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Degree of regularity of linear homogeneous
equations and inequalities

Kavish Gandhi, Noah Golowich, and László Miklós Lovász

We define a linear homogeneous equation to be strongly r-regular
if, when a finite number of inequalities is added to the equation,
the system of the equation and inequalities is still r-regular. In this
paper, we show that if a linear homogeneous equation is r-regular,
then it is strongly r-regular. In 2009, Alexeev and Tsimerman in-
troduced a family of equations, each of which is (n − 1)-regular
but not n-regular, verifying a conjecture of Rado from 1933. These
equations are actually strongly (n − 1)-regular as an immediate
corollary of our results.
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1. Introduction

In 1927, van der Waerden [1] proved his seminal theorem stating that, for any
finite coloring of the positive integers, there always exists a monochromatic
arithmetic progression of arbitrary length. Subsequently, in 1933, Rado [2]
expanded on this theorem, finding a necessary and sufficient condition for
the partition regularity of systems of linear homogeneous equations. In the
case of a single linear homogeneous equation of the form

(1) a1x1 + a2x2 + a3x3 + · · ·+ anxn = 0 : ai �= 0, ai ∈ Z,

given any finite coloring of the integers, Rado proved that there exist positive
monochromatic integers (x1, x2, . . . , xn) that satisfy the equation if and only
if a nonempty subset of {a1, a2, . . . , an} sums to 0. An equation for which
there exists a monochromatic solution given any finite coloring is defined as
regular.

Not all linear homogeneous equations are regular, however. Those that
are not regular are classified as follows: given a positive integer r, a linear
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homogeneous equation is called r-regular if, for every coloring of the pos-
itive integers with r colors, there always exists a monochromatic solution
x1, x2, . . . , xn to the equation. The degree of regularity of a linear homo-
geneous equation is defined as the largest positive integer r such that the
equation is r-regular.

Rado conjectured in 1933 [2] that for every positive integer n, there
exists a linear homogeneous equation with degree of regularity equal to n.
This conjecture was open for a long time until it was proven in 2009 by
Alexeev and Tsimerman [3]. Specifically, they proved that for each n the
equation

(2)

(
1−

n−1∑
i=1

2i

2i − 1

)
x1 +

n−1∑
i=1

2i

2i − 1
xi+1 = 0

is (n−1)-regular but not n-regular. To show that these equations are (n−1)-
regular, they noted that there must be an i, 0 < i < n, such that x and
2ix are the same color. Otherwise, the n integers x, 2x, 4x, . . . 2n−1x would
all be different colors, which is impossible in an (n − 1)-coloring. Alexeev
and Tsimerman then noted that the following is a monochromatic solution
to (2):

x1 = x2 = · · · = xi = xi+2 = · · · = xn = 2ix

xi+1 = x.

However, this solution is degenerate in that all but one of x1, . . . , xn are
equal to one another and are thus guaranteed to be the same color for any
coloring of the positive integers. This observation raises the question: can
we still find a monochromatic solution to the equation (2) if we restrict the
x1, . . . , xn such that they cannot be equal? More generally, if we add a finite
number k of inequalities of the form

(3) Aj,1x1 + · · ·+Aj,nxn �= 0 : 1 ≤ j ≤ k, Aj,1, . . . , Aj,n ∈ Z,

is the degree of regularity affected? We call an equation strongly r-regular if,
when any inequalities of the form (3) that are not multiples of the equation
are specified, the system of the equation and the inequalities is r-regular.
We note that none of these inequalities can be a multiple of the original
equation, as then the system has no solution. Adding inequalities is equiv-
alent to deleting a finite number of hyperplanes from the set of possible
solutions.
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In this paper, we show that if an equation is r-regular, then it is strongly
r-regular. Therefore, the equation (2) is strongly (n− 1)-regular, answering
the question discussed above. It follows from our main theorem as another
corollary that a set of equations Fox and Radoičić proved to be 2-regular
but not 3-regular [4] is strongly 2-regular. Thus, the degree of regularity of
these equations is also not affected by the addition of inequalities.

The same question of determining whether partition regularity is affected
by adding inequalities in the form of (3) can be asked for regular equations.
In 1998, Hindman and Leader [5] resolved this question. It follows easily
from Theorem 2 of [5] that for any regular linear homogeneous equation, if
any finite set of inequalities (3) is specified, the system of the equation and
inequalities is still regular.

The organization of this paper is as follows: In Section 2 we prove an
important lemma and then our main result. In Section 3, we discuss some
implications and extensions of our result.

2. Proof of strong r-regularity

The lemma below is very similar to Theorem 8 in Chapter 3 of Graham,
Rothschild, & Spencer [6], and the proof is almost identical. We present
it here for completeness. This lemma allows us to find a set of monochro-
matic progressions P1, P2, . . . , Pn of the same color, such that there are many
choices of xi ∈ Pi with (x1, x2, . . . , xn) a monochromatic solution to a linear
homogeneous equation.

Lemma 2.1. Let

(4) a1x1 + · · ·+ anxn = 0

be a linear homogeneous equation which is r-regular and C be a positive
constant. Then, if N is finitely colored with r colors, there exist x1, . . . , xn
satisfying (4) and d > 0 so that all

(5) xi + λd : 1 ≤ i ≤ n, |λ| ≤ C

are the same color.

Proof. By the Compactness Principle, we can find a constant R such that
for any r-coloring of [1, R], there exists a monochromatic solution to (4).
Now, let ω be an r-coloring of N. We define an rR coloring on N, namely ω′,
by

ω′(α) = ω′(β) iff ω(αi) = ω(βi) for 1 ≤ i ≤ R.
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We define K = CRn−1. Within our coloring ω′, we find a monochromatic
arithmetic progression P of length 2K + 1 of the form

(6) a+ λd : |λ| ≤ K.

Note that for the original coloring ω, this means that P , 2 · P ,. . . , R ·
P are all monochromatic. Since (4) is homogeneous, the r-coloring ω of
{a, 2a, . . . , Ra} yields a monochromatic solution, ay1, . . . , ayn.

Now we set xi = ayi for 1 ≤ i ≤ n. Moreover, we let y be the least
common multiple of y1, . . . , yn and d′ = dy. Therefore,

xi + λd′ = ayi + λdy = yi

(
a+ λd

(
y

yi

))
.

Notice that λ ≤ C and y
yi

≤ y1 . . . yi−1yi+1 . . . yn ≤ Rn−1, so λy/yi ≤ K.

Thus, a+ λdy/yi belongs to P , which implies that

ω′
(
a+ λd

(
y

yi

))
= ω′(a),

and thus, by our definition of ω′,

ω(xi + λd′) = ω

(
yi(a+ λd

(
y

yi

)
)

)
= ω(ayi) = ω(xi).

Since ω(xi) is constant for 1 ≤ i ≤ n, ω(xi + λd′) is constant for 1 ≤ i ≤ n
and |λ| ≤ C.

The below theorem is our main result. It uses Lemma 2.1 to prove that
all r-regular equations are strongly r-regular.

Theorem 2.2. Assume that the equation

(7) a1x1 + a2x2 + · · ·+ anxn = 0

is r-regular. Then it is strongly r-regular.

Proof. Let

(8) Aj,1x1 +Aj,2x2 + · · ·+Aj,nxn �= 0 : Aj,i ∈ Z, 1 ≤ j ≤ k

be any collection of k inequalities, none of which are multiples of (7). Let ω :
N → {1, 2, . . . , r} be any r-coloring of the positive integers. We pick a posi-
tive integer C, to be specified later. By Lemma 2.1, there exist x1, . . . , xn, d >
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0 such that (x1, . . . , xn) satisfy (7) and so that, for 1 ≤ i ≤ n, and |λ| ≤ C,

ω(xi + λd) is constant.

We now claim that there exists a sequence (λ1, . . . , λn) such that (x1 +

λ1d, . . . , xn+λnd) satisfies both (7) and (8). To show this, note that we need

n∑
i=1

ai(xi + λid) = 0,

or, equivalently,

n∑
i=1

aiλi = 0,(9)

since
∑n

i=1 aixi = 0. We also need, for each j where 1 ≤ j ≤ k,

n∑
i=1

Aj,i(xi + λid) �= 0,

which is equivalent to

(10)

n∑
i=1

Aj,iλi �= −
∑n

i=1Aj,ixi
d

.

If, for any j, the coefficients of λi in (10) are each a multiple of the corre-

sponding coefficients of λi in (9), then the jth inequality of (8) would be a

multiple of (7), a contradiction. Now, we use the fact that if we have a linear

equation with rational coefficients, and a finite set of linear inequalities such
that no inequality is a multiple of the original equation, then we can find

a solution that satisfies the equation and the inequalities. This gives us the

needed set (λ1, λ2, . . . , λn). Notice that we may choose

C =

⌈
(k + 1)(|a1|+ · · ·+ |an|)

2

⌉
,

since it is possible to choose each of of λ1, . . . , λn−1 out of the set

{an, 2an, . . . (k + 1)an}, meaning that |λ1|, . . . , |λn−1| ≤ (k + 1)an. More-

over,

|λn| =
∣∣∣∣a1λ1 + · · ·+ anλn

an

∣∣∣∣



240 Kavish Gandhi et al.

is at most (k + 1)(|a1|+ · · ·+ |an−1|). Therefore, twice the value of C given
above is greater than the absolute value of each of λ1, . . . , λn. This means
that the n-tuplet (x1 + λ1d, . . . , xn + λnd) is monochromatic and satisfies
(7) and (8) for all j values.

3. Implications

As a result of our theorem, we resolve our motivational question: we can find
monochromatic solutions to Alexeev and Tsimerman’s family of equations
that are distinct, and, more generally, that additionally satisfy a finite set
of inequalities. We can also generalize Alexeev and Tsimerman’s method of
proving that an equation is r-regular to a much larger class of equations. To
do so, we make the following definitions:

We define an upper triangular m by m matrix

C =

⎡
⎢⎢⎢⎢⎢⎣

c1,1 c1,2 c1,3 · · · c1,m
0 c2,2 c2,3 · · · c2,m
0 0 c3,3 · · · c3,m
...

...
...

. . .
...

0 0 0 · · · cm,m

⎤
⎥⎥⎥⎥⎥⎦

to have the linkage property if, for each integer i where 1 ≤ i ≤ m − 1, the
following holds for all j where i < j ≤ m:

c1,i · ci+1,j = c1,j .

We will only be considering matrices with the linkage property that have all
elements positive.

Given an equation (7), we let, for 1 ≤ l ≤ n,

Sl = −(
∑n

i=1 ai)− al
al

.

Notice that for any coloring of the integers that excludes monochromatic
solutions to a linear homogeneous equation, if x is an integer, then x and
Slx cannot have the same color. Therefore, the number Sl is otherwise known
as a forbidden ratio [7].

We now have the following:

Theorem 3.1. Assume that, given an equation (7) and inequalities (8),
there exists an upper triangular m by m matrix with the linkage property
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where each nonzero entry is positive and equal to Sl for some l where 1 ≤
l ≤ n. Then the system of the equation and the inequalities is strongly m-
regular.

Proof. By Theorem 2.2, it is sufficient to show that the linear homogeneous
equation is m-regular. To show this, we assume the contrary; that is, there
exists some m-coloring c : N → {1, 2, . . . ,m} of the natural numbers which
excludes monochromatic solutions.

We assume that the matrix:

S =

⎡
⎢⎢⎢⎢⎢⎣

Sl1,1 Sl1,2 Sl1,3 · · · Sl1,m

0 Sl2,2 Sl2,3 · · · Sl2,m

0 0 Sl3,3 · · · Sl3,m
...

...
...

. . .
...

0 0 0 · · · Slm,m

⎤
⎥⎥⎥⎥⎥⎦

is filled with positive Sl (1 ≤ l ≤ n) in the non-0 slots and has the linkage
property.

Let x be a positive integer which has the property that for 1 ≤ i ≤ j ≤ m,
Sli,jx is also a positive integer. Without loss of generality, let c(x) = 1.
By the forbidden ratios Sl1,1 , Sl1,2 , . . . , Sl1,m , for 1 ≤ j ≤ m, 1 = c(x) �=
c(Sl1,jx). Without loss of generality, let c(Sl1,1x) = 2. By the forbidden
ratios, Sl2,2 , . . . , Sl2,m , and since S has the linkage property, for 2 ≤ j ≤ m,
c(Sl1,jx) �= c(Sl1,1x) = 2. Therefore, for 2 ≤ j ≤ m, c(Sl1,jx) ∈ {3, . . . ,m}.

We now proceed by induction, assuming that for some integer t where
m ≥ t ≥ 3, for t − 1 ≤ j ≤ m, c(Sl1,jx) ∈ {t, . . . ,m}. Without loss of
generality, let c(Sl1,t−1

x) = t. By the forbidden ratios Slt,t , . . . , Slt,m , and
since S has the linkage property, for t ≤ j ≤ m, c(Sl1,jx) �= c(Sl1,t−1

x) = t.
Therefore, for t ≤ j ≤ m, c(Sl1,jx) ∈ {t+ 1, . . . ,m}.

Eventually, when we reach t = m, we get that c(Sl1,mx) ∈ ∅. This is
a contradiction, since we originally assumed that c assigns every positive
integer a color.

Investigating the degree of regularity of any non-regular equation is an
interesting direction of future research. The above theorem begins to answer
this question, but there are many equations which do not satisfy the precon-
ditions of the theorem. Moreover, there are instances in which the linkage
property can show that an equation is m-regular but where the degree of
regularity of an equation may be greater than m. Therefore, it would be de-
sirable to extend the above method of proof to prove more about the degree
of regularity of certain equations as well as to give further insight into when
an equation is r-regular.
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