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Two characterizations of the shape of the base
poset derived from the Lehmer code of a
permutation using permutation patterns

Masaya Tomie

The Lehmer code is a classical and fundamental permutation code
which encodes information about the inversions of a permutation.
Denoncourt constructed a poset Mω which is the subposet of join-
irreducible elements of the Lehmer codes of the permutations in
[en, ω] in the left weak Bruhat order, i.e., the inversion order, on
Sn for ω ∈ Sn. In this paper, we investigate the poset structure
of Mω in terms of pattern avoidance. First we show that Mω is a
B2-free poset if and only if ω is a 3412-3421-avoiding permutation.
Next we prove that Mω is poset isomorphic to the corresponding
root poset if and only if ω is a 321-avoiding permutation.
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1. Introduction

The Lehmer code [6] is a classical and fundamental permutation code which
encodes information about the inversions of a permutation. The Lehmer code
of a permutation ω ∈ Sn is an n-tuple of nonnegative integers. Therefore a set
of Lehmer codes has a poset structure under the product order on N

n. In [3],
Denoncourt investigated the poset structure of the Lehmer codes of permuta-
tions in an interval in the left weak Bruhat order, i.e., the inversion order, and
he showed that the poset is a distributive lattice. He also described the sub-
poset of the join-irreducible elements of the distributive lattice and denoted
it by Mω for ω ∈ Sn. In this paper, we extend Denoncourt’s work. More pre-
cisely, we investigate the poset structure ofMω in terms of pattern avoidance.

In Section 2 we prove that Mω does not have a subposet isomorphic to
Boolean algebra of rank 2 if and only if ω is a 3412-3421-avoiding permu-
tation. We remark that the number of 3412-3421-avoiding permutations in
Sn is enumerated by Schröder numbers.
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In Section 3 we discuss a relation between Mω and the corresponding
root poset Δ(ω) which we introduce at the beginning of Section 3. The
posets Mω and Δ(ω) are both described by using inversions and the number
of elements of Mω and that of Δ(ω) are the number of inversions of ω. Hence
it is natural to ask how these two structures are related. Indeed we show
that Mω and Δ(ω) are order isomorphic if and only if ω is a 321-avoiding
permutation.

In the remaining part of this section we give the definitions of pattern
avoidance for permutations and posets. After that we introduce the Lehmer
codes and Denoncourt’s previous results about the poset structure of Lehmer
codes of permutations in an interval.

1.1. Pattern avoidance for permutations and pattern avoidance
for posets

In this paper we use one-line notation. We denote a permutation ω ∈ Sn

by the sequence ω(1)ω(2) · · ·ω(n). For ω ∈ Sn and π ∈ Sk with k < n,
we say that a permutation ω has a π-pattern if st(ω(i1)ω(i2) · · ·ω(ik)) =
π(1)π(2) · · ·π(k) for some 1 ≤ i1 < i2 < · · · < ik ≤ n, where
st(ω(i1)ω(i2) · · ·ω(ik)) is a permutation in Sk defined by the following pro-
cess: the smallest value of ω(i1)ω(i2) · · ·ω(ik) is replaced with 1, the second-
smallest value is replaced with 2, and so on. We call st(ω(i1)ω(i2) · · ·ω(ik))
the standardization of ω(i1)ω(i2) · · ·ω(ik). If st(ω(i1)ω(i2) · · ·ω(ik)) �=
π(1)π(2) · · ·π(k) for any 1 ≤ i1 < i2 < · · · < ik ≤ n, we say that ω is
a π-avoiding permutation.

The most popular results on pattern avoidance are the enumerations of
permutations avoiding a pattern of length three, which is enumerated by the
Catalan numbers [4], [5]. For further information on pattern avoidance, see
Bóna’s text [2].

Next we introduce pattern avoidance for posets. Let P and Q be posets.
A subposet R ⊂ P is called a Q-pattern subposet if R � Q as a poset. We
say that P is Q-free if P has no Q-pattern subposets. One interesting result
about pattern avoidance for posets is that the number of 1 + 3-free and
2 + 2-free posets is enumerated by the Catalan numbers [7]. In this paper
we consider B2-free posets, where B2 is the Boolean algebra of rank 2.

1.2. The posets of Lehmer codes

Let Inv(ω) := {(i, j)|1 ≤ i < j ≤ n, ω(i) > ω(j)}, the set of inversions
for ω ∈ Sn, and let Λω := {σ|Inv(σ) ⊂ Inv(ω)}. In other words, Λω is the
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interval [en, ω], where en is the identity permutation, in the left weak Bruhat
order, i.e., inversion order, on Sn [1].

For i ∈ [n] := {1, 2, · · · , n}, let

(1) ci(ω) := |{j|1 ≤ i < j ≤ n, ω(i) > ω(j)}|,

the number of inversions of ω ∈ Sn with the first coordinate equal to i. Then
the sequence

(2) c(ω) = (c1(ω), c2(ω), · · · , cn(ω))

is called the Lehmer code for ω ∈ Sn. For example, for ω = 423615, the
inversions are

(3) (1, 2), (1, 3), (1, 5), (2, 5), (3, 5), (4, 5), (4, 6)

and we have

(4) c1(ω) = 3, c2(ω) = 1, c3(ω) = 1, c4(ω) = 2, c5(ω) = 0, c6(ω) = 0

and the corresponding Lehmer code is (3, 1, 1, 2, 0, 0).

For ω ∈ Sn and 1 ≤ i < j ≤ n+ 1, let

(5) ci,j(ω) := |{k|i < k < j, ω(i) > ω(k)}|,

the number of inversions (i, k) ∈ Inv(ω) with i < k < j [3].
For ω ∈ Sn, set

(6) c(Λω) := {c(σ) | σ ∈ Λω},

the set of Lehmer codes of permutations in [en, ω] in the inversion order.
Then c(Λω) ⊂ N

n and c(Λω) is a subposet of Nn with the obvious product
order. Denoncourt proved the following result.

Theorem 1.1 ([3]). For ω ∈ Sn, the subposet c(Λω) of N
n is a distributive

lattice.

Let L be a distributive lattice and let P be the subposet of join-
irreducibles of L. Then L is poset isomorphic to J(P ), where J(P ) is the
poset of order ideals of P ordered by inclusion, see Theorem 3.4.1 in [7].
Denoncourt determined the subposet of join-irreducible elements in c(Λω)
[3]. We denote the j-th coordinate of x ∈ N

n by πj(x).
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Definition 1.1 ([3]). For i ∈ [n] such that ci(ω) > 0 and for each x ∈
[ci(ω)], define mi,x(ω) ∈ N

n coordinate-wise by

1. πj(mi,x(ω)) := 0, if j < i,
2. πj(mi,x(ω)) := x, if j = i,
3. πj(mi,x(ω)) := 0, if j > i and (i, j) ∈ Inv(ω), i.e., ω(j) < ω(i),
4. πj(mi,x(ω)) := max{0, x − ci,j(ω)}, if j > i and (i, j) /∈ Inv(ω), i.e.,

ω(j) > ω(i).

In other words, if j > i and ω(j) > ω(i), then the j-th coordinate is
equal to x minus the number of 0 entries between i-th coordinate and j-th
coordinate, if not negative, or 0.

For ω ∈ Sn, Denoncourt set

(7) Mω := {mi,x(ω)|1 ≤ i ≤ n, ci(ω) > 0, x ∈ [ci(ω)]},

which is a subposet of Nn in the product order. Denoncourt provided the
following result [3].

Theorem 1.2 ([3]). For ω ∈ Sn, Mω is the subposet of join-irreducibles for
c(Λω).

If ω = 5371642, then we have

m1,4(5371642) = (4, 0, 3, 0, 2, 0, 0), m1,3(5371642) = (3, 0, 2, 0, 1, 0, 0),
m1,2(5371642) = (2, 0, 1, 0, 0, 0, 0), m1,1(5371642) = (1, 0, 0, 0, 0, 0, 0),

m2,2(5371642) = (0, 2, 2, 0, 1, 1, 0), m2,1(5371642) = (0, 1, 1, 0, 0, 0, 0),

m3,4(5371642) = (0, 0, 4, 0, 0, 0, 0), m3,3(5371642) = (0, 0, 3, 0, 0, 0, 0),
m3,2(5371642) = (0, 0, 2, 0, 0, 0, 0), m3,1(5371642) = (0, 0, 1, 0, 0, 0, 0),

m5,2(5371642) = (0, 0, 0, 0, 2, 0, 0), m5,1(5371642) = (0, 0, 0, 0, 1, 0, 0),

m6,1(5371642) = (0, 0, 0, 0, 0, 1, 0),

and c(ω) = (4,2,4,0,2,1,0). Figure 1 shows the Hasse diagram ofM5371642.
Denoncourt set

(8) Ci(ω) := {mi,x(ω)|x ∈ [ci(ω)]},

for 1 ≤ i ≤ n with ci(ω) �= 0. The following results of Denoncourt will be
required for the proofs of our results.
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Figure 1: Hasse diagram of Mω with ω = 5371642.

Lemma 1.1 ([3]). Let ω ∈ Sn. For 1 ≤ i < j ≤ n with x ∈ [ci(ω)] and
y ∈ [cj(ω)], we have mi,x(ω) �≤ mj,y(ω). If mi,x(ω) > mj,y(ω) for some
1 ≤ i �= j ≤ n, x ∈ [ci(ω)] and y ∈ [cj(ω)], then i < j. ([3] Lemma 4.11.)

Lemma 1.2 ([3]). Let ω ∈ Sn. For 1 ≤ i ≤ n with ci(ω) �= 0 and 1 ≤
y ≤ x ≤ ci(ω), we have mi,y(ω) ≤ mi,x(ω) and hence Ci(ω) is a chain.
([3] Lemma 4.10.)

Lemma 1.3 ([3]). Let ω ∈ Sn. For 1 ≤ i < j ≤ n with (i, j) ∈ Inv(ω), every
element of Ci(ω) is incomparable with every element of Cj(ω). Equivalently,
if mi,x(ω) > mi,y(ω) for some mi,x(ω) ∈ Ci(ω) and mj,y(ω) ∈ Cj(ω) with
1 ≤ i < j ≤ n, then ω(i) < ω(j). ([3] Lemma 4.12.)

Lemma 1.4 ([3]). For ω ∈ Sn and 1 ≤ i < j ≤ n with ω(i) < ω(j), we have
ci(ω) ≤ cj(ω) + ci,j(ω). ([3] Lemma 2.6.)

The following statement is a trivial consequence of Definition 1.1, hence
we omit the proof.

Lemma 1.5. Let ω ∈ Sn. For 1 ≤ i < j ≤ n with ω(i) < ω(j), suppose
that the j-th coordinate of mi,x(ω) is z ≥ 1. Then ci,j(ω), the number of
i < k < j such that ω(i) > ω(k), is equal to the number of 0 between i-th
coordinate and j-th coordinate, and hence equals x− z.

We can write

(9) mi,x(ω) = (0, · · · , 0, i−th
x , · · · , j−th

z , · · · , 0)

for some z ≥ 1.
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Proposition 1.1. If ω is a 231-avoiding permutation then Mω is a poset
which is the disjoint union of chains.

Proof. For mi,x(ω),mj,y(ω) ∈ Mω with 1 ≤ i < j ≤ n, x ∈ [ci(ω)] and
y ∈ [cj(ω)], if (i, j) ∈ Inv(ω), then mi,x(ω) and mj,y(ω) are incomparable by
Lemma 1.3. Suppose that (i, j) /∈ Inv(ω), then ω(i) < ω(k) for all j < k ≤ n,
because ω is a 231-avoiding permutation. The j-th coordinate of mi,x(ω) is 0
and hence mi,x(ω) and mj,y(ω) are incomparable. Now mi,x(ω) and mj,y(ω)
are incomparable for 1 ≤ i < j ≤ n and therefore Mω is a disjoint union of
chains.

The converse is false. For example, if ω = 4231, then ω has a 231-pattern
and M4231 is disjoint union of 2 chains.

Remark 1.1. When we write mi,x(ω) for 1 ≤ i ≤ n and x ∈ [ci(ω)], we
always assume that ci(ω) > 0.

2. A relation between the shape of Mω and the
corresponding permutation ω

In this section we discuss the shape of Mω in terms of pattern avoidance.

Definition 2.1. Let P be a poset. A 4-element subposet {a, b, c, d} ⊂ P
is called a B2-pattern subposet if {a, b, c, d} � B2, where B2 is a Boolean
algebra of rank 2. We say that P is a B2-free poset if there are no 4-element
subposets isomorphic to B2.

Next we define a parallelogram pattern subposet and a pseudo parallelo-
gram pattern subposet.

Definition 2.2. Suppose 1 ≤ i < j ≤ n, a < b ∈ [ci(ω)] and c < d ∈ [cj(ω)]
with a+ d = b+ c.

1. A subposet {mi,a(ω),mi,b(ω),mj,c(ω),mj,d(ω)} is called a parallelo-
gram pattern subposet if

(10) mi,a(ω) > mj,c(ω) and mi,b(ω) > mj,d(ω)

in Mω and mi,a(ω) and mj,d(ω) are incomparable. We say that Mω

has a parallelogram pattern if Mω contains a parallelogram pattern
subposet.

2. A subposet {mi,a(ω),mi,b(ω),mj,c(ω),mj,d(ω)} is called a pseudo par-
allelogram pattern subposet if

(11) mi,a(ω) > mj,c(ω) and mi,b(ω) > mj,d(ω)
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Figure 2: Illustration of a parallelogram pattern and a pseudo parallelogram
pattern.

in Mω and mi,a(ω) and mj,d(ω) are comparable. We say that Mω has

a pseudo parallelogram pattern if Mω contains a pseudo parallelogram

pattern subposet.

The left-hand side of Figure 2 shows a visualization of a parallelogram

pattern and the right-hand side shows a visualization of a pseudo parallelo-

gram pattern.

Remark 2.1. A parallelogram pattern subposet is isomorphic to B2, the

Boolean algebra of rank 2.

Remark 2.2. Notation is as above, if {mi,a(ω),mi,b(ω),mj,c(ω),mj,d(ω)}
is a pseudo parallelogram pattern subposet, then we have

(12) mi,b(ω) > mi,a(ω) > mj,d(ω) > mj,c(ω)

in Mω by Lemma 1.1.

The following Lemma is a straightforward consequence of Definition 1.1.

Lemma 2.1. For ω ∈ Sn, 1 ≤ i ≤ n and x ∈ [ci(ω)], we have

1. πj(mi,x(ω)) = 0, if j < i,

2. πi(mi,x(ω)) = x,

3. πj(mi,x(ω)) = 0, if j > i and j ∈ {i1, i2, · · · , ix},
4. πj(mi,x(ω)) = x − |{k | ik < j, 1 ≤ k ≤ x}|, if j > i and j /∈

{i1, i2, · · · , ix},
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Figure 3: A visualization of Lemma 2.2.

and we can write

mi,x(ω) = (0, · · · , 0, i−th
x , x, · · · , x,

i1−th
0 , x− 1, · · · , x− 1,

i2−th
0 , x− 2, · · · ,

(13)

x− 2, · · · , 3,
ix−2−th

0 , 2, · · · , 2,
ix−1−th

0 , 1, · · · , 1,
ix−th
0 , 0, · · · , 0),

where (i, i1), (i, i2), · · · , (i, ix) are the inversions of ω involving i with i <
i1 < · · · < ix ≤ n.

The following fact easily follows from Lemma 2.1.

Lemma 2.2. Let ω ∈ Sn, 1 ≤ i < j ≤ n, x ∈ [ci(ω)] and y ∈ [cj(ω)].

1. If x, y ≥ 2 and mi,x(ω) > mj,y(ω) in Mω, then mi,(x−1)(ω) >
mj,(y−1)(ω).

2. If x < ci(ω), y < cj(ω) and mi,x(ω) > mj,y(ω), then mi,(x+1)(ω) >
mj,(y+1)(ω).

Lemma 2.3. For ω ∈ Sn, 1 ≤ i < j ≤ n, x ∈ [ci(ω)] and y ∈ [cj(ω)], if
mi,x(ω) > mj,y(ω) in Mω, then we have cj(ω) + x ≥ ci(ω) + y and x ≥ y.

Figure 4 shows a visualization of Lemma 2.3.

Proof. We can write

(14) mi,x(ω) = (0, · · · , 0, i−th
x , · · · , j−th

z , · · · , 0)
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Figure 4: A visualization of Lemma 2.3.

and

(15) mj,y(ω) = (0, · · · , 0,
i−th
0 , · · · , 0, j−th

y , · · · , 0)

for some z ≥ y ≥ 1. Obviously, we have x ≥ z ≥ y. By Lemma 1.3, we see
ω(i) < ω(j). Also ci,j(ω) = x− z ≤ x− y by Lemma 1.5. From Lemma 1.4,
we obtain cj(ω) ≥ ci(ω)−ci,j(ω) and hence cj(ω) ≥ ci(ω)− (x−y). We have
cj(ω) + x ≥ ci(ω) + y.

Remark 2.3. The above Lemma 2.2 and Lemma 2.3 show that if mi,x(ω) >
mj,y(ω), and notation is as above, then x ≥ y, ci(ω) + y − x ∈ [cj(ω)],

mi,x+1(ω) > mj,y+1(ω), mi,x+2(ω) > mj,y+2(ω), · · · ,(16)

mi,ci(ω)(ω) > mj,ci(ω)+y−x(ω)

and

mi,x−1(ω) > mj,y−1(ω), mi,x−2(ω) > mj,y−2(ω), · · · ,(17)

mi,1+x−y(ω) > mj,1(ω).

Figure 5 shows a visualization of Remark 2.3.

Proposition 2.1. For ω ∈ Sn, if Mω has a pseudo parallelogram pattern,
then Mω has a parallelogram pattern.

Proof. Let {mi,a(ω),mi,b(ω),mj,c(ω),mj,d(ω)} ⊂ Mω be a pseudo parallel-
ogram pattern subposet such that mi,b(ω) > mi,a(ω) > mj,d(ω) > mj,c(ω)
with 1 ≤ i < j ≤ n, a < b ∈ [ci(ω)] and c < d ∈ [ci(ω)] with a + d = b + c.
One will find that a ≥ d.
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Figure 5: A visualization of Remark 2.3.

We will prove the existence of a parallelogram pattern subposet by in-
duction on k = a− d.

Suppose that a = d. We show that {mi,b(ω),mi,a(ω),mj,a+1(ω),
mj,c+1(ω)} is a parallelogram pattern subposet. Because mi,a(ω) > mj,a(ω)
and a < b ∈ [ci(ω)], we have mj,a+1(ω) ∈ Mω and mi,b(ω) ≥ mi,a+1(ω) >
mj,a+1(ω) by Remark 2.3. Also we can see mi,a(ω) > mj,a(ω) = mj,d(ω) ≥
mj,c+1(ω) and hence mi,a(ω) > mj,c+1(ω). We find that mi,a(ω) and
mj,a+1(ω) are incomparable by Lemma 2.3. Therefore {mi,b(ω),mi,a(ω),
mj,a+1(ω),mj,c(ω)} is a parallelogram pattern subposet.

Let a − d = k ≥ 1. We consider a subposet {mi,b(ω),mi,a(ω),
mj,d+1(ω),mj,c+1(ω)} ⊂ Mω, where i, j, a, b, c and d are as above. Because
mi,a(ω) > mj,d(ω), a < b ∈ [ci(ω)] and mj,d+1(ω) ∈ Mω, we have mi,b(ω) ≥
mi,a+1(ω) > mj,d+1(ω) by Remark 2.3. Also we can see mi,a(ω) > mj,d(ω) ≥
mj,c+1(ω).

If mi,a(ω) > mj,d+1(ω), then there exists a parallelogram pattern sub-
poset of Mω by the induction hypothesis.

Ifmi,a(ω) andmj,d+1(ω) are incomparable inMω, then {mi,b(ω),mi,a(ω),
mj,d+1(ω),mj,c+1(ω)} ⊂ Mω is a parallelogram pattern subposet.

Now we conclude that if Mω has a pseudo parallelogram pattern, then
Mω contains a parallelogram pattern.

Figure 6 shows a visualization of the argument.

Proposition 2.2. For ω ∈ Sn, the poset Mω has a B2-pattern subposet if
and only if Mω has a parallelogram pattern subposet.
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Figure 6: Illustration of the proof of Proposition 2.1.

Proof. If Mω has a parallelogram pattern subposet, then obviously Mω has
a B2-pattern subposet.

Conversely suppose that Mω has a B2-pattern subposet. Let {mi,a(ω),
mj,b(ω),mk,c(ω),ml,d(ω)} with i, j, k, l ∈ N, a ∈ [ci(ω)], b ∈ [cj(ω)], c ∈
[ck(ω)] and d ∈ [cl(ω)] be a B2-pattern subposet of Mω. Without loss of gen-
erality, we can assume that mi,a(ω) (resp. ml,d(ω)) is the maximum (resp.
minimum) element and mj,b(ω) and mk,c(ω) are incomparable with j < k
and hence we can set {mi,a(ω),mj,b(ω),mk,c(ω),ml,d(ω)} with 1 ≤ i ≤ j <
k ≤ l ≤ n.

It suffices to prove the existence of a pseudo parallelogram pattern sub-
poset or a parallelogram pattern subposet by Proposition 2.1. We give a
careful case-by-case proof.

Case 1: d ≥ 2.
Because mi,a(ω) > ml,d(ω) and Remark 2.3, we have a ≥ d ≥ 2 and

mi,a−1(ω) > ml,d−1(ω) in Mω. Then the subposet {mi,a(ω),mi,a−1(ω),
ml,d(ω),ml,d−1(ω)} ⊂ Mω is either a parallelogram pattern subposet or a
pseudo parallelogram pattern subposet.

Case 2: d = 1 and i = j.
Because mi,a(ω) > mi,b(ω) > ml,1(ω) = ml,d(ω) and Remark 2.3, we

have a ≥ b+1 andmi,b+1(ω) > ml,2(ω) inMω. Then the subposet {mi,b+1(ω),
mi,b(ω),ml,2(ω),ml,1(ω)} ⊂ Mω is either a parallelogram pattern subposet
or a pseudo parallelogram pattern subposet.

Case 3: d = 1 and k = l.
Because mi,a(ω) > mk,c(ω) > ml,1(ω) = mk,1(ω) and by Lemma 2.3 and

Remark 2.3, we have a ≥ c ≥ 2 and mi,a−1(ω) > mk,c−1(ω) in Mω. Then the
subposet {mi,a(ω),mi,a−1(ω),mk,c(ω),mk,c−1(ω)} is either a parallelogram
pattern subposet or a pseudo parallelogram pattern subposet.
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Figure 7: Illustration of Case 1.

The remaining cases are the case of d = 1 with i < j < k < l.

Case 4: b ≥ 2 or c ≥ 2.

Suppose b ≥ 2, we have a ≥ 2 by Lemma 2.3. Also we see mi,a−1(ω) >
mj,b−1(ω) becausemi,a(ω) > mj,b(ω) with a, b ≥ 2 and Lemma 2.2. Then the
subposet {mi,a(ω),mi,a−1(ω),mj,b(ω),mj,b−1(ω)} is either a parallelogram

pattern subposet or a pseudo parallelogram pattern subposet. We can use
the same argument for the case of c ≥ 2.

Case 5: b = c = 1 and cj(ω) ≥ 2 or ck(ω) ≥ 2.

Suppose cj(ω) ≥ 2. We have cl(ω) ≥ 2 and mj,2(ω) > ml,2(ω) because

mj,1(ω) > ml,1(ω) and by Lemma 2.3 and Remark 2.3. Then the subposet
{mj,2(ω),mj,1(ω),ml,2(ω),ml,1(ω)} is either a parallelogram pattern sub-
poset or a pseudo parallelogram pattern subposet. We can use the same
argument for the case of ck(ω) ≥ 2.

Case 6: b = c = 1 and cj(ω) = ck(ω) = 1.

Because mi,a(ω) > mj,1(ω) > ml,1(ω) (resp. mi,a(ω) > mk,1(ω) >
ml,1(ω)) and Lemma 1.3, we have ω(i) < ω(j) < ω(l) (resp. ω(i) < ω(k) <
ω(l)), see Figure 8. We see ω(j) < ω(k) because if ω(j) > ω(k), then cj(ω) is
larger than ck(ω), which contradicts the assumption that cj(ω) = ck(ω) = 1.

Hence we obtain ω(i) < ω(j) < ω(k) < ω(l). There exists a unique p such
that j < p ≤ n and ω(j) > ω(p) because cj(ω) = 1.

If j < p < l, then we see

mj,1(ω) = (0, · · · , 0,
j−th
1 , 1, · · · , 1,

p−th
0 , · · · , 0,

l−th
0 , 0, · · · , 0),(18)

ml,1(ω) = (0, · · · , 0,
j−th
0 , 0, · · · , 0,

p−th
0 , · · · , 0,

l−th
1 , 1, · · · 1, 0, · · · , 0)(19)
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Figure 8: Illustration of Case 6.

and mj,1(ω) and ml,1(ω) are incomparable. This contradicts the assumption

and hence l < p ≤ n.

For l < p ≤ n, (j, p) (resp. (k, p)) is the unique inversion of ω whose first

coordinate equals j (resp. k). Then we can write

mj,1(ω) = (0, · · · , 0,
j−th
1 , 1, · · · , 1,

k−th
1 , 1, · · · , 1,

l−th
1 , 1, · · · 1,

p−th
0 , 0, · · · , 0),

(20)

mk,1(ω) = (0, · · · , 0,
j−th
0 , 0, · · · , 0,

k−th
1 , 1, · · · , 1,

l−th
1 , 1, · · · 1,

p−th
0 , 0, · · · , 0)

(21)

and hence mj,1(ω) > mk,1(ω). Therefore mj,1(ω) and mk,1(ω) are compara-
ble. This contradicts the assumption. Therefore Case 6 never happens.

From the above argument, we can conclude that if Mω has a B2 pattern,
then Mω contains a pseudo parallelogram pattern or a parallelogram pattern

and therefore Mω has a parallelogram pattern by Proposition 2.1.

Proposition 2.3. For ω ∈ Sn, the poset Mω has a parallelogram pattern

subposet if and only if ω has a 3412-pattern or a 3421-pattern.

Proof. Suppose that ω has a 3412-pattern. We will use the same argu-

ment if ω has a 3421-pattern. There exists 1 ≤ i < j < k < l ≤ n

such that st(ω(i)ω(j)ω(k)ω(l)) = 3412 and we have ci(ω) ≥ 2 and
cj(ω) ≥ 2. We construct a parallelogram pattern subposet or a pseudo par-

allelogram pattern subposet. Now (i, k), (i, l), (j, k) and (j, l) are inversions
of ω and the j-th coordinate of mi,ci(ω)(ω) is greater than or equal to 2 by

Lemma 2.1.
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We can write

mi,ci(ω)(ω) = (0, · · · , 0,
i−th

ci(ω), · · · ,
j−th
x , · · · ,

k−th
0 , · · · ,

l−th
0 , · · · 0),(22)

mi,ci(ω)−1(ω) = (0, · · · , 0,
i−th

ci(ω)− 1, · · · ,
j−th
x− 1, · · · ,

k−th
0 , · · · ,

l−th
0 , · · · 0),

(23)

mj,2(ω) = (0, · · · , 0,
i−th
0 , · · · ,

j−th
2 , · · · ,

k−th
0 , · · · ,

l−th
0 , · · · 0)(24)

and

(25) mj,1(ω) = (0, · · · , 0,
i−th
0 , · · · ,

j−th
1 , · · · ,

k−th
0 , · · · ,

l−th
0 , · · · 0),

for some x ≥ 2.
Next we will show that mi,ci(ω)−1(ω) > mj,1(ω) in Mω.
Let p be the minimum number such that (j, p) is an inversion of ω, such

a number exists because cj(ω) ≥ 2 and also we have p ≤ k.
By Lemma 2.1, we can write

mj,1(ω) = (0, · · · , 0,
i−th
0 , · · · , 0,

j−th
1 , 1 · · · , 1,

p−th
0 , 0, · · · ,(26)

0,
k−th
0 , · · · ,

l−th
0 , · · · 0).

For q < j or p ≤ q, the q-th coordinate of mj,1(ω), which is equal to 0,
is less than or equal to that of mi,ci(ω)−1(ω). For j ≤ q < p, the q-th
coordinate of mj,1(ω) equals 1. Also we see that the q-th coordinate of
mi,ci(ω)−1(ω) equals x − 1, which is greater than or equal to 1, because
ω(i) < ω(j) < ω(j + 1) < · · · < ω(q) < · · · < ω(p − 1) and by Lemma 2.1.
Hence we obtain mi,ci(ω)−1(ω) > mj,1(ω) in Mω.

For a subposet {mi,ci(ω)(ω),mi,ci(ω)−1(ω),mj,2(ω),mj,1(ω)}, we have
mi,ci(ω)−1(ω) > mj,1(ω) and mi,ci(ω)(ω) > mj,2(ω) by Lemma 2.2. Hence
this subposet is a parallelogram pattern subposet or a pseudo parallelogram
pattern subposet. Therefore Mω has a parallelogram pattern subposet by
Proposition 2.1.

Also if ω has a 3421-pattern, then Mω has a parallelogram pattern by
the same argument.

Conversely suppose that Mω has a parallelogram pattern subposet
{mi,a(ω),mi,b(ω),mj,c(ω),mj,d(ω)} with 1 ≤ i < j ≤ n, a < b ∈ [ci(ω)],
c < d ∈ [cj(ω)] and a + d = b + c, where mi,b(ω) (resp. mj,c(ω)) is the
maximum element (resp. minimum element) and mi,a(ω) and mj,d(ω) are
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incomparable. We remark that d ≥ 2 because d > c ≥ 1. Also we find
ω(i) < ω(j) by Lemma 1.3.

We can write

(27) mi,b(ω) = (0, · · · , 0,
i−th
b , · · · , j−th

z , · · · · · · , 0)

and

(28) mj,d(ω) = (0, · · · , 0,
i−th
0 , · · · ,

j−th

d , · · · · · · , 0)

for some z ≥ d ≥ 2.
The j-th coordinate of mi,b(ω), which is equal to z, is greater than or

equal to 2. By Lemma 2.1, there exists j < k < l ≤ n such that (i, k) and
(i, l) are inversions of ω. Therefore we obtain st(ω(i)ω(j)ω(k)ω(l)) = 3412
or 3421.

Now we conclude that if Mω contains a parallelogram pattern, then ω
has a 3412-pattern or a 3421-pattern.

From Proposition 2.2 and Proposition 2.3, we obtain the following result.

Theorem 2.1. For ω ∈ Sn, the poset Mω is a B2-free poset if and only if
ω is a 3412-3421-avoiding permutation.

3. A relation between Mω and the corresponding root poset

In this section we endow the set of inversions of a permutation ω with a
partial order � such that

(29) (p, q) � (r, s) ⇐⇒ [p, q] ⊂ [r, s],

where 1 ≤ p, q, r, s ≤ n and (p, q) and (r, s) are inversions of ω. Note that
[p, q] := {p, p+ 1, · · · , q} and we denote the resulting poset by Δ(ω).

Remark 3.1 ([1]). The symmetric group Sn is the Coxeter group of type
An−1. Let Δ be the root system of type An−1 and {α1, α2, · · ·αn−1} be a set
of fundamental roots. The root system Δ is the disjoint union of the positive
roots Δ+ and the negative roots Δ− corresponding to the fundamental roots
{α1, α2, · · ·αn−1}. Endow an order structure on Δ+ such that α ≤ β if
and only if β − α ∈

∑
i Z≥0αi and the resulting poset is called the root

poset of type An−1. The symmetric group Sn naturally acts on Δ(An−1).
Let Nω := {α ∈ Δ+|ω(α) ∈ Δ−}. Then Nω is a subposet of Δ+. Indeed Nω

is order isomorphic to Δ(ω). Remark that |Δ(ω)| = |Inv(ω)|.
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It is natural to ask how the poset structures of Mω and Δ(ω) are related,
because they are constructed by using the inversions of ω.

Definition 3.1. We define a map φω : Mω → Δ(ω) by

(30) φω(mi,x(ω)) = (i, ix),

where i < i1 < i2 < · · · < ici(ω) ≤ n with (i, i1), (i, i2), · · · , (i, ici(ω)) ∈
Inv(ω).

There are x − 1 zeros between i-th coordinate and ix-th coordinate in
mi,x(ω), see Lemma 2.1. One can write

φω((0, · · · , 0,
i−th
x , x, x, · · · , x,

i1−th
0 , x− 1, x− 1, · · · , x− 1,

i2−th
0 , · · · ,

ix−1−th

0 ,

1, · · · , 1,
ix−th
0 , 0, 0, · · · , 0)) = (i, ix).

Example 3.1. For ω = 5371642, we have

φ(m1,4(5371642)) = (1, 7), φ(m1,3(5371642)) = (1, 6),

φ(m1,2(5371642)) = (1, 4), φ(m1,1(5371642)) = (1, 2),

φ(m2,2(5371642)) = (2, 7), φ(m2,1(5371642)) = (2, 4),

φ(m3,4(5371642)) = (3, 7), φ(m3,3(5371642)) = (3, 6),

φ(m3,2(5371642)) = (3, 5), φ(m3,1(5371642)) = (3, 4),

φ(m5,2(5371642)) = (5, 7), φ(m5,1(5371642)) = (5, 6),

φ(m6,1(5371642)) = (6, 7).

Figure 9 shows the Hasse diagram of Δ(5371642).
The number of Mω is that of inversions of ω and hence we have |Mω| =

|Δ(ω)| = |Inv(ω)|. Also φω is injective and therefore φω is a bijection.
We give the following useful statement, which is a straightforward con-

sequence of Lemma 2.1 and we omit the proof.

Lemma 3.1. For mi,x(ω) ∈ Mω with 1 ≤ i < j ≤ n and x ∈ [ci(ω)], suppose
that the j-th coordinate of mi,x(ω) equals y ≥ 1. Then the number of 0
between the j-th (resp. i-th) coordinate and the ix-th (resp. j-th) coordinate
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Figure 9: Hasse diagram of Δ(5371642).

Figure 10: A visualization of Lemma 3.1.

equals y−1 (resp. x−y), where (i, i1), (i, i2), · · · , (i, ici(ω)) are the inversions
of ω involving i with i1 < i2 < · · · < ici(ω).

Figure 10 shows a visualization of Lemma 3.1.

Proposition 3.1. φω is an order-preserving bijection.

Proof. It suffices to show that φω is an order-preserving map. Suppose that
mi,x(ω) > mj,y(ω) for some 1 ≤ i, j ≤ n, x ∈ [ci(ω)] and y ∈ [cj(ω)]. Then
i ≤ j by Lemma 1.1. We have to prove ix ≥ jy.

If i = j, then we have x > y by Lemma 1.2 and we see ix > jy. Hence
φω(mi,x(ω)) = (i, ix) � φω(mi,y(ω)) = (i, iy).

Now we suppose i < j.

Because mi,x(ω) > mj,y(ω), the j-th coordinate of mi,x(ω) is greater
than or equal to y which is not 0. On the other hand every k-th coordinate
with ix ≤ k equals 0. So we find j < ix.

We can write

(31) mi,x(ω) = (0, · · · , 0, i−th
x , · · · , j−th

z , · · · ,
ix−th
0 , · · · 0)
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Figure 11: Illustration of the proof of Proposition 3.1.

and

(32) mj,y(ω) = (0, · · · , 0,
i−th
0 , · · · , 0, j−th

y , · · · ,
jy−th

0 , · · · 0).

for some x ≥ z ≥ y ≥ 1. Also we have ω(i) < ω(j) by Lemma 1.3.
For j < k ≤ ix, if the k-th coordinate of mi,x(ω) is 0, then ω(j) > ω(i) >

ω(k) and hence the k-th coordinate of mj,y(ω) equals 0.
If jy > ix, then the number of 0 between j-th coordinate and jy-th

coordinate in mj,y(ω), which equals y − 1 by Lemma 3.1, is greater than
that of 0 between j-th coordinate and ix-th coordinate in mi,x(ω), which
equals z− 1 by Lemma 3.1, because the ix-th coordinate of mj,y(ω) is 0, see
Figure 11. This contradicts the assumption that mi,x(ω) > mj,y(ω). Hence
we have jy ≤ ix and (i, ix) � (j, jy) in Δ(ω). Now we conclude that φω

preserves the order structure.

It is natural to ask when φω becomes a poset isomorphism.

Proposition 3.2. If ω ∈ Sn is a 321-avoiding permutation, then φω is a
poset isomorphism.

Proof. Because φω is an order-preserving bijection, it suffices to show that
φ−1
ω is an order-preserving map. Suppose that φω(mi,x(ω)) � φω(mj,y(ω))

in Δ(ω), where mi,x(ω),mj,y(ω) ∈ Mω with 1 ≤ i, j ≤ n, x ∈ [ci(ω)] and
y ∈ [cj(ω)]. It suffices to prove mi,x(ω) > mj,y(ω) in Mω. Put φω(mi,x(ω)) =
(i.ix) and φω(mj,y(ω)) = (j, jy) with i ≤ j < jy ≤ ix.
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Figure 12: Illustration of Claim 2 and Claim 3 of Proposition 3.2.

Case 1: i = j.
We see i = j < jy < ix and jy = iy. Then iy < ix and we have y < x.

By Lemma 1.2, we obtain mi,x(ω) > mi,y(ω) in Mω.

Case 2: i < j.
We have i < j < jy ≤ ix. Write

(33) mi,x(ω) = (0, · · · , 0, i−th
x , · · · , j−th

z , · · · ,
ix−th
0 , 0, · · · , 0)

and

(34) mj,y(ω) = (0, · · · , 0,
i−th
0 , · · · , j−th

y , · · · ,
jy−th

0 , 0, · · · , 0).

for some z ≥ 0.

Claim 1
ω(i) < ω(j).

Proof of Claim 1. If ω(i) > ω(j), then st(ω(i)ω(j)ω(jy)) = 321 and this
contradicts the assumption.

Claim 2
For j < k ≤ jy, if the k-th coordinate of mj,y(ω) equals 0, then the k-th

coordinate of mi,x(ω) is 0, see Figure 12.

Proof of Claim 2. Suppose that jy = ix. Then the jy-th coordinate ofmj,y(ω)
and that of mi,x(ω) equal 0. If j < k < jy and the k-th coordinate of
mj,y(ω) equals 0, then ω(j) > ω(k) by Lemma 2.1. Because ω(j) > ω(k)
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and st(ω(j)ω(k)ω(ix)) �= 321, we have ω(k) < ω(ix) < ω(i). Therefore the
k-th coordinate of mi,x(ω) equals 0.

Suppose that jy < ix, j < k ≤ jy and the k-th coordinate of mj,y(ω)
equals 0. Because ω(j) > ω(k) and st(ω(j)ω(k)ω(ix)) �= 321, we have ω(k) <
ω(ix) < ω(i). Therefore the k-th coordinate of mi,x(ω) equals 0.

Claim 3
For j ≤ k ≤ jy, if the k-th coordinate of mj,y(ω) is not 0, then the k-th

coordinate of mi,x(ω) is greater than or equal to that of mj,y(ω).

Proof of Claim 3. By assumption, we have ω(j) < ω(k) by Lemma 2.1 and
the k-th coordinate of mj,y(ω) equals the number of 0 between k-th coor-
dinate and jy-th coordinate +1 by Lemma 3.1. Also we see ω(i) < ω(k) by
Claim 1 and the k-th coordinate of mi,x(ω) is also the number of 0 between
k-th coordinate and ix-th coordinate +1 by Lemma 3.1. Because jy ≤ ix
and Claim 2, the number of 0 between k-th coordinate and ix-th coordinate
of mi,x(ω) is greater than or equal to that of 0 between k-th coordinate and
jy-th coordinate of mj,y(ω).

If k < j or jy ≤ k, then the k-th coordinate of mj,y(ω), which is 0, is
less than or equal to that of mi,x(ω).

Also for j ≤ k ≤ jy, from the above argument, the k-th coordinate of
mj,y(ω) is less than or equal to that of mi,x(ω) by Claim 3. Hence mi,x(ω) >
mj,y(ω) in Mω. Now we conclude that if ω is a 321-avoiding permutation,
then φω is a poset isomorphism.

Now we obtain the following result.

Theorem 3.1. For ω ∈ Sn, φω is a poset isomorphism if and only if ω is a
321-avoiding permutation.

Proof. It suffices to prove that if ω has a 321-pattern, then φω is not a
poset isomorphism. By assumption, there exists 1 ≤ i < j < k ≤ n such
that ω(i) > ω(j) > ω(k). Without loss of generality, we can assume that
ω(j) < ω(p) for all j < p < k.

Put mi,x(ω) := φ−1
ω ((i, k)). We remark that (i, j), (i, k) ∈ Δ(ω) and the

j-th coordinate of mi,x(ω) is 0. We write

(35) mi,x(ω) = (0, · · · , 0, i−th
x , · · · ,

j−th
0 , · · · ,

k−th
0 , 0, · · · , 0),

and

(36) mj,1(ω) = (0, · · · , 0,
i−th
0 , · · · , 0,

j−th
1 , 1, · · · , 1,

k−th
0 , 0, · · · , 0).
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For j ≤ p < k, the p-th coordinate of mj,1(ω) equals 1 because ω(j) <
ω(p) and by Lemma 2.1.

Now we have φω(mi,x(ω)) = (i, k) � (j, k) = φω(mj,1(ω)) in Δ(ω). On
the other hand, mi,x(ω) and mj,1(ω) are incomparable by comparing their i-
th coordinates and j-th coordinates. We conclude that if ω has a 321-pattern,
then φω is not poset isomorphism.
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