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An edge-weighted hook formula for labelled trees
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A number of hook formulas and hook summation formulas have
previously appeared, involving various classes of trees. One of these
classes of trees is rooted trees with labelled vertices, in which the
labels increase along every chain from the root vertex to a leaf.
In this paper we give a new hook summation formula for these
(unordered increasing) trees, by introducing a new set of indeter-
minates indexed by pairs of vertices, that we call edge weights. This
new result generalizes a previous result by Féray and Goulden, that
arose in the context of representations of the symmetric group via
the study of Kerov’s character polynomials. Our proof is by means
of a combinatorial bijection that is a generalization of the Prüfer
code for labelled trees.

Keywords and phrases: Hook formula, tree enumeration, combinato-
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1. Introduction

1.1. Background

The classical hook formula of Frame, Robinson and Thrall [5, Theorem 1]
gives the simple ratio

χλ(Id|λ|) =
|λ|!∏

�∈λ h(�)

for the dimension χλ(Id|λ|) of the irreducible representation of the symmetric
group associated with the Young diagram λ. Here |λ| is the number of boxes
in the diagram and h(�) is the size of the hook attached to the box �. This
result is equivalent to an enumerative result, since it is also the number of
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labellings of the boxes of λ with the elements of N|λ| = {1, . . . , |λ|} (once

each) so that the labels increase along each row, and down each column.

Many results that look similar have appeared since, and are commonly

referred to as hook formulas. A number of these involve various classes of

trees. Let us fix some terminology. A (unordered) tree is an acyclic con-

nected graph. The vertex-set (or label-set) of a tree T is denoted by V (T ).

Rooted means that we distinguish a vertex; then each edge can be oriented

towards the root and we call the head and tail of the edge father and son,

respectively. We denote the father of a vertex v in a rooted tree T by fT (v),

and set fT (v) = 0 when v is the root vertex. Then the rooted tree T is

completely defined by giving fT (v) for all vertices v (in particular, unless

specified differently, sons of a given vertex are not ordered). The descendants

of a vertex are defined recursively as the sons and the descendants of the

sons. If u is a descendant of v, then we say that v is an ancestor of u. The

hook attached to the vertex v in the tree T , denoted by hT (v), is the set

consisting of v and its descendants; the size of the hook hT (v) is denoted by

hT (v). An increasing labelling of a rooted tree is a labelling of the vertices

with distinct integers, so that the label of a son is always bigger than the

label of its father; thus the root always gets the minimum label, and the

labels increase along each branch from the root. An increasing tree is an

increasing labelling of the rooted tree.

It is well-known that the number of ordered1 increasing labellings of a

given rooted tree is given by a formula that looks like Frame-Robinson-Thrall

formula. Namely, D. Knuth [6, §5.1.4 Exer. 20] proved that the number L(T )

of ordered increasing labellings of a rooted tree T with vertex-set N|T | is given
by

(1) L(T ) =
|T |!∏

v∈T hT (v)
,

where |T | is the number of vertices of T .

Another type of hook formula is a hook summation formula. For example,

let Br denote the set of rooted binary trees with r vertices (as usual for

binary trees, sons of a given vertex are ordered). There is a well-known one-

to-one correspondence between increasing binary trees with vertex-set Nr,

and permutations of size r (see e.g. [7, p. 23–25]). Combining this with the

1Here, ordered means that labellings
1

2 3 and
1

3 2 must be counted as

different labellings.
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rooted tree hook result (1), and dividing by r!, yields the summation formula

(2)
∑
T∈Br

∏
v∈T

1

hT (v)
= 1.

More details on these hook formulas and some related works can be
found in [4]. In this article, two of us gave a hook summation formula that
involved unordered increasing trees, which means that the sons of a vertex
are not ordered. For our summation formula, we use the following notation
for falling factorials: (a)m = a(a − 1) · · · (a − m + 1) for positive integers
m, with (a)0 = 1, and (a)m = 1/(a − m)−m for negative integers m. Let
r ≥ 1 be an integer and x1, . . . , xr be formal variables. Let Ur denote the
set of unordered increasing trees with vertex-set Nr, and for T ∈ Ur, define
a weight wt(T ) by

wt(T ) =

r∏
v=2

xfT (v)

(( ∑
u∈hT (v)

xu

)
− hT (v) + 1

)
.

Then our hook summation formula [4] was given by

(3)
∑
T∈Ur

wt(T ) = x1 · · ·xr(x1 + · · ·+ xr − 1)r−2.

Three proofs of this result were presented in [4]. One of these involved
Kerov’s character polynomials (see, e.g., [1]), and thus gives a connection
to the representation theory of the symmetric group, that does not seem
related to the Frame-Robinson-Thrall formula.

We also proved that (3) specializes to a classical enumerative formula
for Cayley trees. A Cayley tree is a tree with labelled vertices (so they are
distinguishable) – these are not embedded in the plane, and there is no root
vertex. Let Cr denote the set of Cayley trees with vertex-set Nr. Borchardt [2]
and Cayley [3] proved that, for r ≥ 1,

(4)
∑
T∈Cr

x
dT (1)
1 · · ·xdT (r)

r = x1 · · ·xr(x1 + · · ·+ xr)
r−2,

where dT (i) denotes the degree of the vertex i in the tree T . We proved in [4]
that (3) specializes to (4) in the case x1, . . . , xr → ∞, that is for the highest
degree terms in the xi. On the right-hand sides, this is straightforward, so the
work here is on the left-hand sides, for which we constructed a combinatorial
mapping between the sets Ur and Cr.
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1.2. The main result

In this paper, we prove a new hook summation formula for unordered in-
creasing trees. This formula is given in the following Theorem, which is our
main result. This generalizes (3) by introducing a set of doubly indexed
indeterminates that we will refer to as edge weights.

Theorem 1.1. Let r ≥ 2 be an integer and xi, i = 1, . . . , r, yi,j, 2 ≤ i ≤
j ≤ r be formal variables. For an unordered increasing tree T with vertex-set
Nr, define the weight to be

wty(T ) =

r∏
v=2

(
xfT (v)

∑
u∈hT (v)

yv,u

)
.

Then

(5)
∑
T∈Ur

wty(T ) = x1yr,r

r−1∏
i=2

(
i∑

j=1

xjyi,i +

r∑
j=i+1

xiyi,j

)
.

Note that Theorem 1.1 specializes to (3) immediately, by the following
substitution: yv,u = xu − 1 for v < u, and yu,u = xu.

Our proof of Theorem 1.1 is by a combinatorial bijection. This involves
a number of stages, and in our description, it will be convenient to identify
the left-hand and right-hand sides of (5) separately, as
(6)

L(x, y) =
∑
T∈Ur

wty(T ), R(x, y) = x1yr,r

r−1∏
i=2

(
i∑

j=1

xjyi,i +

r∑
j=i+1

xiyi,j

)
.

Of course, in these terms, our main result is equivalent to

(7) L(x, y) = R(x, y).

1.3. Outline of paper

In the remainder of this paper we give a combinatorial proof of our main
result. This is carried out by defining a combinatorial mapping in Section 2
that we describe in terms of an operation on unordered increasing trees
called splice. Then in Section 3 we prove a number of properties of our
splice operation, enabling us to prove that the combinatorial mapping is a
bijection. This directly proves (7), and hence Theorem 1.1.
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There is one intriguing aspect of our main result that we have been
unable to resolve. Note that our proof of the main result in this paper is
based on a bijection for Ur, the set of unordered increasing trees. However, if
we evaluate the right-hand side of (5) at xi = 1 for all i, and yi,j = 1 for all
i, j, then we obtain rr−2. But as we have noted above, |Cr| = rr−2 ([2], [3]),
which suggests that there should be a combinatorial proof of the main result
based on a bijection for Cr, the set of Cayley trees. We have been unable to
find such a proof, and suggest it as a problem for others to resolve.

2. A combinatorial mapping

2.1. Dominating functions

For a set S of positive integers, let Π(S) denote the set of partitions of S
into an unordered set of nonempty subsets. The subsets are called the blocks
of the partition, and we denote the number of blocks of a partition π by |π|.
If π has blocks π1, . . . , πk, then we let μi = max πi, for i = 1, . . . , k, and we
index the blocks so that μ1 < · · · < μk.

For two sets S and S ′ of positive integers, the function g : S → S ′ is
called dominating if g(i) ≥ i for all i ∈ S. For such a function g, we denote

wtg =
∏
i∈S

yi,g(i).

We say that a dominating function g : S → S (i.e., with S ′ = S) is “on
S”. Consider the functional digraph of a dominating function g on S: the
vertices are the elements of S, and the directed edges are given by (i, g(i)),
i ∈ S. The vertex-sets of the connected components (ignoring the directions
on edges) form a partition π ∈ Π(S), and we say that g has induced partition
π. Let D(π) denote the set of all dominating functions on S with induced
partition π, and let

D(π) =
∑

g∈D(π)

wtg =
∑

g∈D(π)

∏
i∈S

yi,g(i).

For π ∈ Π(S), let E(π) denote the set of unordered increasing trees T on
vertex-set S such that every block of π is a subchain of T . In other words,
for every pair of elements i < j in the same block of π, i is an ancestor of j
in T . For any unordered increasing tree T , let

(8) κ(T ) =
∏

i∈V (T )

x
σi(T )
i ,
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where σi(T ) denotes the number of sons of vertex i in T .
Now we consider a restricted class of set partitions. If S is a set of positive

integers containing 1, then Π1(S) is the set of partitions of S in which {1} is
a block. In this case, necessarily π1 = {1}, and μ1 = 1. For such a partition
π ∈ Π1(S), let

C(π) = Nμ2
×· · ·×Nμ|π|−1

= {(c2, . . . , c|π|−1) : 1 ≤ ci ≤ μi, i = 2, . . . , |π|−1},

(if |π| = 2, the set C(π) contains one element: the empty list). For c ∈ C(π),
let

(9) ω(c, π) =
xc2 · · ·xc|π|−1

xμ2
· · ·xμ|π|

∏
i∈S

xi.

There is a close connection between dominating functions and the ex-
pressions L(x, y), R(x, y) defined in (6), given in the following result.

Proposition 2.1. For any integer r ≥ 2, one has:

(a) y1,1 · L(x, y) =
∑

π∈Π1(Nr)

D(π)
∑

T∈E(π)
κ(T ),

(b) y1,1 ·R(x, y) =
∑

π∈Π1(Nr)

D(π)
∑

c∈C(π)
ω(c, π).

Proof. (a) For this equation, by definition,

L(x, y) =
∑
T∈Ur

wty(T ).

But wty(T ) = κ(T )
∑

g wtg, where the sum runs over functions g from
{2, . . . , r} to {2, . . . , r} such that, for each u, its image g(u) lies in hT (u)
(as T is an increasing tree, such functions are automatically dominating).
We can extend such functions g to g : Nr → Nr by setting g(1) = 1. Note
that wtg = y1,1wtg. The conditions g(1) = 1 and g(u) ∈ hT (u) for u ≥ 2 are
equivalent to π ∈ Π1(Nr) and T ∈ E(π), where π is the partition induced by
g. Therefore

y1,1L(x, y) =
∑
T∈Ur

κ(T )

⎛
⎜⎝ ∑

π∈Π1(S)

s.t. T∈E(π)

∑
g∈D(π)

wtg

⎞
⎟⎠

=
∑

π∈Π1(S)
D(π)

∑
T∈E(π)

κ(T ),

giving part (a) of the result.
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(b) For this equation, note that R(x, y) can be rewritten as

R(x, y) = x1x2 · · ·xr−1yr,r

r−1∏
i=2

⎛
⎝yi,i

x1 + · · ·+ xi
xi

+

r∑
j=i+1

yi,j

⎞
⎠ .

Expanding the product in terms of dominating functions, we get

R(x, y) = x1x2 · · ·xr−1yr,r
∑

g:{2,...,r−1}→{2,...,r}
g dominating

⎛
⎝wtg

∏
i : g(i)=i

x1 + · · ·+ xi
xi

⎞
⎠ .

As above, we can extend g to g : Nr → Nr by setting g(1) = 1 and g(r) = r.
Then wtg = y1,1yr,r wtg. Now let π denote the partition induced by g. An
important remark is that the integers i �= 1, r such that g(i) = g(i) = i are
exactly the maxima of the blocks of π except for 1 and r, which are given
by μ2, . . . , μ|π|−1. Note also that μ|π| = r. Hence

∏
i : g(i)=i

x1 + · · ·+ xi
xi

=
1

xμ2
· · ·xμ|π|−1

∑
c∈C(π)

xc2 · · ·xc|π|−1
,

and so we obtain

x1x2 · · ·xr−1

∏
i : g(i)=i

x1 + · · ·+ xi
xi

=
∑

c∈C(π)
ω(c, π).

Thus R(x, y) is given by

y1,1R(x, y) =
∑

g:Nr→Nr
g(1)=1,g(r)=r
g dominating

wtg
∑

c∈C(π)
ω(c, π).

Note that g dominating implies g(r) = r while the condition g(1) = 1 means
that the induced partition π is in Π1(Nr). Hence, splitting the sum depending
on the induced partition of g, we obtain part (b) of the result.

Comparing Proposition 2.1 with (7), we see that Theorem 1.1 is implied
by a bijection

(10) ψπ : C(π) → E(π) : c �→ T,

with the weight-preserving property that κ(T ) = ω(c, π), for each π ∈
Π1(Nr). We will find such a bijection ψπ.
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Figure 1: The v-decomposition of a tree S (with v = 14).

2.2. An operation on rooted trees

A convenient construct for an unordered increasing tree T with vertex v is
the v-decomposition of T , described as follows.

Definition 2.2. Let T1 be an unordered increasing tree with root vertex a1,
and let v be any vertex in T (v can be equal to a1). Suppose that the unique
maximal chain from a1 to v is given by a1 < a2 < · · · < ak = v, k ≥ 1. Now
remove the edges on the chain in T from a1 to ak. There are k components
in the resulting graph, each of which is an unordered increasing tree, whose
root vertex is on the chain from a1 to ak. Let T

(ai) be the component among
these that is rooted at vertex ai, i = 1, . . . , k. Then the v-decomposition of
T is the ordered list T (a1), . . . , T (ak).

An example of v-decomposition of a tree T is given in Figure 1.
The bijection ψπ will be constructed as the iteration of an elementary

combinatorial operation on marked trees called splice, that we define next,
in terms of v-decompositions.

Definition 2.3. Suppose that T1 and T2 are two unordered increasing trees
with disjoint vertex-sets, and let v1, v2 be vertices in T1, T2 respectively, with

v1 > v2. Let the v1-decomposition of T1 be T
(a1)
1 , . . . , T

(ak)
1 , and the v2-

decomposition of T2 be T
(b1)
2 , . . . , T

(bm)
2 . Then, since ak = v1 > v2 = bm,

we have

b1 < · · · < bβ1
< a1 < · · · < aα1

< bβ1+1 < · · · < bβ2
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Figure 2: The splice of two trees (S is given in Figure 1; splicing vertices
are underlined).

< aα1+1 < · · · < aα2
< · · · < bβ�−1+1 < · · · < bβ�

< aα�−1+1 < · · · < aα�
,

for some unique 	 ≥ 1 and 1 ≤ α1 < · · · < α� = k, 0 ≤ β1 < · · · < β� = m.
Then define the splice of T1 and T2, with splicing vertices v1 and v2,

denoted by

(11) R = splice(T1, v1;T2, v2),

to be the unordered increasing tree with v1-decomposition given by

T
(b1)
2 , . . . , T

(bβ1 )
2 , T

(a1)
1 , . . . , T

(aα1 )
1 , . . . , T

(bβ�−1+1)

2 , . . . , T
(bβ�

)
2 ,(12)

T
(aα�−1+1)

1 , . . . , T
(aα�

)
1 .

An example of the splice operation is given in Figure 2.
Note in the construction of R above that the vertex-set of R is the

(disjoint) union of the vertex-sets of T1 and T2. Also, if β1 ≥ 1, equivalent
to b1 < a1, then the root vertex of R is b1, the same as the root vertex of
T2. However, if β1 = 0, equivalent to a1 < b1, then the root vertex of R is
a1, the same as the root vertex of T1.

In the following result we record some simple but important properties
of the splice operation.
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Lemma 2.4. Suppose that R = splice(T1, v1;T2, v2).

(a) For 	 = 1, 2, and any pair of vertices i and j in T�, then i is an ancestor
of j in T� if and only if i is an ancestor of j in R. Consequently, given
the sets V (T1) and V (T2), one can recover T1 and T2 from R.

(b) For all vertices i in T1, we have σi(R) = σi(T1). For the vertex v2 in
T2, we have σv2

(R) = σv2
(T2)+1, but for all other vertices i in T2, we

have σi(R) = σi(T2).

Proof. (a) For 	 = 1, consider the v1-decomposition of T1: T
(a1)
1 , . . . , T

(ak)
1 .

Let I and J denote the indices such that i ∈ T
(aI)
1 and j ∈ T

(aJ)
1 .

• If I = J then i is an ancestor of j in T1 if and only if i is an ancestor

of j in T
(aI)
1 . The same is true in R.

• If I �= J , then i is an ancestor of j in T1 if and only if I < J and
i = aI . The same is true in R.

In both cases, we see that i is an ancestor of j in T1 if and only if i is an
ancestor of j in R. This ends the proof of part (a) for 	 = 1. The case 	 = 2
is similar.

(b) This is immediate.

2.3. A candidate for our bijection

In this section we describe a mapping ψπ that we claim is a suitable bijection
for (10). To describe ψπ, consider a set partition π ∈ Π1(Nr) with |π| = k,
so π has blocks π1 = {1}, . . . , πk, and 1 = μ1 < · · · < μk where μi is
the largest element of πi, for i = 1, . . . , k. Recall that r ≥ 2 (and hence
k ≥ 2). Consider also a (k− 2)-tuple c = (c2, . . . , ck−1) ∈ C(π). We apply an
iterative procedure in which we have a forest of unordered increasing trees
on vertex-set Nr at every stage, and we apply splice to reduce the number
of components by one between successive stages.

Construction 2.5. Initially, at Stage 1, we have the forest with components
τ1, . . ., τk, where τ� is the increasing chain whose vertices are the elements of
the set π�, 	 = 1, . . . , k (so τ1 consists of the single vertex 1). At every stage
we also keep track of an integer ν in [r], with ν = 1 initially. Then, at Stage
i, for i = 2, . . . , k− 1, we input a forest with components τ1, τi, τi+1, . . . , τk,
together with an integer ν, and create the following output: Iwahori-Heckesp

Case 1. If ci is a vertex in τ1 or τi, then set τ1 = splice(τi, μi; τ1, ν), omit
τi, and set ν = ci;
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Case 2. If ci is a vertex in τj for some j > i, then set τj =splice(τi, μi; τj , ci),

and omit τi.

After completion of the above procedure, we are left with a pair of increasing

rooted trees τ1 and τk, and an integer ν. Then finally, at Stage k, we let

(13) ψπ(c) = T, where T = splice(τk, μk; τ1, ν).

Remark. During the construction, ν is always a vertex of τ1 and moreover

ν ≤ μi after Stage i. Hence the splice splice(τi, μi; τ1, ν) is well-defined in

Case 1. Similarly, since ci ≤ μi, the splice in Case 2 is well-defined (we

cannot have ci = μi in Case 2, as this would imply that ci is a vertex of τi).

An example of the mapping ψπ is given in Figure 3 where r = 9 and

k = 4. At Stage 2, we applied Case 1 because c2 = 4 was a vertex of τ2,

while, at Stage 3, we applied Case 2 because c3 = 5 was a vertex of τ4. At

each stage, the value of ν is recorded by an edge on τ1 without child.

Proposition 2.6. Given r ≥ 2, a set partition π ∈ Π1(Nr), and c ∈ C(π),
suppose that ψπ(c) = T is constructed as in (13) above. Then

T ∈ E(π), and κ(T ) = ω(c, π).

Proof. By construction, it is clear that T is a tree with vertex-set Nr. We

have to check that it is indeed in E(π). Initially, in the iterative procedure

for ψπ, we have components τi, the chain consisting of the elements of the

block πi of π, i = 1, . . . , k. The rooted tree T is constructed by applying the

splice operation k− 1 times, to join the initial components together in some

order. The fact that T ∈ E(π) now follows immediately from Lemma 2.4(a).

Also, initially, we have

κ(τ1) · · ·κ(τk) =
1

xμ2
· · ·xμk

r∏
i=2

xi.

But for the terminating tree T , from Lemma 2.4(b), we have

κ(T ) = x1xc2 · · ·xck−1
κ(τ1) · · ·κ(τk),

and the fact that κ(T ) = ω(c, π) now follows immediately from (9) (in this

case we have S = Nr).
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Figure 3: Applying ψπ to c = (4, 5), when π has blocks π1 = {1}, π2 =
{3, 4, 6}, π3 = {2, 7, 8}, π4 = {5, 9}.

Comparing Proposition 2.6 with (10), we see that the mapping ψπ above
is indeed a candidate for a bijective proof of our main result.

Theorem 2.7. For each r ≥ 2 and π ∈ Π1(Nr), the mapping

ψπ : C(π) → E(π)

is a bijection.

We will prove Theorem 2.7 in the next Section, by determining the
inverse of ψπ. In our development, we will find it convenient to use terms
that distinguish between the different ways in which “splice” is applied in
Construction 2.5 – a splice that arises in Case 1 or in (13) (the final stage)
is called an internal splice, whereas one that arises in Case 2 is called an
external splice.
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3. Inverting the combinatorial mapping and a bijective proof
of the main result

The goal of this section is to construct the inverse of ψπ in order to show that
it is a bijection. Throughout this Section, π is a fixed partition in Π1(Nr).
As in the previous Section, the blocks of π are denoted by π1, π2, . . . , πk,
and the maximum elements in these blocks are denoted by μ1, μ2, . . . , μk.
We assume as before that μ1 < μ2 < · · · < μk. When it is convenient, we
will also use the notation πx for the block of π containing the element x.
This should not be confused with πi, which denotes the i-th part of π.

Consider a set S that is a union of blocks of π (we shall say that S is π-
compatible). In other words, S = ∪i∈Iπi, for some index set I. We denote by
π|S the partition {πi, i ∈ I} of S. A tree T ∈ E(π|S) for some π-compatible
S is said to be π-increasing.

3.1. Dependence graphs and irreducibility

We begin by defining a directed graph associated with the v-decomposition
of an unordered increasing tree.

Definition 3.1. Consider a π-increasing tree T , with (π-compatible) vertex-
set S = ∪i∈Iπi. For a vertex v in T , suppose that the v-decomposition of T
is given by

T (a1), . . . , T (a�),

where a� = v. Then the v-dependence graph of T , denoted by Gv(T ), is a
directed graph with the following vertices and directed edges:

• the vertex-set of Gv(T ) is {πi, i ∈ I};
• for the directed edges of Gv(T ), consider, if any, a maximum element
μi, i ∈ I, which is not contained in the chain a1, . . . , a� of T . This
vertex belongs (as a nonroot vertex) to T (aj) for some j = 1, . . . , 	.
Then there is a directed edge from πi to πaj , for each such i ∈ I.

For example, fix

π =
{
{1}, {3, 4, 6}, {2, 7, 8}, {5, 9}

}
,

as in Figure 3. Then G9(T ), the 9-dependence graph of the tree T , obtained
in the final stage of Figure 3, is drawn in Figure 4.

Note that the graph Gv(T ) defined above depends strongly on the parti-
tion π, but since π is fixed throughout the section, we have omitted it from
the notation.
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Figure 4: Example of the v-dependence graph of a tree.

In the remainder of this paper, we will particularly consider v-dependence
graphs for the case in which v is the vertex of maximum label. This motivates
the following definition.

Definition 3.2. A π-increasing tree T with maximum vertex v is called
irreducible if Gv(T ) is connected. Otherwise, T is called reducible.

Remark. As we shall see later (Proposition 3.6), any π-increasing tree with
vertex set [r] is reducible. Therefore, the notion of irreducibility is interesting
only for trees with smaller vertex sets.

We now determine the form of Gv(T ) when v is the maximum vertex of
an irreducible tree T .

Lemma 3.3. If a π-increasing tree T with maximum vertex v is irreducible,
then the v-dependency graph Gv(T ) is an indirected tree rooted at πv (i.e.
all edges are directed towards the root).

Proof. Let the v-decomposition of T be given by T (a1), . . . , T (a�), where a� =
v, so v appears as the root vertex in T (a�). Then v, which is the maximum
element in the block πv, cannot appear as a nonroot vertex in any tree of the
v-decomposition, and πv has outdegree 0 in Gv(T ). But every other vertex
has outdegree at most 1, and since Gv(T ) is connected, it can only be a
tree in which every other vertex has outdegree exactly 1 (in a connected
graph, the number of vertices minus the number of edges is at most 1, and
a difference of 1 occurs only for trees).

We now consider the effect on irreducibility of applying the splice oper-
ation.

Lemma 3.4. Suppose that T1 and T2 are π-increasing trees with disjoint
vertex-sets, and that T1 is irreducible. For i = 1, 2, let mi denote the maxi-
mum element in the vertex-set of Ti. Let v2 be a vertex in T2 with v2 < m1,
and let

T = splice
(
T1,m1;T2, v2

)
.
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(a) If m1 > m2, then T is reducible. More precisely,

(14) Gm1
(T ) = Gm1

(T1) 
Gv2
(T2).

(b) If m1 < m2 and T2 is irreducible, then T is irreducible.

Proof. (a) From (12), the trees in the m1-decomposition of T are either
trees in the m1-decomposition of T1 or trees in the v2-decomposition of T2.

Then equality (14) follows from Definition 3.1. In particular, Gm1
(T ) is not

connected, and since m1 is the maximum vertex in T , we conclude that T

is reducible.

(b) Suppose that the m1-decomposition of T1 is T
(a1)
1 , . . . , T

(a�)
1 , and the v2-

decomposition of T2 is T
(b1)
2 , . . . , T

(bn)
2 . We have a� = m1, and since m1 is the

maximum vertex in T1, then T
(a�)
1 consists of the single root vertex a�. Now

T2 is an increasing tree, so we have b1 < · · · < bn = v2. Also, by hypothesis
we have v2 < m1 < m2, and we conclude that m2 is not contained in the

chain b1, . . . , bn, which means that m2 appears as a nonroot vertex in T
(bu)
2

for some 1 ≤ u ≤ n. In particular, if aw > bu, then aw and m2 are in different

branches below bu in the tree T , and T
(aw)
1 is entirely included in the tree

rooted at bu in the m2-decomposition of T .

Now the vertices of Gm2
(T ) consist of the vertices of Gm1

(T1) together
with the vertices of Gm2

(T2).

To describe the edges of Gm2
(T ), we shall first consider the m2-decom-

position of T . It is obtained as follows:

• start with the m2-decomposition of T2;

• for each aw < bu, add the tree T
(aw)
1 . Indeed, the vertex aw is in the

chain from the root to m2 in T , and the tree rooted at aw in the

m2-decomposition of T is the same as in the v1-decomposition of T1;

• for each aw > bu, add all vertices of T
(aw)
1 to the tree rooted at bu.

Indeed, aw and m2 are in different branches below bu in the tree T

(because m2 is in T
(bu)
2 ). Hence, T

(aw)
1 is entirely included in the tree

rooted at bu in the m2-decomposition of T .

This is illustrated in Figure 5. In this Figure, the m1-decomposition of T

(which is by definition the union of the m1-decomposition of T1 and the

v2-decomposition of T2) is represented with blue and red dashed lines. The
m2-decomposition of T is drawn with plain black lines. Finally, we have used

green dotted lines for the m2-decomposition of T2 (it should be understood

that the tree rooted at bu in this decomposition contains only the vertices
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Figure 5: Illustration of the proof of Lemma 3.4.

of T2 in the corresponding green dotted shape and of course no vertices of
T1).

From this, we can describe the edges of Gm2
(T ):

• start with the edges of Gm1
(T1) together with the edges of Gm2

(T2);

• for any maximum element μi �= m1 that appears as a vertex in T
(aw)
1

for any aw > bu, remove the edge from πi to πaw that appears in
Gm1

(T1), and insert an edge from πi to πbu ;
• finally, insert an edge from πm1 to πbu .

Recall that Gm1
(T1) and Gm2

(T2) are both connected by hypothesis, and
we want to show that Gm2

(T ) is connected. To do this, we will show that
each vertex is in the connected component of πbu . For vertices in Gm2

(T2),
this is obvious as Gm2

(T ) contains all edges of Gm2
(T2). From Lemma 3.3,

Gm1
(T1) is a directed tree of root πm1 . Then, for any vertex v in Gm1

(T1)
either the path from v to m1 is also in Gm2

(T ) and then the edge from πm1

to πbu proves that v and πbu are in the same connected component, or this
path is broken because one of its edge has been replaced by an edge to πbu .
In this case, the same conclusion that v and πbu are in the same connected
component holds. Thus Gm2

(T ) is connected, and since m2 > m1, m2 is the
maximum vertex in T , so we conclude that T is irreducible.

Example. We give illustrations of Lemma 3.4 in both cases (a) and (b):
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Figure 6: Splicing irreducible trees together with m1 < m2 yields a new
irreducible tree.

Figure 7: The 11-decomposition of the tree T from Figure 6.

(a) Call T1 and T2 the trees τ4 and τ1 respectively of Stage 3 from Figure 3.
Then m1 = 9 and we choose v2 = 4. The graph G9(T1) has vertices {π3, π4}
and an edge from π3 to π4, while G4(T2) has vertices {π1, π2} and an edge
from π2 to itself. Then T = splice(T1,m1;T2, v2) is given in Stage 4 of
Figure 3 and its dependence graph G9(T ), drawn in Figure 4, is indeed the
disjoint union of G9(T1) and G4(T2).
(b) Set π = {{1}, {3, 6}, {2, 7}, {9}, {4, 8, 10}, {5, 11}} Consider the trees T1

and T2 from Figure 6 and choose v2 = 5. The tree T = splice(T1, 10;T2, 5) is
also drawn in Figure 6. The corresponding dependence graphs are also given,
showing that T is indeed irreducible. Note that, as explained in our proof,
G11(T ) differs from the disjoint union of G10(T1) and G11(T2) as follows:
the edge from π4 to π5 in G10(T1) is replaced in G11(T ) by an edge from π4
to π6; moreover, a new edge from π5 to π6 has also been added. The graph
G11(T ) is determined using the 11-decomposition of T , given in Figure 7.

The above result allows us now to classify the trees at every stage of
Construction 2.5 by their irreducibility or reducibility.
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Proposition 3.5. In Construction 2.5:

• At Stage 1, the trees τ1, . . . , τk are π-increasing and irreducible.

• For i = 2, . . . , k, in the input to Stage i, the trees τi, . . . , τk are π-

increasing, irreducible, and contain μi, . . . μk, respectively; if τ1 has

been created by applying an internal splice at some previous stage,

then τ1 is π-increasing and reducible.

• The tree ψπ(c) = T is π-increasing and reducible.

Proof. At Stage 1, each tree τi consists of vertices of the single block πi of π,

arranged as an increasing chain, so each τi is π-increasing. Also, since Gμi
(τi)

has only the single vertex πi, it is a connected graph, so τi is irreducible.

This result for Stage 1 serves as the base case for an induction on the

stages, in which the remaining results follow immediately from Lemma 2.4(a)

(for π-increasing), and Lemma 3.4 (part (b) for irreducible, and (a) for

reducible).

In particular, Proposition 3.5 establishes that all trees T created as

images of our combinatorial mapping ψπ are reducible. Thus, in order for

ψπ : C(π) → E(π) to be a bijection for any π ∈ Π1(Nr), when r ≥ 2, it

is necessary that all trees T in E(π) are reducible. We prove that this is

indeed the case in the following result. (note that T belongs to E(π) implies

in particular that T is π-increasing).

Proposition 3.6. Consider a π-increasing tree T whose vertex-set contains

1. We assume that the vertex-set of T is not reduced to {1} and denote its

maximum element by M .

Then π1 and πM are in different connected components of GM (T ). In

particular, then T is reducible.

Proof. Recall that the partition π contains π1 = {1} as a block, with maxi-

mum element μ1 = 1. Now consider a π-increasing tree T containing 1 and

its M -decomposition T (a1), . . . , T (a�), with a� = M (where M is the maxi-

mum vertex of T ). But vertex 1 is the root vertex of every tree T in E(π), so
a1 = 1. Thus μ1 is the root vertex of T (a1), and cannot appear as a nonroot

vertex in any tree of the r-decomposition of T .

This implies that π1 has outdegree 0 in the v-dependence graph Gv(T ).

But πM has also outdegree 0 (see the proof of Lemma 3.3), and other vertices

(if any) have outdegree at most 1. Therefore, π1 and πM are in different

connected components of GM (T ).
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3.2. Irreducibility and inverting the combinatorial mapping

In this section we prove that each application of splice in our combinatorial
mapping ψπ can be uniquely reversed by considering only the irreducibility
or reducibility of the trees involved.

We begin with a simple condition for when a π-increasing tree can be
written as the splice of two subtrees.

Lemma 3.7. Consider a π-increasing tree T , a π-compatible nonempty sub-
set V1 ⊂ V (T ), and a vertex v1 ∈ V1. Then T can be written as

T = splice
(
T1, v1;T2, v2

)
for some π-increasing trees T1 and T2 with vertex-sets V1 and V2 = V (T )\V1

and for some vertex v2 ∈ V2 if and only if

V1 =
⋃
i∈I

πi,

where {πi, i ∈ I} is a union of vertex-sets of connected components of
Gv1

(T ).

In this case, T1, T2 and v2 are unique.

Proof. Given T , v1 and V (T1), we immediately have V2 = V (T ) \ V1. Then
it is clear from Definition 2.3 that v2 is uniquely the first element of V2 on
the chain from v1 to the root vertex of T (note that v2 < v1 since T is an
increasing tree). Moreover, the trees T1 and T2 themselves are then uniquely
determined, since we know their v1-decomposition and v2-decomposition,
respectively.

It only remains to determine conditions for V1. Let the v1-decomposition
of T be given by T (a1), . . . , T (a�), where a� = v1. Then from Definition 2.3,
a necessary and sufficient condition is that V1 (and V2) are unions of the
V (T (aj)), j = 1, . . . , 	. Since, by hypothesis, V1 is a union of blocks of π, this
is equivalent to saying that π is a union of blocks of the partition

Π1 := π ∨
({

V (T (aj)), j = 1, . . . , 	
})

.

It remains to see that this partition is nothing other than

Π2 := {Xc, c connected component of Gv1
(T )}, where Xc =

⋃
πi∈Vc

πi.
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To do this, take two partitions πx and πy which contain elements x and y
in the same set V (T (aj)). We want to prove that πx and πy are in the same
connected components of Gv1

(T ).
Call u the root of T (aj) At least one of these elements, say x, is different

from u. Then by definition, there is an edge from πx to πu inGv1
(T ). If y = u,

there is an edge from πx to πy, and thus they are in the same connected
component of Gv1

(T ). If y �= u, the same argument as above implies that
there is also an edge from πy to πu, and one can also conclude that πx and
πy lie in the same connected component of Gv1

(T ). Hence Π1 is finer than
Π2.

Conversely, suppose that there is an edge from πs to πt in Gv1
(T ). Then

this means that μs is a nonroot vertex in some T (aj), with aj ∈ πt, which
implies that there are elements of both πs and πt in the same subtree T (aj).
Hence, Π2 is finer than Π1.

We conclude that Π1 = Π2, which ends the proof of the Lemma.

In the next result, which is the key to inverting ψπ, we consider a π-
increasing tree in which the vertex-set consists of two or more blocks of π.
For such a tree with vertex-set S and maximum vertex M , we call m =
max(S\πM ) the second maximum vertex.

Lemma 3.8. Suppose that T is a π-increasing tree in which the vertex-set
consists of two or more blocks of π, and let M and m be the maximum and
second maximum vertices, respectively.

(a) If T is reducible, then it can be written uniquely as

T = splice(T1,M ;T2, t),

where T1 and T2 are π-increasing trees subject to:

• M is a vertex in T1, t is a vertex in T2,

• T1 is irreducible.

Moreover, if 1 is a vertex of T , then it automatically belongs to T2.
(b) If T is irreducible, then it can be written uniquely as

T = splice(T1,m;T2, t),

where T1 and T2 are π-increasing trees subject to:

• m is a vertex in T1, t and M are vertices in T2, with t < m,

• T1 and T2 are irreducible.
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Proof. (a) From Lemma 3.7, the vertex-set V1 of T1 must correspond to a
union of connected components of GM (T ). In addition, from Lemma 3.4 (a),
GM (T1) is the graph induced by GM (T ) on V1. Hence, if we want T1 to be
irreducible, that is GM (T1) to be connected, then V1 must correspond to a
single connected component of GM (T ). Moreover, since we require M to be
in T1, it must contain the block πM .

Finally, V1 is uniquely the vertex-set of the connected component of
GM (T ) containing πM (note that t < M for all vertices t in T2, since M is
the maximum vertex in T ). The result follows immediately from Lemma 3.7.

The property that, if 1 is in T , then it is always in T2 comes from
the fact that π1 and πM are in different connected components of GM (T )
(Proposition 3.6) and the characterization of V1 above.

(b) Consider the M− and m-decompositions of T :

T
(a1)
M , . . . , T

(an)
M and T (b1)

m , . . . , T (b�)
m ,

in which a1 = b1 is the root vertex of T , and an = M , b� = m. Now M > m,
so m is not contained in the chain b1 < · · · < b�. Also, T is irreducible, so
Lemma 3.3 with v = M implies that πm has outdegree 1 in GM (T ). But
m is the maximum element in πm, so m is a nonroot vertex in one of the
trees in the M -decomposition of T , and hence M is not contained in the
chain a1 < · · · < an. Thus j ≥ 1 exists so that a1 = b1, . . . , aj = bj and
aj+1 �= bj+1, and j < n, j < 	. Let u = aj = bj . The vertex m lies in the

subtree T
(u)
M , and before T

(u)
M , the M and m-decompositions of T coincide;

see Figure 8 for the general picture and Figures 7 and 9 for a concrete
example, in which M = 11, and m = 10.

We now describe partially the component graph Gm(T ). To help the
reader, an example is given in Figure 9.

The vertex M lies in the subtree T
(u)
m , so there is an edge from πM to

πu in Gm(T ). Now u �= M , and u cannot be the maximum element of any
other block of π, since this would imply that πu has outdegree 0 in GM (T ),
which would contradict Lemma 3.3.

Now consider the maximum element in πu, that we will denote by μu.

Then μu �= u is a descendant of u in T , and cannot be contained in T
(u)
M ,

since that would create a loop in GM (T ), again contradicting Lemma 3.3.

Thus μu is contained in T
(u)
m (as a nonroot vertex), which implies that there

is a loop at πu in Gm(T ).

But clearly πm has outdegree 0 in Gm(T ). Putting this together with the
facts that there is a loop at πu in Gm(T ), and that each vertex has outdegree
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Figure 8: M - and m-decompositions of a tree T (M -decomposition in black
plain lines and m-decomposition in blue dashed lines).

Figure 9: The 10-decomposition and 10-dependence graph of the tree T from
Figure 6.

at most 1, we see that πu and πm are contained in different components of
Gm(T ), so Gm(T ) is not connected. Moreover, the edge from πM to πu in
Gm(T ) implies that πM and πu are in the same component of Gm(T ) (note
that we can have πu = πM ).

Then Lemma 3.7 implies that T can be written uniquely as

T = splice(T1,m;T2, t),

where T1 and T2 are π-increasing trees, m is in T1, t and M are in T2, with
t < m, and T1 is irreducible: this is obtained by letting V (T1) be the vertex-
set of the connected component of Gm(T ) that contains πm, which means
that Gm(T1) is connected. But the elements of πM are contained in V (T2),
so m is the maximum vertex in T1, and so T1 is irreducible.

It remains to prove that T2 is also irreducible. To do this, we look at
the M -decomposition of T2 (since M is the maximum vertex in T2), which
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is obtained from the M -decomposition of T as follows (see the proof of

Lemma 3.4):

• delete the blocks T
(ai)
M , for which ai belongs to T1. Since T

(u)
m is in T2,

this can happen only for i < j, that is for blocks before T
(u)
M in the

decomposition;

• replace the block T
(u)
M by some subblock (T2)

(u)
M still rooted at u.

In particular, if a block X of π is in V (T1) and if there is an edge from

Y to X in GM (T ), then Y is also in T1. This means that, if a vertex X is

deleted when going from GM (T ) to GM (T2), all vertices pointed to it are

also deleted, and recursively. For vertices that are not deleted their outgoing

edge is not modified.

Hence, since GM (T ) is a directed tree (by Lemma 3.3), GM (T2) is also a

directed tree, which implies that T2 is irreducible and ends the proof of the

lemma.

Example. As (a) is quite easy, we only give here an example of (b). Consider

the graph T from Figure 6. Since it is irreducible, it can be written uniquely

as

T = splice(T1,m;T2, t),

with the conditions given in Lemma 3.8 (b). This decomposition is the one

from Figure 6. Note that the parts π2 and π6, which are the ones included in

the vertex-set of T2, correspond to the vertices in the connected component

of π6 in G10(T ) (see Figure 9), as explained in our proof.

We now record a final straightforward fact about π-increasing trees.

Proposition 3.9. Suppose that T is a π-increasing tree in which the vertex-

set consists of a single block of π. Then T is uniquely the increasing chain

consisting of the elements of that block.

Now we are ready to prove Theorem 2.7.

Proof of Theorem 2.7. Suppose r ≥ 2 and π ∈ Π1(Nr), where π has k ≥ 2

blocks, and consider an arbitrary tree T ∈ E(π). Then T is a π-increasing

tree in which the vertex-set consists of two or more blocks of π and contains

1, and from Proposition 3.6, T is reducible.

From Lemma 3.8 (a), since μk is the maximum label, T can be written

uniquely as

splice(T1,M ;T2, t)
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where T1 is irreducible. Call τk = T1, τ1 = T2 and ν = t. We have uniquely
reversed Stage k in Construction 2.5 (by Proposition 3.5, in the input at
Stage k, τk is always irreducible). Note that 1 and ν lie in τ1 (from Lemma 3.8
(a)).

If k ≥ 3, we now want to invert Stage k − 1, which is a splice in which
the first splicing vertex is always μk−1. So we shall look at μk−1 and consider
two cases:

Case 1. μk−1 lies in τ1. In this case, from Proposition 3.6, τ1 is reducible.
In addition, since μk (and all vertices in block πk) lie in τk, μk−1 is the
maximum of τ1. Thus, from Lemma 3.8 (a), τ1 can be written uniquely
as

splice(T1, μk−1;T2, t)

with T1 irreducible. Call τk−1 = T1, τ1 = T2, ck−1 = ν and then update
the value of ν to t. Then ck−1 lies in τ1 or τk−1 (since, before this step,
ν lies in τ1). Recall that, in the input of Stage k − 1, τk−1 is always
irreducible (Proposition 3.5). Thus, we have uniquely reversed Stage
k − 1 in Construction 2.5, which was an internal splice.
Note that, after this step, 1 and ν still lie in τ1.

Case 2. μk−1 lies in τk. In this case, μk−1 is the second maximum of τk,
and recall that τk is irreducible by construction. From Lemma 3.8 (b),
τk can be written uniquely as

splice(T1, μk−1;T2, t)

with T1, T2 irreducible, where M lies in T2 and t < μk−1. Call τk−1 =
T1, τk = T2 and ck−1 = t (the value of ν is unchanged). Then ck−1 lies
in τk. Recall that, in the input of Stage k − 1, τk−1 and τk are always
irreducible and M lies in τk (Proposition 3.5). Thus, we have uniquely
reversed Stage k−1 in Construction 2.5, which was an external splice.
Note that, since ν and τ1 have not been changed, 1 and ν still lies in
τ1.

Now, all remaining stages k−2, . . . , 2 of Construction 2.5 can be uniquely
reversed exactly as for Stage k − 1 (Case 2 in general is “μi lies in τi+1,
. . . ,τk”). After reversing Stage i, we have trees τ1, τi, . . . , τk, such that τ1
contains 1, and ν and τi, . . . , τk are irreducible and contain μi, . . . , μk,
respectively. From Proposition 3.9, we recover at the end the initial forest
with components τ�, 	 = 1, . . . , k, where τ� is the increasing chain consisting
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of the elements of the block π� of π. Along the way, we recover uniquely the
elements ci of the (k−2)-tuple c ∈ C(π). We conclude that c = ψ−1

π (T ), and
that ψπ is a bijection. �
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Institüt für Mathematik

Universität Zürich
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