β∗ = fn−1(α

∗). Insert 1 directly before the letter b in β∗

to obtain a permutation β of length n. Set fn(α) = β. One may verify that
fn is a bijection once it is shown that inserting 1 directly before b in β∗ does
not introduce a 1-occurrence of 13-2-4.

To do so, first observe that α∗ may be decomposed as α∗ = ρ1bρ2ρ3,
where the ρi are possibly empty with ρ2 containing only letters in [b+ 1, n]
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and ρ3 containing only letters in [b− 1]. Now apply the algorithm described
above to the permutation α∗, and then repeatedly to smaller and smaller
permutations, until one reaches a permutation λ of [b + 1, n]. Suppose b
directly preceded M before it was erased in the b-th step. Considering M
in place of b in λ, one can apply an induction argument and conclude the
following: any letter smaller than b and to the right (left) of it in α∗ remains
to the right (left) of b in β∗ and that no letter larger than b and occurring
to the left of it in α∗ can occur to the right of b in β∗. (Note that no letter
d < b could be transposed with b in one of the first b − 1 steps, as there
can be no 13-2-4 occurrences starting with db at that point, since none of
the letters of ρ2 would have been moved yet and since any letters coming to
the right of those in ρ2 at that point would be smaller than b.) Therefore,
since α∗ can be decomposed as described above, the complete set of letters
which lie to the right of b in β∗ would comprise all of ρ3 and a subset of
ρ2. Note further that all letters of ρ3 will remain to the right of those of ρ2
in β∗. Thus, there can be no occurrences of 3-2-4 in β∗ in which the “3”
corresponds to b. Inserting 1 directly before b in β∗ then does not introduce
an occurrence of 13-2-4, which implies fn is a bijection and establishes the
first equivalence.

For the second equivalence, one can define a bijection gn between the sets
of 41-2-3 and 14-2-3 avoiding permutations of length n which is analogous to
fn above. In the first step, one would consider whether or not a permutation
π that avoids 41-2-3 ends in 1, and if it does not, move the 1 to the right
within π by a sequence of transpositions of adjacent letters until there are
no 1-occurrences of 14-2-3. After noting the successor of 1 in the resulting
permutation, one would erase the 1 and proceed inductively on the new
permutation of [2, n]. The remaining steps are similar to those above and
the details are left to the reader.

From [15], we get Sn(31-2-4) = Sn(35̄124) and Sn(13-2-4) = Sn(15̄324),
as well as Sn(14-2-3) = Sn(13̄524) and Sn(41-2-3) = Sn(53̄124). Thus the
above equivalences imply the following result:

Corollary 21. 35̄124 ≡ 15̄324 and 13̄524 ≡ 53̄124.

6. Future work

We take some time now to outline briefly the current state of the classifica-
tion of vincular patterns of length 4 according to Wilf-equivalence.

For classical patterns of length 4, it has been shown that there are three
Wilf-classes. Bóna provides a succinct summary of this classification in [5,
pp. 135–136]. The class representatives are 1-2-3-4, 1-3-4-2, and 1-3-2-4.
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For the consecutive patterns of length 4, the Wilf-classification was re-
solved by Elizalde and Noy in [9]. In this case one finds only one equivalence
not due to symmetry: 2341 ≡ 1342. The remaining equivalences are due to
the reversal and complement operations.

We now move to the Wilf-classification of vincular patterns of length 4
with one or two internal dashes. We first summarize the above equivalences
as they apply to length 4 patterns.

• 134-2 ≡ 124-3
• 132-4 ≡ 142-3
• 231-4 ≡ 241-3
• 1-24-3 ≡ 1-42-3
• 13-4-2 ≡ 31-4-2
• 31-2-4 ≡ 13-2-4
• 14-2-3 ≡ 41-2-3

Combining these equivalences with those appearing in the literature
(listed in the introduction) leaves only two conjectural equivalences, which
have each been confirmed to hold for n ≤ 9.

Conjecture 22. The following Wilf-equivalences hold:

1. 23-1-4 ≡ 1-23-4
2. 14-2-3 ≡ 2-14-3.

By work in [4, 8, 12], it has been shown that 1-23-4 ≡ 1-32-4 ≡ 1-34-2 ≡
1-43-2, but only one representative from this class was given in part (1). For
part (2), it should be noted that work in [11] proves that 2-14-3 ≡ 2-41-3. It
should also be noted that part (2) is equivalent to 13̄524 ≡ 213̄54 from the
results in [15].
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