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Pattern avoidance in the rook monoid

Daniel Daly and Lara Pudwell

We consider two types of pattern avoidance in the rook monoid,
i.e. the set of 0–1 square matrices with at most one nonzero entry
in each row and each column. For one-dimensional rook patterns,
we completely characterize monoid elements avoiding a single pat-
tern of length at most three and develop an enumeration scheme
algorithm to study rook placements avoiding sets of patterns.
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1. Introduction

The rook monoid Rn is the monoid consisting of 0–1 square matrices such

that every row and column contains at most one nonzero entry. Such an n×n

matrix may be viewed as an encoding for an arrangement of non-attacking

rooks on an n×n board where a 1 denotes a rook and a 0 denotes an empty

square. An example 0–1 matrix and its corresponding rook placement are

shown in Figure 1.

Combinatorially, rook monoid elements can be viewed as repetition-free

words in the poset {1, 2, 3, . . . }+{0} where 0 is incomparable to any nonzero

number. In particular, π ∈ Rn can be represented as a word π = π1 · · ·πn
with the properties that for all 1 ≤ i ≤ n, πi ∈ {0, 1, . . . , n} and if πi = πj >

0 then i = j. Here, πi = 0 indicates column i is empty and πi = j > 0 indi-

cates a rook in column i, row j. For example,R2 = {00, 01, 02, 10, 20, 12, 21},
corresponding to the 7 rook placements in Figure 2. Similarly, the rook place-

ment in Figure 1 has word encoding 5470203. Superficially, a rook place-

ment may look like a partial permutation in the sense of Claesson, Jeĺınek,

Jeĺınková, and Kitaev [5], but the zeros in rook placements have a different

interpretation than the holes in partial permutations.

Rook monoids have also been the focus of recent algebraic interest as

generalizations of symmetric groups. Can and Renner gave a combinatorial

description of the Bruhat-Chevalley order on rook monoids in [4]. In addi-

tion, Halverson and Ram studied the representation theory of the q-rook

471

http://www.intlpress.com/JOC/


472 Daniel Daly and Lara Pudwell

Figure 1: A 0–1 square matrix and its corresponding rook placement.

Figure 2: The rook placements and word encodings in R2.

monoid algebra in [8]. This paper will define and study two notions of pat-

tern avoidance on rook monoids. In studying avoidance on rook monoids,

it is possible that such notions will prove useful in studying the Bruhat-

Chevalley order on rook monoids in the same spirit as Tenner’s results for

the Bruhat order on the symmetric group [17]. However, this paper focuses

on enumerative results rather than algebraic ones.

The study begins with the total number of rook monoid elements.

Theorem 1. For n ≥ 0, |Rn| =
n∑

k=0

(
n
k

)2
k!.

Proof. Let k be the number of rooks in an element of Rn. Clearly 0 ≤ k ≤ n.

Choose the positions and values of the nonzero entries in
(
n
k

)2
ways, and

order these entries in k! ways.

The exponential generating function
∑∞

n=0 |Rn|
xn

n!
has a particularly

attractive form, as standard manipulation reveals:

∞∑
n=0

|Rn|
xn

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)2

k!
xn

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)2

(n− k)!
xn

n!
.

After changing the order of summation, simplifying factorials, and making
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the substitution i = n− k

=

∞∑
k=0

xk

k!

∞∑
n=k

(
n

k

)
xn−k =

∞∑
k=0

xk

k!

∞∑
n=k

(
i+ k

k

)
xi.

Now, further simplify to obtain

=

∞∑
k=0

xk

k!

1

(1− x)k+1
=

∞∑
k=0

(
x

1−x

)k

(1− x)k!
=

e(
x

1−x)

1− x
.

Let rn,k =
(
n
k

)2
k! be the number of rook placements on an n× n board

with exactly k rooks. The polynomials Rn(x) =
∑n

k=0 rn,kx
k are well-studied

(see, for example, [7, 9, 15]). They are:

R1(x) = x+ 1,

R2(x) = 2x2 + 4x+ 1,

R3(x) = 6x3 + 18x2 + 9x+ 1,

R4(x) = 24x4 + 96x3 + 72x2 + 16x+ 1,

Rn(x) = n!xnL(m−n)
n (−x−1).

where Lσ
n(x) is the generalized Laguerre polynomial. In this context, |Rn| =

Rn(1).

Now that |Rn| has been computed, it is time to introduce rook patterns

and the corresponding notation.

First, consider the notion of pattern avoidance in permutations. The set

of permutations of length n, denoted Sn, is a proper subset of Rn. That is,

Sn is the set of n× n 0–1 matrices with exactly one 1 in each row and each

column. Here, π ∈ Sn contains ρ ∈ Sm if and only if there exist 1 ≤ i1 <

i2 < · · · < im ≤ n such that πia > πib if and only if ρa > ρb. In this case,

πi1 · · ·πim is said to be order-isomorphic to ρ. Let

Sn(Q) = {π ∈ Sn | π avoids ρ for all ρ ∈ Q},

and sn(Q) = |Sn(Q)|. The quantities sn(Q) are well-known for a variety of

choices of Q.

Now, since Rn is a superset of Sn, the classical definition of permutation

pattern generalizes to incorporate the zeros of rook monoid elements.



474 Daniel Daly and Lara Pudwell

Definition 1. Let π ∈ Rn and ρ ∈ Rm. π contains ρ as a (one-dimensional)
pattern if there exist 1 ≤ i1 < i2 < · · · < im ≤ n such that πi� = 0 if
and only if ρ� = 0 and for πia , πib > 0, πia > πib if and only if ρa >
ρb. Equivalently, πi1 · · ·πim and ρ have corresponding zeros and the nonzero
elements of πi1 · · ·πim are order-isomorphic to the nonzero elements of ρ. If
π does not contain ρ, then π avoids ρ.

For example, 0104023 contains 0312 as evidenced by 0423. Similarly,
00102 contains 102 and 12 but not 1002. 00102 also avoids 123; although
012 is an increasing subword of length 3, zeros are treated differently than
nonzero elements.

Now, let

Rn,k(Q) = {π ∈ Rn | π avoids ρ for all ρ ∈ Q, π has exactly k rooks},

rn,k(Q) = |Rn,k(Q)|, Rn(Q) =
⋃

0≤k≤nRn,k(Q) and rn(Q) = |Rn(Q)|. For
fixed n and Q, Sn = Rn,n ⊂ Rn and Sn(Q) = Rn,n(Q) ⊆ Rn(Q). Therefore,
a lower bound for rn(Q) exists since sn(Q) ≤ rn(Q).

The primary goal of this paper is to determine rn(Q) and rn,k(Q) for a
variety of pattern sets Q and explore their connections with other combi-
natorial objects. First, note that some rook placements are already equiv-
alent as patterns in the one-dimensional sense. For example, 20 and 10 are
equivalent rook patterns since their nonzero subwords are order-isomorphic.
Similarly, the elements 045012 and 035012 are both equivalent to 034012.
For simplicity, only reduced rook patterns, i.e. those where all empty rows
are at the top of the board, will be considered. For example, the reduced
rook patterns in R2 are 00, 10, 01, 12, and 21.

Next, since rook placements are drawn on square boards, using the
symmetries of the square will further simplify the computation. Let πr =

πn · · ·π1 denote the reversal of π. Let cn(πi) =
{
n+ 1− πi πi > 0
0 πi = 0

and let

πc = cn(π1)cn(π2) · · · cn(πn) denote the complement of π. Then. rn,k(Q) =
rn,k({qr | q ∈ Q}) = rn,k({qc | q ∈ Q}) = rn,k({qrc | q ∈ Q}). The symmetry
of the inverse is lost since inverses map empty columns to empty rows, and
the one-dimensional definition of avoidance respects empty columns but not
empty rows. Two pattern sets Q1 and Q2 where rn,k(Q1) = rn,k(Q2) for
n, k ≥ 0 are said to be Wilf equivalent. Two pattern sets that are Wilf
equivalent via the reverse and/or complement maps are said to be trivially
Wilf equivalent. Making use of these equivalences, there are three trivial Wilf
classes for reduced rook patterns in R2. A representative of each class is 00,
01, and 12.
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Section 2 completely classifies rook placements avoiding a single pattern
of length at most three. Section 3 considers an algorithmic approach to com-
pute rn(Q) and rn,k(Q). Finally, Section 4 introduces an even more general
type of rook pattern analogous to bivincular permutation patterns.

2. Basic enumeration

In this section, rook placements avoiding a single pattern of length 1, 2, or 3
are completely classified. Brute force computation reveals that the number
of trivial Wilf equivalence classes of length one patterns is two, of length
two patterns is three, and of length three patterns is seven.

The basic enumeration begins with three results that apply to patterns of
any lengthm, but of special types: patterns withm zeros, patterns withm−1
zeros, and patterns with no zeros. After studying these three pattern types,
the remaining patterns of length at most three will be handled individually.

Throughout this section, the notation 0m indicates a string of m consec-
utive 0s.

2.1. Special pattern types

2.1.1. The case of m zeros

Theorem 2. Let 0 ≤ k ≤ n and m ≥ 0. Then,

rn,k(0
m) =

{(
n
k

)2
k! k ≥ n−m+ 1

0 k ≤ n−m
,

and thus, rn(0
m) =

n∑
k=n−m+1

(
n
k

)2
k!.

Proof. This proof is the same as the proof of Theorem 1 except there are at
most m− 1 zeros.

The sum rn(0
m) =

n∑
k=n−m+1

(
n
k

)2
k! simplifies nicely for small values of

m. In particular:

rn(0) = n!,

rn(00) = (n+ 1)!,

rn(000) =
1

4
n!(n2 + 3n+ 4),
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rn(0000) =
1

36
n!(n3 + 6n2 + 29n+ 36).

The first two of these results make immediate sense: only the permutations

of length n avoid 0, and permutations of a subset of size n chosen from

{0, 1, . . . , n} avoid 00. As m increases, the resulting enumeration formulas

are always of the form

rn(0
m) =

1

((m− 1)!)2
n!(Pm(n)),

where Pm(n) is a polynomial in n of degree m− 1.

This enumeration can be expressed more simply using exponential gener-

ating functions. To that end, let fm(x) =
∑∞

n=0 rn(0
m)x

n

n! . Since rn(0) = n!,

f1(x) =
∑∞

n=0 rn(0)
xn

n! =
∑∞

n=0 x
n = 1

1−x . Now, the difference rn(0
m+1) −

rn(0
m) counts elements of Rn with exactly m zeros. From earlier computa-

tion that there are
(
n
m

)2
(n−m)! such elements. Therefore

f2(x)− f1(x) =

∞∑
n=0

(
n

1

)2

(n− 1)!
xn

n!
=

∞∑
n=0

nxn =
x

(1− x)2
.

Similarly

f3(x)− f2(x) =

∞∑
n=0

(
n

2

)2

(n− 2)!
xn

n!

=

∞∑
n=0

(
n(n− 1)

2

)2 xn

n(n− 1)

=

∞∑
n=0

1

2!2
n(n− 1)xn

=
x2

2(1− x)3
.

And in general:

fm+1 − fm(x) =

∞∑
n=0

(
n

m

)2

(n−m)!
xn

n!

=

∞∑
n=0

(
n · · · (n− (m− 1))

m!

)2 xn

n · · · (n− (m− 1))



Pattern avoidance in the rook monoid 477

=

∞∑
n=0

1

m!2
n(n− 1) · · · (n− (m− 1))xn =

xm

m!(1− x)m+1
.

Therefore,

fm(x) =

m∑
i=1

xi−1

(i− 1)!(1− x)i
=

Γ(m, x
1−x)e

( x

1−x)

(1− x)(m− 1)!
,

where Γ(m, z) :=
∫∞
z e−ttm−1dt is the incomplete Gamma function and the

last equality comes from Maple simplification. In general, the e(
x

1−x
) in the

numerator cancels with a e−( x

1−x
) factor in Γ(m, x

1−x) to produce a rational
function in x.

2.1.2. The case of m−1 zeros and one 1 There arem rook patterns of
length m with exactly one nonzero digit. For any fixed m, all such patterns
are Wilf equivalent.

Theorem 3. Let 0 ≤ j < � < m ≤ n. Then rn(0
j10m−j−1) = rn(0

�10m−�−1).
Further, for 0 ≤ k ≤ n, rn,k(0

j10m−j−1) = rn,k(0
�10m−�−1).

Proof. The goal is to provide a bijection ξj from the set of elements of Rn

that contain 0j10m−j−1 to the set of elements ofRn that contain 0j+110m−j−2,
which shows rn(0

j10m−j−1) = rn(0
�10m−�−1) when � = j +1. Further, since

such a bijection preserves the number of rooks in π,

rn,k(0
j10m−j−1) = rn,k(0

j+110m−(j+1)−1).

Then, by transitivity, the theorem holds for any choice of j and �.

First, if π ∈ Rn contains both patterns, then define ξj(π) = π.

For j ≥ 1, assume π contains 0j10m−j−1 but avoids 0j+110m−j−2. Con-
sider the location of the jth zero and the j +1st zero in π. Write π = x0y0z
where x and z are words on {0, . . . , n}, y is a word on {1, . . . , n}, the 0
between x and y is the jth zero of π and the 0 between y and z is the
j + 1st zero of π. In order for π to contain 0j10m−j−1, z must have at least
m− j− 2 zeros. However, z must also avoid 10m−j−2 in order for π to avoid
0j+110m−j−2. Hence, any copy of 0j10m−j−1 must contain a digit from y
and z. Now, z contains at least m− j−2 zeros, but may contain more. Keep
the rightmost m− j− 2 zeros fixed in z and then move all extra zeros along
with the j + 1st zero directly to the left of y. Define this new element to be
ξj(π).



478 Daniel Daly and Lara Pudwell

To invert this map, suppose that π contains 0j+110m−j−2 and avoids
0j10m−j−1. Then πr contains 0m−j−210j+1 and avoids 0m−j−110j . Further,
ξm−j−2(π) contains 0

m−j−110j and avoids 0m−j−210j+1, so ξm−j−2(π)
r con-

tains 0j10m−j−1 and avoids 0j+110m−j−2.

For j = 0, 10m−1 is equivalent to 0m−11 by reversal, and 0m−11 is equiva-
lent to all other patterns of the form 0j10m−j−1 by the argument above.

As an example of the procedure outlined above, consider the rook monoid
element 0012300040 which contains 001000 and avoids 000100. The proce-
dure decomposes the rook monoid element as 0(0)123(0)0040 and then swaps
the 123 with the two zeros directly to the right to obtain 0000123040.

Since rn(ρ) = rn(0
m−11) for all ρ ∈ Rm with m − 1 zeros and one 1, it

suffices to compute rn(0
m−11) exactly.

Theorem 4. For n ≥ 0, rn(01) = rn(10) =
∑n

j=0
n!
j! .

Proof. A 01-avoiding rook monoid element consists of some permutation of
i nonzero entries followed by n − i zeros for 0 ≤ i ≤ n. Choose i nonzero
elements in

(
n
i

)
ways, permute them in i! ways, and make the substitution

j = n− i to obtain the given formula.

An alternate explanation shows that rn(01) = 1 + nrn−1(01) where the
1 counts the all zeros element, and the second term counts all other 01-
avoiders: there are n nonzero choices for what the first nonzero digit may
be, and rn−1(01) 01-avoiding ways to arrange the remaining elements.

Standard algebraic manipulation reveals the exponential generating func-
tion

∑∞
n=0 rn(01)

xn

n! =
ex

1−x . This is also sequence A000522 in the Online En-
cyclopedia of Integer Sequences (OEIS) [11] which has at least 21 different
combinatorial interpretations.

Towards generality, let rpn(ρ) be the number of elements of Rn(ρ) begin-
ning with pattern p and suppose ρ = 0j1 where j > 1. For n ≥ i,

rn(0
j1) = r0n(0

j1) + nrn−1(0
j1),

r0
i

n (0j1) = r0
i+1

n (0j1) + nr0
i

n−1(0
j1) for 1 ≤ i ≤ j − 2,

r0
i

n (0j1) = 1 + nr0
i

n−1(0
j1) for i = j − 1.

For fixed j, ∑
n≥0

r0
j−1

n (0j1)
xn

n!
=

ex −
∑j−2

i=0 x
i/i!

1− x
,
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which can be used to recursively derive the exponential generating function

for each sequence r0
i

n (0j1) for i = j − 2, j − 3, . . . 0.

Completing this process for j = 2, j = 3, and j = 4, gives, for example,

∑
n≥0

rn(001)
xn

n!
=

ex − x

(1− x)2
(OEIS A193657),

∑
n≥0

rn(0001)
xn

n!
=

ex − 2x

(1− x)3
,

∑
n≥0

rn(00001)
xn

n!
=

ex − 3x+ x2 − x3/2

(1− x)4
.

Next, consider rook placements that avoid a pattern of the form 0j1 and

contain exactly k rooks.

Theorem 5. For 0 ≤ k ≤ n, rn,k(01) =
(
n
k

)
k! =

n!

(n− k)!
.

Proof. As in the proof of Theorem 4, all n − k empty columns must be at

the end of the rook element in order to avoid 01. Thus, choose which k rows

to put rooks in in one of
(
n
k

)
ways and then place a permutation of length k

in the intersection of these k rows and the first k columns.

Theorem 6. For 0 ≤ k ≤ n,

rn,k(001) =

{(
n
k

)2
k! k ≥ n− 1(

n
k

)
(k + 1)! k ≤ n− 2

.

Proof. To avoid 001 there are two cases. If there are no empty columns or

there is exactly one empty column (i.e. k = n or k = n− 1), it is impossible

to have a 001 pattern, so choose which k rows and which k columns have

rooks in one of
(
n
k

)2
ways, and then fill a permutation of length k into the

intersection of these rows and columns.

If there are two or more columns (i.e. k ≤ n−2), then all but one empty

column is at the end of the rook element. In this case, choose the k rows to

put rooks in in one of
(
n
k

)
ways, choose which one of the first k+1 columns

is empty in one of (k + 1) ways, and fill a permutation of length k into the

selected non-empty rows and columns in one of k! ways.
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2.1.3. The case of permutation patterns When avoiding a pattern

with no zeros, the following theorem holds.

Theorem 7. Consider ρ ∈ Sm. Then rn(ρ) =
n∑

k=0

(
n
k

)2
sk(ρ).

Proof. This proof is the same as the proof of Theorem 1 except there are

only sk(ρ) ways to arrange the nonzero digits such that they still avoid ρ.

As a consequence of Theorem 7,

rn(12) = rn(21) =

n∑
k=0

(
n

k

)2

=

(
2n

n

)
, and

rn(123) = rn(132) = rn(213) = rn(231) = rn(312) = rn(321) =

n∑
k=0

(
n

k

)2

Ck,

where Ck is the kth Catalan number. The latter sequence is OEIS sequence

A086618.

In general, the Wilf classes for permutation pattern avoidance in the

rook monoid correspond precisely to the Wilf classes for permutation pattern

avoidance in the set of permutations.

2.2. Wilf-classification of patterns of length at most three

The results of the previous subsection can now be used to complete the Wilf

classification of rook patterns of length at most three. There are precisely

two patterns of length one (0 and 1), and five patterns of length two which

fall into three trivial equivalence classes ({00}, {01, 10}, and {12, 21}).
All of these patterns are addressed by Theorems 2, 4, and 7. There are 16

patterns of length three, and they fall into seven trivial equivalence classes.

A representative of each of the seven classes is 000, 001, 010, 123, 132, 012,

and 102. Again, our previous work accounts for five of the seven classes. It

remains to determine rn,k(012) and rn,k(102).

Theorem 8. For 0 ≤ k ≤ n,

rn,k(012) =

⎧⎪⎨
⎪⎩
n! k = n
k+1∑
j=1

(
n−j

n−k−1

)(
n
k

)(
k

j−1

)
(j − 1)! k ≤ n− 1

.
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Proof. For avoiding 012, there are two cases. If there are no empty columns
(i.e. k = n), it is impossible to contain a 012 pattern, and there are n!
permutations.

If k < n, then avoiding 012 means that after the first empty column, all
elements appear in decreasing order. In this case, let j be the location of the
first empty column (1 ≤ j ≤ k + 1). Choose the locations of the remaining
n−k−1 empty columns in

(
n−j

n−k−1

)
ways. Choose the non-empty rows in

(
n
k

)
ways. Choose which of those k non-empty rows has a rook before column j
in

(
k

j−1

)
ways, and put a permutation of length (j − 1)! in the non-empty

rows and columns before column j. The locations of the remaining rooks
are uniquely determined by the rows and columns that were selected to be
non-empty but do not yet have a rook; those rooks must appear in these
rows and columns in decreasing order.

Theorem 9. For 0 ≤ k ≤ n,

rn,k(102) =

{
n! k = n∑

P

(
n
k

)
(ΔP )! k ≤ n− 1

,

where the sum is over sets P = {p1, . . . , pn−k} ⊆ {1, . . . , n} where 1 ≤ p1 <
p2 < · · · < pn−k ≤ n and (ΔP )! := (p1−1)!(p2−p1−1)! · · · (pn−k−pn−k−1−
1)!(n− pn−k)!.

Proof. For avoiding 102, there are two cases. If there are no empty columns
(i.e. k = n), it is impossible to contain a 102 pattern, and there are n!
permutations.

If k < n, then avoiding 102 means that all digits before a given empty
column are larger than all digits after the column. Let p1, . . . , pn−k be the
indices of the empty columns. Choose the n−k empty columns, noting their
locations, and then choose the k non-empty rows in one of

(
n
k

)
ways. Now,

there are p1−1 rooks before column p1. These must be the largest p1−1 dig-
its, but they can appear in any order amongst themselves. Similarly, there
are p2 − p1 − 1 rooks between columns p1 and p2. These must be the next
largest p2 − p1 − 1 digits, but they can appear in any order amongst them-
selves. Similarly, the number of ways to place the rooks between consecutive
empty columns pi and pi+1 is (pi+1− pi− 1)! for 1 ≤ i ≤ n−k− 1, so (ΔP )!
is the number of ways to arrange rooks in the selected columns.

Here, the (ΔP )! notation for products of factorials of consective differ-

ences is used for compactness. It turns out that the triangle of values rn,k(102)

(nk)
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Table 1: Sequences from avoiding a single pattern of length 1, 2, or 3

Pattern q rn(q) OEIS Theorem

1 1, 1, 1, 1, 1, . . . A000012 Theorem 7
0 1, 2, 6, 24, 120, . . . A000142 Theorem 2

01 2, 5, 16, 65, 326, . . . A000522 Theorem 4
12 2, 6, 20, 70, 252, . . . A000984 Theorem 7
00 2, 6, 24, 120, 720, . . . A000142 Theorem 2

102 2, 7, 31, 159, 916, . . . A221958 Theorem 9
012 2, 7, 31, 159, 921, . . . A221957 Theorem 8

001 (equivalently 010) 2, 7, 31, 165, 1031, . . . A193657 Theorem 6
123 (equivalently 132) 2, 7, 33, 183, 1118, . . . A086618 Theorem 7

000 2, 7, 33, 192, 1320, . . . A006595 Theorem 2

appears as A084938 in [11], where it has several other combinatorial inter-
pretations.

Table 1 contains the enumeration data for rn(Q) where Q is a single pat-
tern of length at most three. Notice that every single sequence in Table 1 is
already in the OEIS. Of the nine distinct sequences cited within, two (OEIS
A221957 and OEIS A221958) appear to be new to the literature. On the
other hand, the seven previously-studied sequences offer ample opportunity
to connect rook placements to other combinatorial objects. Two such objects
(counted by OEIS A006595 and OEIS A086618) are studied in Section 2.3.
Questions of asymptotic growth for these sequences appear in Section 2.4.

2.3. Connections to other combinatorial objects

2.3.1. A-reduced elements of Bn From Section 2.1.1,
∑

n≥0 rn(000)
xn

n! =
x2−2x+2
2(1−x)3 , which is the exponential generating function for (n+2)!

4 + n!
2 . There

is a connection between Rn(000) and a certain subset of Bn, the Coxeter
group of type B, also known as the hyperoctahedral group, which consists of
all signed permutations of [n]. First, a signed permutation is a permutation
where each number may or may not have a bar over it. For example, there are
eight such permutations of length two: B2 = {12, 12, 12, 12, 21, 21, 21, 21}. A
copy of a pattern means that the underlying numbers are order-isomorphic
and the bars match. The reader is referred to [3] for more information on
Coxeter groups. Stembridge gives a simple combinatorial description of A-
reduced elements of Bn in Theorem 2.3 of [16], i.e. an element of Bn is
A-reduced if and only if that element avoids the patterns 12 and 132.

Theorem 10. For all n ≥ 1, the number of A-reduced elements of Bn is
equal to rn(000).
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Proof. To prove this, we provide a bijection φ from Rn(000) to the set of all

A-reduced elements of Bn. Let π ∈ Rn(000). Define φ(π) = π if π contains

no zeros.

If π contains exactly one zero, then π = π1 · · ·πi−10πi+1 · · ·πn where

a ∈ [n] does not appear in π. Define φ(π) = π1 · · ·πi−1aπi+1 · · ·πn.
If π contains exactly two zeros, then π = π1 · · ·πi0y0z where each mem-

ber of π1 · · ·πi belongs to [n] = {1, . . . , n} and y and z are strings of elements

of [n]. There are exactly two elements from [n] that do not appear in π. La-

bel them a and b and without loss of generality assume a < b. Let I1 be

the set {a, b}. If π1 is less than a, then define π′
1 = b and I2 = {a, π1}.

If not, define π′
1 = π1 and I2 = I1. Now, if π2 is less than the minimum

element in I2, define π′
2 = max(I2) and I3 = {min(I2), π2}. Define π′

2 = π2
and I3 = I2 otherwise. Continue in this fashion for all 1 < j ≤ i. For any

1 < j ≤ i, define π′
j = max(Ij) and Ij+1 = {min(Ij), πj} if πj < min(Ij)

and π′
j = πj and Ij+1 = Ij otherwise. Notice that for all 1 ≤ j1 < j2 ≤ i,

the elements of Ij1 are always greater than or equal to the elements of Ij2 .

Define φ(π) = π′
1π

′
2 · · ·π′

imax(Ij)ymin(Ij)z.

By construction φ(π) avoids 12. Now, a 132 pattern can only occur in

the subword π′
1 · · ·π′

imax(Ij)min(Ij). The ‘1’ in the 132 pattern must be π′
j

for some 1 ≤ j ≤ i and hence there are two elements to the right of π′
j

that are greater than π′
j and barred. Since π′

j is not barred, π′
j = πj and,

by the construction of the I sets, πj is less than both of the elements in Ij
and hence π′

j would be barred which is a contradiction. Therefore φ(π) is an

A-reduced element of Bn.

Define an inverse function ψ from the A-reduced elements of Bn to Rn.

Let π be an A-reduced element of Bn. If π contains no barred elements,

define ψ(π) to be π. Similarly, if π contains exactly one barred element,

then ψ(π) returns π with the barred element replaced with a 0. Now write

π = π1 · · ·πiyπjz where y and z are (possibly empty) sequences of unbarred

symbols in [n] and πi and πj are the rightmost two occurrences of barred

elements. As π avoids 12 all of the barred elements occur in decreasing order.

Define π′
i = 0 and π′

j = 0. Next define π′
� = π� if π� is unbarred. Now, list

all of the other barred elements of π from left to right as π�1 , π�2 , . . . , π�m .

Define π′
�b

= π�b+2 without the bar. Finally define ψ(π) = π′
1π

′
2 · · ·π′

iyπ
′
jz.

As ψ inverts φ, φ is a bijection and the result follows.

As an example, consider 5312060 ∈ R7. The construction of φ(5312060)

is as follows:
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n element In
1 5312060 {4, 7}
2 5312060 {4, 7}
3 5712060 {3, 4}
4 5742060 {1, 3}
5 5742060 {1, 3}
6 5742361 {1, 3}

Hence φ(5312060) = 5742361.

2.3.2. Reverse-complement invariant permutations Theorem 7 says

that rn(321) =
n∑

k=0

(
n
k

)2
Ck (OEIS A086618).

Let Src
2n(q) be the number of permutations of length 2n which are in-

variant under the reverse-complement map and avoid pattern q. Egge [6]

showed that |Src
2n(4321)| =

∑n
k=0

(
n
k

)2
Ck. Egge’s proof of this enumeration

for reverse-complement-invariant permutations uses several bijections. Ul-

timately, he matches each member of Src
2n(m(m − 1) · · · 21) to a 4-tuple

(P ′, Q′, πo, πe). where P ′ ⊆ {1, . . . , n}, Q′ ⊆ {1, . . . , n}, |P ′| = |Q′| = k

for some 0 ≤ k ≤ n, πo ∈ Sk(�m+1
2 � · · · 1), and πe ∈ Sn−k(	m+1

2 
 · · · 1). In
the case where m = 4, πo ∈ Sk(321), and πe ∈ Sn−k(21). In this event, notice

that πe = 12 · · · (n − k), and so is uniquely determined once the value of k

is known. Making use of Egge’s bijections yields the following result.

Theorem 11. Src
2n(4321) is in bijection with Rn(321).

Proof. Let P ′ be the set of nonzero entries of an element of Rn, Q
′ be the

positions of the nonzero entries of that element, and πo the permutation

pattern formed by the nonzero entries of that element. This now extends

Egge’s bijection to elements of the rook monoid, providing a one-to-one

correspondence with members of Src
2n(4321).

2.4. Asymptotic growth of rook sequences

Finally, it is natural to consider the asymptotic growth of the sequences

rn(Q) in Table 1. Recall that the exponential generating function for rn is

e(
x

1−x
)

1− x
. Thus,

rn = n![xn]
e(

x

1−x)

1− x
∼ e2

√
n−1/2

2
√
πn1/4

n!.
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The e2
√
n in the numerator exhibits much faster growth than the growth

of pattern-avoiding rook sequences.

From Theorem 2,

rn(0
m) ∼ cn!nm−1.

Similarly, using the exponential generating functions computed in Sec-
tion 2.1.2, compute

rn(01) = n![xn]
ex

1− x
∼ en!,

rn(001) = n![xn]
ex − x

(1− x)2
∼ enn!.

Finally, from Theorem 7:

rn(1) = 1,

rn(12) =

(
2n

n

)
∼ 4n√

πn
,

rn(123) =

n∑
j=0

(
n

j

)2

Cj ∼ c
9n

n2
.

Clearly, the number of rook placements avoiding 0m or 0m−11 grows

super-exponentially, and much more quickly than the number of rook place-
ments avoiding a permutation pattern.

For patterns of length one, it is immediately clear that rn(0) >> rn(1),
and for patterns of length two, rn(00) >> rn(01) >> rn(12), even though

rn(12) > rn(01) for small values of n.

For patterns of length three, rn(000) >> rn(001) >> rn(123), again,

even though rn(123) > rn(001) for small values of n. The patterns 102 and
012 elicited sufficiently complicated formulas that precise asymptotics for

these pattern classes remain open.

Nonetheless, these initial computations prompt one to conjecture that

the all zeros pattern is the easiest pattern to avoid. This turns out to be the
case for patterns of any length.

Theorem 12. Let ρ ∈ Rm be a rook pattern with exactly i rooks where

i > 0. Then rn(0
m) > rn(ρ) for sufficiently large n.

Proof. Let con(ρ) (resp. con(0
m)) be the number of rook monoid elements of

length n that contain ρ (resp. 0m). We will prove the equivalent statement
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that con(0
m) < con(ρ) for sufficiently large n by proving an even stronger

statement.

Let con,k(ρ) (resp. con,k(0
m) be the number of rook monoid elements

of Rn,k that contain ρ (resp. 0m). We will prove that for 0 ≤ k ≤ n −
m, con,k(0

m) ≤ con,k+i(ρ). Indeed, values outside of this range for k are
irrelevant. If k > n−m, then con,k(0

m) = con,k+i(ρ) = 0 because there are
not sufficiently many 0s to make a pattern. Also, con,k+i(ρ) = 0 if k < 0
since there are not enough rooks to make a pattern.

Consider each quantity in turn:

con,k(0
m) =

(
n

k

)2

· k!.

This comes from choosing k columns and k rows in which to place rooks and
then permuting the rooks. Our range of k guarantees that there are at least
m empty columns, so all possible rook placements with k rooks contain the
pattern 0m. Also,

con,k+i(ρ) ≥
(
n

i

)
·
(
n− i

k

)
·
(
n−m

k

)
· k!.

Here, con,k(ρ) is underestimated by counting only the rook placements that
contain a copy of ρ in their first m positions. First, choose the rows of the i
rooks that will take part in the copy of ρ. Then of the remaining n− i rows,
choose k to contain rooks in the remainder of the rook placement. Choose
the columns of these rooks in one of

(
n−m
k

)
ways, and then permute the k

rooks after the initial ρ pattern in one of k! ways.

For fixed m, i, and k,
(
n
k

)2
is a polynomial in n of degree 2k with positive

leading coefficient. Also,
(
n
i

)
·
(
n−i
k

)
·
(
n−m
k

)
is a polynomial in n of degree

2k+ i with positive leading coefficient. Since i > 0, the latter quantity has a
higher degree, and thus for sufficiently large n, con,k(0

m) ≤ con,k+i(ρ).

This exhausts the computation for patterns of length at most three. The
next section focuses on automated enumeration techniques for rook pattern
avoidance.

3. Enumeration schemes for rook patterns

In general, our goal is to quickly compute rn(Q) and rn,k(Q) for various sets
of rook patterns Q and nonnegative integers n and k. For sufficiently long
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patterns, these values become impossible to compute with a simple closed
formula. Hence, more robust recursive techniques are needed.

An enumeration scheme is an encoding for a family of recurrences that
enumerate the members of a family of sets. Enumeration schemes were first
introduced and automated by Zeilberger [19] for pattern-avoiding permu-
tations. Later, Vatter [18] improved the success rate of Zeilberger’s enu-
meration schemes by introducing the notion of gap vectors, discussed be-
low. Beyond permutations avoiding classical patterns, enumeration schemes
have been extended to answer various other counting questions involving
words avoiding permutations [14], words avoiding words [12], permutations
avoiding vincular patterns [2], and permutations avoiding barred patterns
[13]. Such schemes have two chief benefits. First, enumeration schemes can
be deduced automatically by computer. Second, they allow computation of
much more enumeration data than is feasible by brute force computation.
More recently, Baxter [1] has extended enumeration schemes to enumerate
pattern-avoiding permutations according to various statistics, and in certain
cases Baxter uses schemes to derive a functional equation satisfied by the
enumeration generating function he seeks.

This section provides an adaptation of previous enumeration scheme
algorithms to work with pattern-avoiding rook monoid elements. Enumera-
tion schemes are found via a divide-and-conquer method. First, the set to be
enumerated is divided into several disjoint subsets using prefixes. Then two
mechanisms help enumerate members of these subsets. Reversibly deletable
elements provide recurrences that relate the size of subsets to simpler sub-
sets. Gap pairs determine when a given subset is empty and may be dis-
carded. Each of prefixes, reversibly deletable elements, and gap pairs may be
determined completely algorithmically. The user need only input the set of
patterns to be avoided and two positive integers used as search parameters;
then either an enumeration scheme encoding is returned or the computer
reports that no scheme was found with those particular search parameters.
Each of the three main components of schemes will now be considered in
greater detail.

3.1. Prefixes

Given a set of patterns Q, we wish to compute rn(Q) and rn,k(Q). First
partition Rn(Q) into disjoint subsets. Given rook element π ∈ Rn and i ≤ n,
the i-prefix of π is the pattern formed by the first i entries of π. One simple
way to partition Rn(Q) into disjoint subsets is by considering the i-prefix
of each element.
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For example, R2(00) = {01, 02, 10, 12, 20, 21}. When i = 1, two of these
elements (01 and 02) have 1-prefix 0, and the remaining elements (10, 12,
20, and 21) have 1-prefix 1.

In general, write Rp
n(Q) for the set of Q-avoiding elements of Rn that

have prefix p, and Rp
n,k(Q) for the subset of Rp

n(Q) with exactly k nonzero

elements. Similarly, rpn(Q) = |Rp
n(Q)| and rpn,k(Q) = |Rp

n,k(Q)|.
Further, given a prefix p, the children of p, denoted C(p), are the set of

rook patterns of length |p|+ 1 whose |p|-prefix is p. For example, if ε is the
empty word, then C(ε) = {0, 1}, C(0) = {00, 01}, C(1) = {10, 12, 21}, and
C(210) = {2100, 2103, 3102, 3201}.

Note that Rp
n(Q) =

⋃
p∗∈C(p)R

p∗

n (Q), where the union is disjoint, and

thus, after taking cardinalities, rpn(Q) =
∑

p∗∈C(p) r
p∗

n (Q). In particular, for
any set of patterns Q,

rn(Q)= r0n(Q)+r1n(Q)=
(
r00n (Q)+ r01n (Q)

)
+
(
r10n (Q)+ r12n (Q)+ r21n (Q)

)
= · · · .

At times, this may not be enough information to determine recursive
structure and it is necessary to explicitly give the first few digits of a rook
placement rather than just their pattern. When this is the case, define a
two-component notation as follows

R(p,w)
n (Q) = {π ∈ Rp

n(Q) | π1 · · ·π|p| = w}.

For example, while R1
2(00) = {10, 12, 20, 21}, R(1,2)

2 (00) = {20, 21}. This
provides a way to further partition Rn(Q). In particular

Rp
n(Q) =

⋃
p∗∈C(p)

⋃
w∼p∗

R(p∗,w)
n (Q),

where w ∼ p∗ indicates that w is order-isomorphic to p∗.
It is also straightforward to program the computer to partition Rn ac-

cording to prefixes and initial subwords. Now consider the problem of re-
cursively counting the members of these new smaller sets. Certainly some
of these sets are easy to compute, for example if p does not avoid Q, then
rpn(Q) = 0, or if p avoids Q and |p| = n, then rpn(Q) = 1. But for more
complicated cases, other techniques are required.

3.2. Reversibly deletable elements

How can rpn(Q) be computed recursively? Any rook element in Rn(Q) yields
a rook element in Rn−1(Q) by choosing a rook and erasing its row and



Pattern avoidance in the rook monoid 489

column. For example, erasing the row and column of the first rook in the
rook element 2103 ∈ R4(00) yields 102 ∈ R3(00). Given prefix p of length
� and integer i where i denotes the column position of a rook in prefix p,
define the deletion map di : Rp

n(Q) → Rp1···pi−1pi+1···p�

n−1 (Q) as the function
that deletes the row and column of the rook in position i.

Clearly, erasing a rook cannot create a forbidden pattern. Sometimes,
it turns out that di is a bijection. To show this, it must be shown that
reinserting a rook in column i into a member of Rp1···pi−1pi+1···p�

n−1 (Q) does not
introduce a forbidden pattern from Q. Equivalently, by contrapositive, one
can consider every element ofRp

n that contains a member of Q and show that
deleting the rook in column i, row pi still produces a rook placement that
contains a pattern from Q. Again, it is possible to program the computer to
generate the set of all scenarios where a rook placement contains a pattern
from Q involving column i in a forbidden pattern, delete the rook, and
check for containment in the new smaller rook placement, thus automatically
determining if di is a bijection. If di is a bijection, then position i is said to
be reversibly deletable for prefix p and pattern set Q.

For example, consider Q = {102} and p = 12. In this case, d2 is a
bijection from R12

n (Q) to R1
n−1. In particular, if π ∈ R12

n (Q), then π1 < π2.
If π2 is involved in a forbidden 102 pattern, then π2 plays the role of a 1, so it
is followed by πi = 0 and πj > π2 for some 2 < i < j ≤ n. But removing π2
gives π1π3 · · ·πn where π1 < πj , so π1πiπj is still a 102 pattern and position

2 is reversibly deletable. In this case, r
(12,w1w2)
n (102) = r

(1,w1)
n−1 (102) for any

w ∼ 12.
With rook placements, one other scenario is possible. A smaller rook

placement may be obtained by deleting an empty column. When this hap-
pens, there may be a choice of which corresponding row to delete. In fact,
if an empty column is placed at the front of the rook placement π ∈ Rn−1,
then there are n choices of where to insert an empty row.

Given prefix p and pattern set Q, when pi = 0, position i is reversibly
deletable if there is no way for pi to be involved in a forbidden pattern from
Q. For example, if Q = {102} and p = 0, position 1 is reversibly deletable. In
the case of this rook pattern, however, this deletion does not give a bijection,
but a many-to-one correspondence. In a 102-avoiding rook placement, there
are n ways to insert an empty row along with the empty first column to

obtain a member of Rn−1(102). In this case, r
(0,0)
n (102) = nr

(ε,ε)
n−1(102).

3.3. Gap pairs

While reversibly deletable elements may determine a recurrence for rpn(Q)
in many cases, they are generally not sufficient for determining a complete
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system of recurrences. Thus, one more tool for computing these cardinalities
is required.

Often, R(p,w)
n (Q) = ∅. Gap pairs encode which choices of p, w, and Q

produce such an empty set.
Our first step is to define gap vectors. Given a prefix p of length �, and

rook element π, let π̂1 < π̂2 < · · · < π̂m be the nonzero digits of π involved
in prefix p. In this case, π is said to obey gap vector v ∈ N

m+1 with respect
to Q if π avoids Q, π has prefix p, there are at least v1 nonzero digits of π
after the prefix and less than π̂1, at least vm+1 digits of π after the prefix and
greater than π̂m, and for 1 < i ≤ m, there are at least vi digits of π after the

prefix and between π̂i and π̂i+1. For example, π = 304201 ∈ R(10,30)
n (000)

obeys the gap vector 〈2, 1〉 since 304201 has two digits (namely 1 and 2)
smaller than π̂1 = 3 and one digit (4) that is larger than 3. Similarly, π
obeys the vector 〈1, 1〉, and any other vector in N

2 that is componentwise
smaller than 〈2, 1〉.

Given a prefix p with m nonzero digits and a set of forbidden patterns
Q, a gap pair consists of a vector v ∈ N

m+1 and a nonnegative integer z
such that there are no rook elements π that avoid Q, have prefix p, obey v
and have at least z empty columns appearing after the prefix.

For example, if Q = {102} and p = 10, then [〈0, 1〉, 0] is a gap pair
because any rook element with one digit larger than the 1 contains a 102
pattern, i.e. R10

n (102) contains no members obeying the gap vector 〈0, 1〉.
Similarly, if Q = {00} and p = 01, then [〈0, 0〉, 1] is a gap pair because

any rook element with an additional empty column contains a 00 pattern,
i.e. R01

n (00) contains no members with a 0 after the initial prefix.
Gap pairs reduce the number of scenarios one must consider to determine

if there are reversibly deletable elements. For example, the gap pair [〈0, 1〉, 0]
for Q = {102} and p = 10 tells us that the role of 1 in the 10 prefix must
be played by the highest rook. Therefore, this rook cannot be involved in a
102 pattern, and so position 1 is reversibly deletable.

Again, determining the set of minimal gap pairs for a given set of pat-
terns and prefix becomes a matter of listing out all possible rook placements
of minimum length that obey the gap vector and include an appropriate
number of additional empty columns. If every single such rook placement
contains a forbidden pattern, this yields a gap pair.

3.4. Computing enumeration schemes

All of the necessary pieces are now in place to give a formal definition of
enumeration scheme. A rook enumeration scheme is a set S of triples [p,R,G]
where
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1. [ε, ∅, ∅] ∈ S.

2. For every [p,R,G] ∈ S, R ⊆ {1, . . . , |p|}, and G is a set of gap pairs

with vectors of length k + 1, where k is the number of nonzero digits

of p.

3. For any [p,R,G] ∈ S, either

(a) R �= ∅ or

(b) C(p) are all members of triples of S.

In other words, a rook enumeration scheme is a set of triples consisting

of a prefix p, a set of reversible deletable elements for p, and a set of gap

pairs for p that includes the trivial prefix ε, and such that every prefix in the

scheme either has reversibly deletable elements or has all its children also

appearing as prefixes in the scheme.

Given a set of forbidden patterns, one need only specify the maximum

length prefix to consider and the maximum weight gap pair (here weight is

the sum of the entries in the gap vector plus the integer z). The computer can

then divideRn(Q) into subsets according to prefixes, and then for each prefix

determine the reversibly deletable elements and gap pairs. The two search

parameters allow the user to control the amount of time spent searching for

a scheme. If no scheme is found within the search parameters the computer

reports the search has failed. If a pattern set has a scheme with maximum

gap pair weight at most w and depth at most d, then the pattern set is

(w, d)-denumerable, or (w, d)-D for short.

For example, if Q = {102}, the scheme obtained has maximum gap

weight 1 of depth 2:

S={[ε, ∅, ∅], [0, {1}, ∅], [1, ∅, ∅],[10, {1, 2}, {[〈0, 1〉, 0]}], [12, {2}, ∅], [21, {1}, ∅]},

so {102} is (1, 2)−D.

Notice that indeed, [ε, ∅, ∅] ∈ S. For every triple with a nonempty set G,

the vector has length one more than the number of nonzero entries of the

corresponding p. Further, as ε and 1 have no reversibly deletable elements,

C(ε) = {0, 1} and C(1) = {10, 12, 21} are prefixes in the scheme. For other

prefixes there are indeed reversibly deletable elements.

The scheme above can be read as the following system of recurrences:

rn(102) = r0n(102) + r1n(102) (using the children of ε to partition).

r0n(102) = nrn−1(102) (because the first position is reversibly deletable for

the prefix p = 0).

r1n(102) = r10n (102)+r12n (102)+r21n (102) (using the children of 1 to partition).
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Table 2: Success rate of enumeration scheme algorithm

Type gap wt. w depth d ((w,d)-D classes)/(Trivial classes)
[1] 1 1 2/2 (100%)
[2] 2 2 3/3 (100%)
[3] 3 3 7/7 (100%)
[4] 4 4 13/21 (61.9 %)
[2,2] 2 2 5/5 (100%)
[2,2,2] 2 2 5/5 (100%)
[2,3] 3 3 16/16 (100%)
[3,3] 3 5 40/40 (100%)

r10n (102) = r0n−1(102) (because of the gap pair [〈0, 1〉, 0], the rook in the
first column must be the highest rook and thus cannot be involved in a 102
pattern. Therefore the first column may be deleted.).

r12n (102) =
∑n−1

i=1

∑n
j=i+1 r

(12,ij)
n (102) =

∑n−1
i=1 (n− i)r

(1,i)
n−1(102) (partitioning

based on which particular rook placements can form a 12 prefix and using
the fact that the second position is reversibly deletable for p = 12).

r21n (102) =
∑n−1

i=1

∑n
j=i+1 r

(21,ji)
n (102) =

∑n−1
i=1 (n− i)r

(1,i)
n−1(102) (partitioning

based on which particular rook placements can form a 21 prefix and using
the fact that the first position is reversibly deletable for p = 21).
Thus

rn(102) = nrn−1(102) + 2

n−1∑
i=1

(n− i)r
(1,i)
n−1(102).

Similarly, the recurrence encoded by the scheme can be used to compute
rn,k(102) for any 0 ≤ k ≤ n using these same mechanisms which are tedious
on paper, but easily done by computer.

3.5. Success rate

Table 2 contains the success rate of our enumeration scheme algorithm mea-
sured by trivial equivalence classes for which there exist a pattern set with a
finite scheme. The output of the scheme program for each of these cases as
well as the original enumeration scheme algorithm code can be found on the
second author’s website at http://faculty.valpo.edu/lpudwell/maple.html.

This 100% success rate with patterns of length at most three is not sur-
prising since enumeration schemes have 100% effectiveness with permutation
patterns of length at most three. Of the eight symmetry classes of length
four patterns that failed, six are classes of permutation patterns for which
there is no scheme and two are classes of rook patterns with zeros. The two

http://faculty.valpo.edu/lpudwell/maple.html
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non-permutation pattern classes with no scheme are 1320 and 1302. One can

prove that there is no finite scheme for each of these patterns by exhibiting

an infinite chain of prefixes with no reversibly deletable elements. For both

1320 and 1302, such a chain is 1, 12, 231, 3412, 45231, . . . , (2i−2)(2i−1)(2i−
4)(2i− 3) · · · 1, (2i− 1)(2i)(2i− 3)(2i− 2) · · · 12, . . . .

This success with patterns of small length is an effective way to quickly

generate data for a variety of rook pattern classes quickly. Beyond confirming

the results in Table 1, Table 3 gives a summary of the sequences obtained

from avoiding sets of patterns of length two and three. Each result in this

table has a corresponding enumeration scheme that can be used to verify

the given formula; of course, alternate combinatorial arguments also exist.

Far more of the sequences from pattern sets of type [3,3] and [4] are new

to OEIS; data for these pattern sets are available at the second author’s

website.

Because of the fact that |Rn| >> n!, brute force computation is quite in-

tensive. By brute force techniques, it takes several minutes to sort through

the 130922 rook placements on a 7 × 7 board and consider whether each

contains a given forbidden pattern. There are nearly 26 times as many el-

ements as there are permutations of length 7. Thus, computing data even

for n ≤ 10 is nontrivial. Enumeration schemes allow for this improved gen-

eration of data. Often, for small patterns, the initial data computed by an

enumeration scheme leads to natural conjectures for a general formula that

can then be proved by hand.

4. Two-dimensional avoidance

After exhaustively considering one-dimensional rook patterns of small length,

it is time to briefly consider a two-dimensional type of rook pattern analo-

gous to bivincular permutation patterns.

As before, a rook placement can be represented as a finite sequence

π1 · · ·πn where πi ∈ {0, 1, . . . , n} and if πi = πj > 0 then i = j. Before, the

positions where πi = 0 were important; however only the relative order of

nonzero digits was important, rather than their actual values. For example,

in one-dimensional representation 10 and 20 are equivalent as patterns; both

denote a single element followed by a 0. However, in drawing these two

patterns as rook placements, they appear distinct. 10 denotes a 2× 2 board

where the sole rook is in the bottom left cell, while 20 denotes a 2× 2 board

where the sole rook is in the upper left cell. Two-dimensional rook patterns

capture this distinction.



494 Daniel Daly and Lara Pudwell

Table 3: Enumeration scheme sequences from avoiding a set of patterns

Patterns Q rn(Q) OEIS Formula

12,21 2, 5, 10, 17, 26, . . . A002522 n2 + 1
00,12 2, 5, 10, 17, 26, . . . A002522 n2 + 1
01,12 2, 4, 8, 16, 32, . . . A000079 2n

01,10 2, 3, 7, 25, 121, . . . A038507 n! + 1
00,01 2, 4, 12, 48, 240, . . . A052849 2n!

00,12,21 2, 4, 0, 0, 0, . . . A000004 0 (for n ≥ 3)
01,10,12 2, 2, 2, 2, 2, . . . A007395 2
01,12,21 2, 3, 4, 5, 6, . . . A000027 n+ 1
00,01,12 2, 3, 4, 5, 6, . . . A000027 n+ 1
00,01,10 2, 2, 6, 24, 120, . . . A000142 n! (for n ≥ 2)

01,120 2, 5, 13, 39, 151, . . . A127986 n! + 2n − 1
01,100 2, 5, 13, 49, 241, . . . A052898 2n! + 1 (for n ≥ 2)

01,123 2, 5, 15, 51, 188, . . . A007317
∑n

i=0

(
n
i

)(
2i
i

)
/(i+ 1)

01,132 equiv. to 01,123
01,213 equiv. to 01,123
01,000 2, 5, 15, 60, 300, . . . new 5

2n!

12,010 2, 6, 17, 44, 107, . . . new (n+ 1)2n − n2n

2 − n
12,201 equiv. to 12,010
12,001 equiv. to 12,010
12,021 equiv. to 12,010

12,000 2, 6, 19, 53, 126, . . . A000537+
(

n(n−1)
2

)2

+ n2 + 1

A002522
12,321 equiv. to 12,000
00,102 2, 6, 21, 88, 440, . . . new n!+∑n

i=1(n(i− 1)!(n− i)!)
00,012 2, 6, 21, 88, 445, . . . A033540 a(n+ 1) = n(a(n) + 1)

00,123 2, 6, 23, 94, 392, . . . A037965+ n! + n
(
2n−2
n−1

)
A000142

00,132 equiv. to 00,123

Definition 2. Consider rook pattern ρ ∈ Rm as a placement of rooks on

a m × m board. Rook placement π ∈ Rn is said to contain ρ as a two-

dimensional pattern if there exist m rows and m columns of π whose inter-
section forms ρ. Otherwise, π avoids ρ.

Let r∗n,k(Q) be the number of rook placements on an n × n board with

exactly k rooks that avoid all patterns in Q in the two-dimensional sense,
and let r∗n(Q) =

∑n
k=0 r

∗
n,k(Q). It is evident that r∗n,k(Q) = rn,k(Q) if Q is

the all zeros pattern or if Q consists only of permutations. However, patterns
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with some zero and some nonzero elements present a new challenge.

Brute force enumeration is certainly possible. One initial result: The

number of rook elements avoiding 10 in the two-dimensional sense gives
OEIS sequence A093345, which is also the number of {21, 12}-avoiding
signed permutations in the hyperoctahedral group Bn (see Section 2.3), as

studied by Mansour and West in [10]. Avoiding {21, 12} means that all
unbarred numbers are in increasing order, and there is no smaller barred

number followed by an unbarred larger number.

These sequences are the same by the following bijection from 10-avoiding

rook monoid elements to {21, 12}-avoiding signed permutations.

Draw the rook monoid element as a rook placement on an n× n board.

For each of the rooks, write the corresponding height with a bar over it.

Fill in the empty columns with the remaining integers from {1, . . . , n} in

increasing order. For example, 00 �→ 12, 12 �→ 12, 21 �→ 21, 20 �→ 21,
02 �→ 12, and 01 �→ 21.

All unbarred elements are in increasing order by construction. Further,

avoiding 10 means no barred digit is followed by a larger unbarred digit, so

this map sets each 10-avoiding rook monoid element to a {21, 12}-avoiding
signed permutation. The process is easily reversible: given a signed permu-

tation, replace all unbarred numbers with zeros, and simply erase the bars

from the barred elements.

Enumeration for two-dimensional patterns of length greater than two

remains open and thus far has proved quite challenging.
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