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Log-concavity of the genus polynomials
for a sequence of cubic Halin graphs

Jonathan L. Gross, Toufik Mansour, and Thomas W. Tucker

A Halin graph is a graph obtained from a plane tree by running
a cycle through its leaf vertices in the order they are encountered
along a counterclockwise pre-order traversal. Using a vectorized
production matrix, we give a matrix formula for the partitioned
genus polynomial of any cubic Halin graph and for the genus poly-
nomial as well. We prove log-concavity of the genus polynomial
and of the partitioned genus polynomials for several sequences of
cubic Halin graphs, which serves as further support of the conjec-
ture that the genus polynomial of every graph is log-concave.

Our general concern is enumerating all possible cellular imbeddings f :G→S
of a given graph G in an oriented surface S. An imbedding is cellular if
the interior of every face (component of S − f(G)) is homeomorphic to an
open disk. Two imbeddings f : G → S and g : G → S are regarded as the
same if there is an orientation-preserving homeomorphism of the surface S
taking f(G) to g(G) that induces the identity automorphism of G.

Our enumeration of imbeddings is according to the genus of the imbed-
ding surface. We define the genus distribution of a finite graph G to be
the sequence

〈gi(G) | i = 0, 1, 2, . . .〉

where gi(G) counts the cellular imbeddings of G in the closed orientable
surface Si of genus i. The genus polynomial gG(z) of G is the generating
function Σgi(G)zi.

To understand the derivation of genus distributions, we must understand
how adding an edge to a graph G affects the genus distribution and its
properties. Adding an edge between two 2-valent vertices with a common
neighbor is one of the simplest versions of this situation. In this paper, we
are within a context for this kind of edge-adding in which the graph G to be
modified is from a family of known genus distribution. One way of looking at
the two other families of Halin graphs for which we derive genus polynomials
and prove their log-concavity, beyond the family of Halin graphs that are
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Figure 1: Halin graph plus red midpoints on the exterior cycle.

isomorphic to Ringel ladders, is that each of the graphs in these two other
families is obtained by adding a single edge to a Ringel ladder.

Section 1 reviews the quadrangulation of plane cubic Halin graphs, from
[2]. Section 2 shows how they fit with the subsequently invented construct [6]
called a vectorized production matrix. In Section 3, we prove that the cubic
Halin graphs can be counted with Catalan numbers. The genus polynomials
of some infinite sequences of Halin graphs are derived in Section 4. They are
proved to be log-concave in Section 5. Moreover, we show that the partitioned
genus polynomials of the graphs in that sequence are log-concave, which
supports a secondary log-concavity conjecture. In Section 6, we give a few
research problems concerned with extending these results.

1. Quadrangulation of cubic Halin graphs

An algorithm is given by [2] for calculating the genus distribution of a cubic
Halin graph G, which is specified as the 1-skeleton of a 2-complex K on the
plane disk D bounded by the outer cycle of G. We construe the graph G
to be colored black. We give a 3-step process for constructing a 3-colorable
quadrangulation of the 2-complex K.
Step 1. In each cycle edge of the Halin graph, insert a red midpoint. This
is illustrated in Figure 1.
Step 2. Join each red vertex v to all of the non-leaf vertices on the boundary
of the face on whose boundary v lies, as shown in Figure 2.

Proposition 1.1. The red and black edges together triangulate the plane
disk D bounded by the exterior cycle of a plane Halin graph G.

Proof. This is Proposition 3.1 of [2].

Proposition 1.2. Every black tree edge lies on two of the triangles formed
by Steps 1 and 2.

Proof. This is Proposition 3.2 of [2].
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Figure 2: Halin graph plus all of the red edges.

Figure 3: Quadrangulation of a plane Halin graph.

Step 3a. For each black tree edge, we pair the two incident triangles into a
quadrangle.

Step 3b. We assign (unseen) colors blue, green, and pink to the tree edges,
so as to form a proper edge 3-coloring. This is possible because any tree of
maximum degree 3 is edge-3-colorable (via greedy algorithm).

Step 3c. We visibly color each quadrangle with the unseen color of the tree
edge that bisects it, as shown in Figure 3.

The graph that results from deleting all the vertices on the outer cycle
and all the edges incident on them from a plane Halin graph G is called the
inner tree of G.

2. VP-matrix for the π-merge operation

In this section, we reinterpret the genus distribution algorithm of [2] for a
cubic Halin graph, in terms of a vectorized production matrix (abbr. vp-
matrix ), a new construct introduced by [6]. Some familiarity with parti-
tioned genus distributions and productions, which are constructs introduced
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Figure 4: The six double-rooted partials for a π-merge.

in [4], [9], [8], and [1], is assumed. (A completely general version of these
constructs is developed in [3].)

2.1. Partials for cubic Halin graphs

For a doubly vertex-rooted cubic Halin graph (G, u, v), with the roots u and
v inserted at the midpoints of adjacent edges, we split gi(G) into six partials.
Here is what they count:

dd′i Each of the roots u and v lies on two distinct fb-walks. One and only
one of these fb-walks traverses both roots.

dd′′i Each of the roots u and v lies on two distinct fb-walks. Both of these
fb-walks traverse both roots.

ds′i Root u lies on two distinct fb-walks. One of these fb-walks traverses
root v twice.

sd′ Root v lies on two distinct fb-walks. One of these fb-walks traverses
root u twice.

ss1i A single fb-walks traverses roots u and v twice. The occurrences of
each root are consecutive.

ss2i A single fb-walks traverses roots u and v twice. The occurrences of
the two roots alternate.

These configurations are illustrated in Figure 4.

2.2. Productions for a π-merge

We regard the quadrangles of our decomposition of the 2-complex K as
atomic fragments, to be reassembled into K itself. During the reassem-
bly, we calculate the partitioned genus distributions of the larger fragments
that we construct by iterative mergers, until we have obtained the genus
distribution of the entire Halin graph G.
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Figure 5: A π-merge ((A, r, s), (B, t, r′), (Q, s′, t′, p, q)) → (X, p, q) at ver-
tex v.

We merge three fragments at a time, always ordered so that the third
fragment is a designated quadrangle Q ∼= K4 − e with four root-vertices.
Envisioning this configuration as a small pie cut into three slices, we call
such a 3-fragment merger a π-merge,

(1) ((A, r, s), (B, t, r′), (Q, s′, t′, p, q)) −→ (X, p, q),

as illustrated in Figure 5.
We observe the following properties of a π-merge operation (1).

1. The fragments (A, r, s), (B, t, r′), and (Q, s′, t′, p, q) are arranged coun-
terclockwise.

2. The root-mergers are r ∗ r′, s ∗ s′, and t ∗ t′.
3. The vertices p, w, and q lie in counterclockwise order on the resulting

fragment (X, p, q).

2.3. Vectorized production matrices

When calculating the partitioned genus distribution of a recursively specified
sequence of graphs

G1, G2, G3, . . .

by iterative application of a fixed graph operation, one can either apply a
list of productions representing the effect of that graph operation, or one can
combine the productions into an ordinary production matrix, whose appli-
cation to the pgd-vector of the graph Gn yields the pgd-vector of the graph
Gn+1. Assuming that the components of the pgd-vector are polynomials in
an indeterminate z, the components of the (ordinary) production matrix are
polynomials in z.
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By way of contrast, a graph operation f that combines two graphs G and

H into a graph J can be represented by a vectorized production matrix

(abbr. vp-matrix ) Mf that is applied to the respective pgd-vectors XG and

XH so that

(2) XGMfX
t

H = XJ .

The algebraic objects here have the following properties:

1. XG and XH are row-vectors of polynomials in z.

2. Each entry of the matrix Mf is a row-vector of polynomials in z.

3. XJ is a row-vector of polynomials in z.

Theorem 2.1. The π-merge operation of [2] corresponds to the following

vectorized production matrix:

Mπ = 1
4×

dd′

dd′′

ds′

sd′

ss1

ss2

∣∣∣∣∣∣∣∣∣

dd′ dd′′ ds′ sd′ ss1 ss2

dd′+2zdd′′+zss2 2dd′+2zss2 2dd′+2zss2 2sd′+2zss1 4sd′ 2ds′+2sd′

2dd′+2zss2 4dd′′ 4ds′ 4sd′ 4ss1 2z-1dd′+2ss2

2ds′+2zss1 4ds′ 4ds′ 4ss1 4ss1 2z-1ds′+2ss1

2dd′+2zss2 4sd′ 2z-1dd′+2ss2 4sd′ 4z-1sd′ 2z-1dd′+2ss2

4ds′ 4ss1 4z-1ds′ 4ss1 4z-1ss1 4z-1ds′

2ds′+2sd′ 2z-1dd′+2ss2 2z-1dd′+2ss2 2z-1sd′+2ss1 4z-1sd′ z-2dd′+2z-1dd′′+z-1ss2

Proof. This follows from Theorem 4.3 of [2], where all 36 productions are

listed. Theorem 4.3 of [2] lists the productions for all 36 (= 6 × 6) ordered

pairs of partials.

In the vp-matrix Mπ, each entry has the same algebraic type as the

pgd-vectors to which it is to be applied. For a π-merge, each of the six

coordinates corresponds to the partial genus polynomials for that category.

We now define six elementary pgd-vectors:

(3)

abbreviation elementary pgd-vector

dd′
(
1 0 0 0 0 0

)
dd′′

(
0 1 0 0 0 0

)
ds′

(
0 0 1 0 0 0

)
sd′

(
0 0 0 1 0 0

)
ss1

(
0 0 0 0 1 0

)
ss2

(
0 0 0 0 0 1

)
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Thus, here are the meanings of some entries for matrix Mπ above.

entry abbreviation pgd-vector

Mf [1, 1] dd′ + 2zdd′′ + zss2
(
1 2z 0 0 0 z

)
Mf [6, 2] 2z-1dd′ + 2ss2

(
2z-1 1 0 0 0 2

)
Mf [6, 6] z-2dd′ + 2z-1dd′′ + z-1ss2

(
z-2 2z-1 0 0 0 z-1

)

In what follows, we abbreviate the pgd-vector of a quadrangular frag-
ment as

(4) A = [2 0 0 0 0 2z].

We abbreviate the matrix Mπ as M . When we first π-merge three quadran-
gles at vertex z into a 3-wheel, the combined fragment has the pgd-vector

(5) Y = AMAt = [2 4z 4z 4z 0 2z].

Remark. In general, when we apply the π-merge operation, we mention
two fragments (the two explicit operands) in counterclockwise order. The
third fragment must always be a quadrangle. The virtual roots always lie on
the boundary of whatever quadrangle is the third fragment of the π-merge.

3. Pgd-vectors of cubic Halin graphs

In this section, we establish a bijective correspondence between cubic Halin
graphs and rooted binary trees. We also derive the matrix formula for cal-
culating the partitioned genus polynomials and the genus polynomial of any
cubic Halin graph. A quadrangulated cubic Halin graph is shown in Figure 6.

The five thicker edges in Figure 6 and the vertices at which they are inci-
dent form the inner tree. The pentagonal vertex on the outer cycle is called
the anchor. The two hollow vertices on the outer cycle are the virtual
roots. The vertex that occurs immediately before the anchor in a counter-
clockwise traversal of the outer cycle is regarded as the first root of the Halin
graph. We regard the interior vertex that is adjacent to the anchor as the
root of the inner tree.

Proposition 3.1. The inner tree of a cubic Halin graph is a rooted binary
tree.

Proof. We assign an ordering to the neighbors of the root by proceeding
counterclockwise from the anchor vertex. At any vertex of the inner tree
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Figure 6: A Halin graph with quadrangulation and virtual roots.

with two children in the inner tree, the ordering of the children is induced
by proceeding counterclockwise from the parent node.

A vertex with only one child in the inner tree has its third neighbor on
the outer cycle. If the edge to this outer cycle vertex precedes the child in
the inner tree, then that child is a right-child. Otherwise, it is a left-child.
Of course, a vertex with no children in the inner tree is a leaf-node of the
binary tree.

Theorem 3.2. The cubic Halin graphs are in bijective correspondence with
the rooted binary trees.

Proof. An empty inner tree for a Halin graph corresponds to the notion of
an empty binary tree, which lets us say that there is one binary tree with no
vertices, corresponding to the Catalan number c0 = 1. Our model for such a
Halin graph is a circle with a diameter. One endpoint of the diameter is the
anchor. Since the other endpoint is on the circle, the inner tree is empty.

The rooted binary tree corresponding to any given cubic Halin graph is
the inner tree, as per Proposition 3.1. Conversely, let T be a rooted binary
tree. Draw a circle around it, without touching the tree T , place an anchor
node on that circle, and draw an edge joining the root r of the tree with
the anchor node. If the root r has only one child v (in the inner tree), then
draw an edge to a new node w on the circle so that tree-node v precedes
cycle-node w at root r if v is a left-child of r, and so that tree-node v follows
cycle-node w if v is a right-child.

We proceed breadth-first in tree T as we join some of its vertices to new
vertices on the circle. Thus, when we arrive at any particular vertex u, we
have already fully installed its parent. The rules for drawing leaf-edges from
vertex u to new vertices on the circle depend on the number of children of
vertex u, which can be 0, 1, or 2.
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1. Install two consecutive vertices on the arc of the circle that are acces-

sible to vertex u without crossing any edges.

2. If u is a left-child of its parent, then draw an edge from u to a new

vertex on the circle, so that the new edge follows the edge from u to

its child. Otherwise, draw an edge from u to a new vertex on the circle

so that the new edge precedes the edge to the child of u.

3. No new edges are drawn from vertex u.

It is clear that the resulting graph is a cubic Halin graph.

Corollary 3.3. The number of cubic Halin graphs with n vertices in its

inner tree is the Catalan number cn. ♦

We now give a recursive algorithm for calculating the pgd-vector of a

cubic Halin graph that is the union of a tree T with a cycle C, installed in

the plane so that C is the outer cycle. We are proceeding with a pre-order

traversal of the binary tree (not just the inner tree).

1. Start at root vertex of the inner tree.

2. If the left-child is on the cycle C, then record the row-vector A from

Equation (4). Otherwise, inside a pair of parentheses, record the pgd-

vector of the cubic Halin graph for which that left-child is root of the

inner tree.

3. Record the vp-matrix M from Theorem 2.1.

4. If the right-child is on the cycle C, then record the column vector At.

Otherwise, after a left parenthesis, record the pgd-vector of the cubic

Halin graph or which that right-child is root of the inner tree, followed

by )t, that is, a right parenthesis and then a transpose notation.

With pgd-vectors A and Y defined by Equations (4) and (5), the matrix

formula for the pgd-vector of the Halin graph of Figure 6 is

(6) (AMAt)M((AM(AM(AMAt)t)t)M(AMAt)t)t.

Replacing (AMAt) by Y yields the simplified formula

(7) YM((AM(AMY t)t)MY t)t.

Either matrix formula yields the following genus polynomial:

2 + 286z + 6912z2 + 31968z3 + 26368z4.
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Figure 7: (a) A Halin graph isomorphic to the Ringel ladder RL4.
(b) Quadrangulation of its plane imbedding.

4. Log-concavity results for cubic Halin graphs

We now consider some special sequences of cubic Halin graphs whose genus
polynomials are provably log-concave. For this purpose, we rewrite the vp-
matrix M of Theorem 2.1 in the form

1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2v + 2ze2 v v v 4e4 2e3 + 2e4

v 4e2 4e3 4e4 4e5
1
zv

2e3 + 2ze5 4e3 4e3 4e5 4e5
2
z e3 + 2e5

v 4e4
1
zv 4e4

4
z e4

1
zv

4e3 4e5
4
ze3 4e5

4
z e5

4
z e3

2e3 + 2e4
2
z e1 + 2e6

2
z e1 + 2e6

2
z e4 + 2e5

4
z e4

1
2z2 v +

2
z e2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where v = (2, 0, 0, 0, 0, 2z)t, and where ej is the jth unit vector in R
6.

4.1. Revisiting Ringel ladders

The cubic Halin graph in Figure 7(a) is recognizable as the Ringel ladder
RL4, whose genus polynomial is already known [7] to be log-concave.

From the quadrangulation in Figure 7(b), we see that the pgd-vectors of
the corresponding infinite sequence of Halin graphs (i.e., the Ringel ladders)
are of the form

(8) ((· · · (AMAt) · · ·MAt)MAt)MAt

where A = (2, 0, 0, 0, 0, 2z), as in Equation (4).

4.2. A second family of cubic Halin graphs

We now seek an explicit general formula for the pdg-vectors of various infi-
nite sequence of cubic Halin graphs exemplified by Figure 8(a). The general
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Figure 8: (a) A sequence of Halin graphs Y I0, Y I1, Y I2, . . ..
(b) Quadrangulation of a plane imbedding of Y I2.

pattern of each of these infinite sequences is a rectangularized cycle with a
subdivided horizontal diameter. From each interior vertex v of this diameter,
there is a tree, all of whose leaves (other than v) lie on the arc above the
diameter. Each sequence is characterized by a fixed finite sequence of trees
at the right, after which (proceeding leftward), all the remaining trees have
only one edge.

In order to find such a formula, we define the following recurrence:

Fn(z) = (Fn−1)MAt,(9)

F1(z) = (v1, . . . , v6),(10)

where A = (2, 0, 0, 0, 0, 2z). If we denote the jth coordinate of the vector

Fn(z) by F
(j)
n , we see from (9) that the coordinates F

(j)
n satisfy the following

recurrence system:

F (1)
n =

1

2
F

(1)
n−1 + 2F

(2)
n−1 + 2F

(4)
n−1 +

1

2z
F

(6)
n−1,

F (2)
n = zF

(1)
n−1 + F

(6)
n−1,

F (3)
n = zF

(1)
n−1 + 2F

(3)
n−1 + 4F

(5)
n−1 + F

(6)
n−1,

F (4)
n = zF

(1)
n−1 + F

(6)
n−1,

F (5)
n = 2zF

(3)
n−1,

F (6)
n =

z

2
F

(1)
n−1 + 2zF

(2)
n−1 + 2zF

(4)
n−1 +

1

2
F

(6)
n−1

with the initial conditions (from (10)) F
(j)
1 = vj for all j = 1, 2, . . . , 6.

Remark. The following theorem and corollary hold with v1, v2, . . . , v6 equal
to arbitrary functions of z.
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Theorem 4.1. For n ≥ 2, the vector Fn(z) = (F
(1)
n , . . . , F

(6)
n ) is given by

F (1)
n = v1hn−1 +

1

2z
(4zv2 − zv1 + 4zv4 + v6)hn−2 − 4z(v1z − v6))hn−3,

F (2)
n = v2hn−1 + (zv1 − v2 + v6)hn−2 − 4z(v2 − v4)hn−3,

F (3)
n = −(zv1 + v6)hn−1 −

1

2
(v2 + v4)(hn − hn−1)

+
1

2z
(zv2 + zv4 + v5)(h

′
n − h′n−1) + (zv1 + v3 + v6)h

′
n−1,

F (4)
n = v4hn−1 + (zv1 − v4 + v6)hn−2 + 4z(v2 − v4)hn−3,

F (5)
n = −1

8
(2zv1 − v2 − v4 + 2v6)(hn − hn−1)− z(v2 + v4)hn−1

+
1

2z
(z2v1 − zv2 + zv3 − zv4 − v5 + zv6)(h

′
n − 2h′n−1)

+ 2(zv2 + zv4 + v5)h
′
n−1,

F (6)
n = v6hn−1 +

1

2
(zv1 + 4zv2 + 4zv4 − v6)hn−2 + 4z(zv1 − v6)hn−3,

where hn =
√
−8z

n
Un(

1
2
√
−8z

) and h′n =
√
−8z

n
Un(

1√
−8z

).

Proof. We define the generating functions F (j)(t) =
∑

n≥1 F
(j)
n tn, for j =

1, 2, . . . , 6. By multiplying the recurrence system above by tn, next summing

over n ≥ 2, and then solving for F (j)(t), we obtain that

F (1)(t) =
2zv1t+ (4zv2 − zv1 + 4zv4 + v6)t

2 − 8z(v1z − v6))t
3

2z(1− t− 8zt2)
,

F (2)(t) =
v2t+ (zv1 − v2 + v6)t

2 − 4z(v2 − v4)t
3

1− t− 8zt2
,

F (3)(t) =
v3t+ (zv1 − v3 + 4v5 + v6)t

2

(1− 2t− 8zt2)(1− t− 8zt2)

+
4(zv2 − 2zv3 + zv4 − v5)t

3 − 32zv5t
4

(1− 2t− 8zt2)(1− t− 8zt2)
,

F (4)(t) =
v4t+ (zv1 − v4 + v6)t

2 + 4z(v2 − v4)t
3

1− t− 8zt2
,

F (5)(t) =
v5t+ (2zv3 − 3v5)t

2 + 2(z2v1 − zv3 + (1− 4z)v5 + zv6)t
3

(1− 2t− 8zt2)(1− t− 8zt2)

+
8z(zv2 − 2zv3 + zv4 + 2v5)t

4

(1− 2t− 8zt2)(1− t− 8zt2)
,
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F (6)(t) =
2v6t+ (zv1 + 4zv2 + 4zv4 − v6)t

2 + 8z(zv1 − v6)t
3

2(1− t− 8zt2)
.

Using the fact that Chebyshev polynomials Un(x) of the second kind have
the generating function 1

1−2xt+t2 , we obtain the conclusion.

Corollary 4.2. A closed formula for the generating function

G(t) =
∑
n≥1

gnt
n = F (1)(t) + · · ·+ F (6)(t)

is

G(t) = −2z(v1 + v3) + (1 + z)(v2 + v4) + 2(v5 + v6)

8z
+

(1− z)(zv1 − v6)t

2z

+
(1− z)

(
2(zv1 + v6)(1 + t) + (v2 + v4)(1 + 8zt− t)

)
8z(1− t− 8zt2)

+
z(zv1 + v3 + v6)(1 + 2t) + (zv2 + zv4 + v5)(1 + 4zt− 2t)

4z(1− 2t− 8zt2)
.

Moreover, for n ≥ 2, the polynomial gn is given by

gn =
(1− z)

(
2(zv1 + v6)(hn + hn−1) + (v2 + v4)(hn + (8z − 1)hn−1)

)
8z

+
z(zv1+ v3+ v6)(h

′
n+2h′n−1)+ (zv2 + zv4 + v5)(h

′
n + 2(2z − 1)h′n−1)

4z
,

where hn =
√
−8z

n
Un(

1
2
√
−8z

) and h′n =
√
−8z

n
Un(

1√
−8z

).

We are now ready to give applications of Corollary 4.2.

Example 4.3. Ringel ladders are illustrated by Figure 7. We apply Corol-
lary 4.2 with F1(z) = (v1, . . . , v6) = (2, 0, 0, . . . , 2z) = A (see (4)), which
gives

G(t) = −1 +
(1− z)(1 + t)

1− t− 8zt2
+

z(1 + 2t)

1− 2t− 8zt2

and for n ≥ 1,

gn = (1− z)(hn + hn−1) + z(h′n + 2h′n−1).

Note that

√
−8z

n
Un

(
1

m
√
−8z

)
=

∑
j≥0

(
n− j

j

)
(2/m)n−2j8jzj .(11)
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Thus, the coefficient of zj in gn is given by

gn(j) =

[(
n− j

j

)
+

(
n− 1− j

j

)]
8j

+

[(
n+ 1− j

j − 1

)
+

(
n− j

j − 1

)]
(2n−1+j − 8j−1).(12)

This formula is consistent with Theorem 5.2 of [7].

Example 4.4. For the sequence of cubic Halin graphs Y In of Figure 8, we

apply Corollary 4.2 with

F1(z) = (v1, . . . , v6) = (AMAt)M(AMAt)t = YMY t as in (5)

= 2((1 + 20z), 2z(1 + 4z), 6z(1 + 4z), 6z(1 + 4z), 16z2, z(1 + 20z)),

which gives

G(t) = −3 − 41z − 20z2

+
(1− z)(1 + 20z)(1 + t) + 2(1− z)(1 + 4z)(1 + 8zt− t)

1− t− 8zt2

+
4z(1 + 8z)(1 + 2t) + 4z(3 + 4z)(1 + 4zt− 2t)

1− 2t− 8zt2
.

Moreover, for n ≥ 2, the polynomial gn is given by

gn = (1− z)(3 + 28z)hn + (1− z)(64z2 + 28z − 1)hn−1

+ 16z(1 + 3z)h′n + 16z(4z2 + 5z − 1)h′n−1.

Thus, by (11) we establish that the coefficient of zj in gn is given by

gn(j)

4 · 8j−2
= 48

(
n− j

j

)
− 16

(
n− 1− j

j

)
+

(
n+ 1− j

j − 1

)
(50 + 2n+7−2j)

(13)

+

(
n− j

j − 1

)
(58− 2n+6−2j) +

(
n+ 2− j

j − 2

)
(3 · 2n+6−2j − 7)

+

(
n+ 1− j

j − 2

)
(9 + 5 · 2n+5−2j) + 2

(
n+ 2− j

j − 3

)
(2n+11−2j − 1).
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Figure 9: (a) A sequence of Halin graphs HY0, HY1, HY2, . . ..
(b) Quadrangulation of a plane imbedding of HY2.

Example 4.5. The sequence of cubic Halin graphs depicted in Figure 9 has

F1(z) = (v1, . . . , v6) = AM(AMAt)t = AMY t

= 2((1 + 8z), 2z, 2z, 6z, 4z2, z(1 + 8z)),

Applying Corollary 4.2 gives

G(t) = −3 − 13z +
(1− z)(3 + 8z)− (1− z)(1− 24z)t

1− t− 8zt2

+
8z(1 + z + (5z − 1)t)

1− 2t− 8zt2
.

Moreover, for n ≥ 2, the polynomial gn is given by

gn = (1− z)((3 + 8z)hn − (1− 24z)hn−1) + 8z((1 + z)h′n + (5z − 1)h′n−1).

Thus, by (11) we establish that the coefficient of zj in gn is given by

gn(j)

8j−1
= 24

(
n− j

j

)
− 8

(
n− 1− j

j

)
+

(
n− j + 1

j − 1

)
(2n−2j+5 + 5)

+

(
n− j + 2

j − 2

)
(2n−2j+4 − 1) +

(
n− j + 1

j − 2

)
(5 · 2n−2j+3 − 3)(14)

−
(
n− j

j − 1

)
(2n−2j+4 − 25).

Example 4.6. For the following vectors F1(z), by using similar techniques

as in above examples, one can get explicit formulas for the genus polynomi-

als, and prove that they are log-concave polynomials:
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(a) F1 = AM(AMY t)t,

(b) F1 = AM(AM(AMY t)t)t,

(c) F1 = YM(YMY t)t.

5. Log-concavity

In this final section, we provide a procedure via Theorem 5.1 to prove that

the genus polynomials of our example sequences and similar sequences of

cubic Halin graphs are log-concave. Note that most of the steps of Theo-

rem 5.1 require the help of a mathematical programming system (such as

Maple or Mathematica).

Theorem 5.1. Let n ≥ n0 and let j = j0, j0 + 1, . . . , n−m
2 , where n0 and

m are any constants with n0 ≥ m. Assume that the function pn(j) can be

written as a sum

pn(j) =

r∑
�=0

a(�)n (j)t�(n−sj),

where a
(�)
n (j) is a polynomial in n and j, for � = 0, 1, . . . , r, such that

(i) There exist constants m′ > 0 and q > 0 with m′ < m and tn−sj ≥
q(n− sj), for all j = j0, j0 + 1, . . . , n−m

2 and n > n0;

(ii) For all � = r, r − 1, . . . , 1, for all j = j0, j0 + 1, . . . , n−m
2 , and for

n > n0, the polynomial

q(�)n (j) =

r∑
d=�

a(d)n (j)(q(n− sj))�−d+1

is non-negative;

(iii) For all j = j0, j0 + 1, . . . , n−m
2 and for n > n0, the polynomial

q(0)n (j) =

r∑
d=0

a(d)n (j)(q(n− sj))�

is non-negative.

Then pn(j) ≥ 0, for all j = j0, j0 + 1, . . . , n−m
2 and n > n0.
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Proof. Let j0, j0 + 1, . . . , n−m
2 and n > n0. Then, by (i) and (ii) we have

pn(j) =

r∑
�=0

a(�)n (j)t�(n−sj) ≥
r−1∑
�=0

a(�)n (j)t�(n−sj) + t(r−1)(n−sj)q(r)n (j)

≥
r−2∑
�=0

a(�)n (j)t�(n−sj) + t(r−2)(n−sj)q(r−1)
n (j)

...

≥ a(0)n (j) + t(r−r)(n−sj)q(1)n (j) = q(0)n ≥ 0,

which completes the proof.

In what follows, we use this theorem to prove the log-concavity of the

sequence of Halin graphs corresponding to Figure 8.

Theorem 5.2. The genus polynomial of any graph Y In, as defined in Ex-

ample 4.4, is log-concave.

Proof. Let gn(j) be defined as in (13). By direct calculations, with the help

of a mathematical programming sytem, we can see that the function gn(j)

can be expressed as

g′n(j) = (gn(j))
2 − gn(j − 1)gn(j + 1)

=
82j−2pn(j)(n− 2− j)!(n− 1− j)!

4j!(j + 1)!(n+ 5− 2j)!(n+ 7− 2j)!

=
82j−2

(
an(j) + bn(j)2

n−2j + cn(j)2
2n−4j

)
(n− 2− j)!(n− 1− j)!

4j!(j + 1)!(n+ 5− 2j)!(n+ 7− 2j)!
,

for all j = 0, 1, 2, . . . , n+5
2 . Fix n0 = 6. (It is not hard to see that gn(z) is a

log-concave polynomial, for n = 0, 1, . . . , n0 − 1.) Note that pn
(
n+5
2

)
= 0,

pn

(
n+ 4

2

)
=

3

2048
n2(n2 − 36)(n2 − 16)2(n2 − 4)2(n+ 5)2,

pn

(
n+ 3

2

)
=

3

1024
(n2 − 25)(n2 − 9)2(n2 − 1)2(3n2 + 34n+ 147)2,
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pn

(
n+ 2

2

)
=

1

2048
n2(n2 − 16)(n2 − 4)2(397n6 + 13980n5 + 220735n4

+ 1993620n3 + 10632868n2 + 30850320n+ 37347840),

pn

(
n+ 1

2

)
=

3

2048
(n2 − 9)(n2 − 1)2(747n8 + 35544n7 + 746372n6

+ 9088392n5 + 69658658n4 + 333822696n3 + 939437828n2

+ 1222667448n+ 765895275),

pn

(n
2

)
=

1

2048
n2(n2 − 4)(11291n10 + 675250n9 + 17648355n8

+ 264445080n7 + 2482032168n6 + 14576852640n5

+ 52682726320n4 + 116037096320n3 + 142037711616n2

+ 69500252160n+ 178362777600),

pn

(
n− 1

2

)
=

3

2048
(n2 − 1)(17919n12 + 1288812n11 + 40367354n10

+ 716390340n9 + 7773709197n8 + 49651550136n7

+ 170799321372n6 + 389074688520n5 + 1094324663209n4

− 2218709032548n3 − 1350300915126n2 + 3681801409140n

+ 3248256660075),

pn(0) = 1024(n− 1)(n+ 7)(n+ 6)

5∏
j=0

(n+ j)2,

which shows that g′n(j) ≥ 0, for all j = 0, n−1
2 , n2 , . . . ,

n+5
2 , where n ≥ n0.

Thus, it remains to show that pn(j) ≥ 0 for all n ≥ n0 and j = j0, j0 +

1, . . . , n−m
2 , where j0 = 1 and m = 2. With the help of a mathematical

programming system, we have

1024cn(j)

j(j + 1)

= 8j2(j + 4)(j − 1)
(
11j8 + 286j7 + 3071j6 + 17416j5 + 53039j4 + 54334j3

− 57201j2 + 8604j − 19080
)
+ 4j

(
4j11 + 402j10 + 8939j9 + 90957j8

+ 497247j7 + 1395669j6 + 1177232j5 − 1971312j4 − 1395206j3 + 390324j2

+ 181584j + 228960
)
(n− 2j) + 2

(
104j11 + 6136j10 + 109656j9 + 926037j8

+ 4059491j7+8116030j6+2237454j5− 8016639j4− 3138925j3 + 284896j2
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+ 1161360j + 152640
)
(n− 2j)2 +

(
1236j10 + 53364j9 + 776436j8

+ 5320878j7 + 17795955j6 + 23122341j5 − 2142995j4 − 16365059j3

− 5818844j2 + 1555440j + 863136
)
(n− 2j)3 + 2

(
2208j9 + 74391j8

+ 874547j7 + 4695037j6 + 11291981j5 + 8632927j4 − 3562392j3

− 5591366j2 − 1190365j + 331328
)
(n− 2j)4 +

(
10488j8 + 280134j7

+ 2600136j6 + 10440012j5 + 16923714j4 + 6073626j3 − 6496343j2

− 4606231j − 301592
)
(n− 2j)5 + 2

(
8642j7 + 181381j6 + 1281383j5

+ 3639157j4 + 3627281j3 − 28577j2 − 1482453j − 394844
)
(n− 2j)6

+
(
20037j6 + 321783j5 + 1647039j4 + 3075621j3 + 1513563j2 − 771963j

− 534076
)
(n− 2j)7 + 6

(
2706j5 + 31869j4 + 110650j3 + 120008j2

+ 5457j − 29684
)
(n− 2j)8 +

(
8978j4 + 72980j3 + 155567j2 + 71019j

− 28092
)
(n− 2j)9 + 2(1622j3 + 8319j2 + 8965j − 116

)
(n− 2j)10

+ (713j2 + 1975j + 620)(n− 2j)11 + 4(21j + 22)(n− 2j)12 + 4(n− 2j)13.

Note that each coefficient (n− 2j)k in cn(j) is non-negative (to see this,
we expand it as a Taylor series at j = 1) for all j = j0, j0 + 1, . . . , n−m

2
and n ≥ n0, which implies that cn(j) ≥ 0. By considering the polynomial
b′n(j) = bn(j) + 2cn(j)(n− 2j), we can write

b′n(j)

8j

= 8j(j+1)2
(
3359j10+137587j9 + 2474130j8 + 25534710j7 + 165097407j6

+ 672129051j5 + 1671707200j4 + 2557644380j3 + 2543193744j2

− 165807648j− 1143486720
)
+4(j + 1)

(
7747j12 + 412775j11 + 9333398j10

+ 118822058j9 + 942021519j8 + 4771988847j7 + 15308677484j6

+ 31451733376j5 + 44615065324j4 + 34671470368j3 − 173351232j2

− 13052970144j − 2472768000
)
(n− 1− 2j) +

(
108612358968j7

− 45138303360 + 26012075984j8 + 3968242096j9 + 292813370748j6

+ 4132j13 + 9325299320j2 + 449831171016j3 + 673112160978j4
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+ 538602971756j5 − 146796524832j + 580702j12 + 379199116j10

+ 21236192j11
)
(n− 1− 2j)2 +

(
80626832420j7 − 88533656352

+ 15572317741j8 + 1842574904j9 + 260687588355j6 + 187233730744j2

+ 699548570060j3 + 798915799817j4 + 551850290224j5 − 166611425240j

+ 53734j12 + 127490377j10 + 4498816j11
)
(n− 1− 2j)3

+
(
35675350102j7 − 98278308272 + 5294994995j8 + 451108199j9

+ 143683488548j6 + 306497318284j2 + 648436841636j3 + 603760615611j4

+ 361133337659j5− 90643987752j+19764754j10+319116j11
)
(n− 1− 2j)4

+
(
9625397822j7 − 68165947912 + 1025337775j8 + 55508120j9

+ 50546339680j6 + 263400467899j2 + 394239255688j3 + 307651107681j4

+ 156646603268j5 − 4752345186j + 1137885j10
)
(n− 1− 2j)5

+
(
1549116448j7 − 30446407420 + 105024767j8 + 2691309j9

+ 11334565970j6 + 143251611327j2 + 164418909245j3 + 108006666476j4

+ 45392365846j5 + 26966512544j
)
(n− 1− 2j)6 +

(
136322798j7

− 8455327772+4401646j8+1564079386j6+52546612872j2+47842040960j3

+ 26102159596j4 + 8659627328j5 + 20007371186j
)
(n− 1− 2j)7

+
(
5035206j7 − 1160961432 + 120783064j6 + 13283885674j2

+ 9683554956j3+4252205974j4+1041006618j5+7810138580j
)
(n−1−2j)8

+
(
78816648 + 3986757j6 + 2306804195j2 + 1332617530j3 + 444672304j4

+ 71304732j5 + 1929407114j
)
(n− 1− 2j)9 +

(
69916004 + 267949619j2

+ 118478031j3 + 26882473j4 + 2117297j5 + 312314304j
)
(n− 1− 2j)10

+ 2
(
356273j4+3055873j3+9809533j2+16224399j+7329122

)
(n− 1− 2j)11

+ 4
(
34571j3 + 199944j2 + 501349j + 407656

)
(n− 1− 2j)12

+ 8(1653j2 + 7604j + 12223)(n− 1− 2j)13 + 64(7j + 39)(n− 1− 2j)14.
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Note that each coefficient (n − 1 − 2j)k in b′n(j) is non-negative (to

see this, we need only expand it as a Taylor series at j = 1) for all j =

j0, j0+1, . . . , n−m
2 and n ≥ n0, which implies that b′n(j) ≥ 0. By considering

the polynomial

b′′n(j) = an(j) + 2bn(j)(n− 2j) + 4cn(j)(n− 2j)2,

we can write

b′′n(j)

8j

= 84(2 + j)(j + 1)
(
738j11 + 39107j10 + 917633j9 + 12468630j8

+ 107337732j7 + 594633627j6 + 2072871045j5 + 4501421380j4

+ 6663188260j3 + 5522412936j2 + 606323952j − 2082767040
)
+
(
39252j13

+ 3004694j12 + 96229988j11 + 1738239628j10 + 19805704462j9

+ 148564775634j8 + 740545509960j7 + 2462154899440j6

+ 5606752930834j5 + 8882467342316j4 + 9113367582272j3

+ 4427711474352j2 − 856666567008j − 1349274426624
)
(n− 2− 2j)

+
(
4132j13 + 741904j12 + 36647336j11 + 891637621j10

+ 12798066837j9 + 116420182998j8 + 687039446306j7

+ 2648830069601j6 + 6821967996661j5 + 12073498551092j4

+ 14177247540744j3 + 8764452468528j2 − 109247190144j

− 2241928217376
)
(n− 2− 2j)2 +

(
53734j12 + 5775280j11 + 217928243j10

+ 4255915080j9 + 49260228421j8 + 355617809474j7 + 1629417776429j6

+ 4838323990676j5 + 9642997729381j4 + 12868013286330j3

+ 9724631343008j2 + 1305605888632j − 2115368087952
)
(n− 2− 2j)3

+
(
319116j11 + 25454179j10 + 769018434j9 + 12151112985j8

+ 112162848282j7+630133600870j6+2210638290031j5+5035255325010j4

+ 7633112561321j3 + 6895083660004j2 + 1857495684480j

− 1242677879448
)
(n−2−2j)4 +

(
1137885j10+71655974j9+1747920943j8
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+ 22064846804j7 + 158665585572j6 + 678667297916j5 + 1805092282349j4

+ 3128414069026j3 + 3338181686847j2 + 1353036592424j

− 457675977244
)
(n− 2− 2j)5+

(
2691309j9+135836289j8+2644361802j7

+ 25999935052j6 + 141592172304j5 + 453110540038j4 + 910224394831j3

+ 1142893366573j2 + 630308256138j − 92383564512
)
(n− 2− 2j)6

+ 2
(
2200823j8 + 88302223j7 + 1336933575j6 + 9904363132j5

+ 39794523636j4 + 94814236258j3 + 140573505160j2 + 100913577315j

− 105330538
)
(n− 2− 2j)7 +

(
5035206j7 + 156663877j6 + 1778027571j5

+ 9581538085j4 + 28085512791j3 + 49752910582j2 + 45655305104j

+ 6053721216
)
(n− 2− 2j)8 +

(
3986757j6 + 92477702j5 + 752687064j4

+ 2883966350j3+6250754895j2+7322812940j+2017829940
)
(n− 2− 2j)9

+
(
2117297j5 + 34720479j4 + 194833981j3 + 540326625j2 + 819453618j

+ 369242592
)
(n− 2− 2j)10 + 2

(
356273j4 + 3885577j3 + 15123925j2

+ 30710759j+21380714
)
(n− 2− 2j)11+4

(
34571j3 + 242922j2 + 709245j

+ 782238
)
(n− 2− 2j)12 + 8(1653j2 + 8388j + 16591)(n− 2− 2j)13

+ 64(7j + 39)(n− 2− 2j)14.

Note that each coefficient (n− 2− 2j)k in b′′n(j) is non-negative. To see

this, we expand it as a Taylor series at j = 1, for all j = j0, j0 + 1, . . . , n−m
2

and n ≥ n0, which implies that b′′n(j) ≥ 0. Therefore, by Theorem 5.1, the

polynomial g′n(j) ≥ 0 for all j = j0, j0 + 1, . . . , n−m
2 and n ≥ 6. It follows

that the polynomial gn(z) is log-concave.

Theorem 5.3. The genus polynomials of the cubic Halin graphs defined in

Examples 4.5 and 4.6 are log-concave.

Proof. Proof that the cubic Halin graph sequence of Example 4.5 has log-

concave genus polynomials is given in Appendix A. Proofs of log-concavity

for Example 4.6 are similar.
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6. Conclusions and conjectures

We have seen here how the use of vectorized production matrices, which
were introduced in [6] for calculating genus distributions of graphs that are
ring-like in structure, enables us to give formulas and to prove log-concavity
for genus distributions of various infinite sequences of cubic Halin graphs. In
the course of this, we have established a bijective correspondence between
rooted cubic Halin graphs and rooted binary trees.

Like iterated claws [5], Ringel ladders [7], and bar-rings [6] of copies
of K4, all of which have previously been proved to have log-concave genus
distributions, Halin graphs have treewidth 3. However, whereas these pre-
viously investigated families of graphs are linear or ring-like in structure,
Halin graphs are tree-like in structure, which is a fully general kind of struc-
ture.

We conclude with two conjectures regarding the log-concavity of the
genus distributions of several infinite sequences of cubic Halin graphs. Of
course, both conjectures are true if the general conjecture that all graphs
have log-concave genus polynomials is true.

Conjecture 6.1. Consider the sequence of cubic Halin graphs with genus
polynomial formulas given by the recursion (9) with initial condition (10).
Extend Examples 4.3–4.6 by showing that the genus polynomial Fn(z) is
log-concave for any initial pgd-vector F1(z).

It is not hard to extend Theorem 4.1 and its proof for other sequences
of cubic Halin graphs. Here, let us give one more example. We define the
following recurrence:

Pn(z) = (Pn−1)MY t,(15)

P1(z) = (v1, . . . , v6).(16)

If we denote the jth coordinate of the vector Pn(z) by P
(j)
n , we see from (15)

that the coordinates P
(j)
n satisfy the following recurrence system:

P (1)
n =

1 + 8z

2
P

(1)
n−1 + 2P

(2)
n−1 + 4P

(4)
n−1 +

1 + 8z

2z
P

(6)
n−1,

P (2)
n = zP

(1)
n−1 + 4zP

(2)
n−1 + P

(6)
n−1,

P (3)
n = zP

(1)
n−1 + 4zP

(2)
n−1 + 2(1 + 4z)P

(3)
n−1 + 8P

(5)
n−1 + P

(6)
n−1,

P (4)
n = 3zP

(1)
n−1 + 4zP

(2)
n−1 + 8zP

(4)
n−1 + 3P

(6)
n−1,
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P (5)
n = 2z2P

(3)
n−1 + 6zP

(3)
n−1 + 8zP

(5)
n−1 + 2zP

(6)
n−1,

P (6)
n =

z(1 + 8z)

2
P

(1)
n−1 + 2zP

(2)
n−1 + 4zP

(4)
n−1 +

1 + 8z

2
P

(6)
n−1

with the initial conditions (from (16)) P
(j)
1 = vj for all j = 1, 2, . . . , 6. Again,

note that the above recurrences system holds with v1, v2, . . . , v6 equal to

arbitrary functions of z. By similar arguments as in the proof of Theorem

4.1, we establish that the generating function G(t) =
∑

n≥1(
∑6

j=1 P
(j)
n )tn is

given by

Q(t) =
Q′(t)t

Q′′(t)
,(17)

where

Q′′(t) = 2z
(
1− (1 + 20z)t− 16z(1− 8z)t2 + 64z2(1− 4z)t3

)

·
(
1− 2(1 + 8z)t− 32z(1− 2z)t2

)
,

Q′(t) = 2z

6∑
i=1

vi

−
(
z(5 + 53z + 12z2)v1 + 2z(1 + 22z)(v2 + v3)− 2z(1− 24z)v4

− 2z(5− 28z)v5 − (1 + 13z − 60z2)v6

)
t+ 2

(
z(1− 9z + 314z2

− 152z3)v1 − 2z(1 + 18z − 96z2)v2 − 14z2(1− 12z)v3

− 2z(3 + 32z − 112z2)v4 − 2z(3 + 64z − 144z2)v5

− (1 + 15z + 190z2 − 360z3)v6

)
t2 + 32z

(
2z(1 + 11z − 69z2 + 44z3)v1

− z(1− 27z + 52z2)v2 + 2z2(2− 16z)v3 − z(5− 39z + 60z2)v4

− 2z(3− 30z + 40z2)v5 − 2(1 + 7z − 63z2 + 68z3)v6

)
t3

− 128z2
(
z(−3 + 47z − 138z2 + 88z3)v1 − 2z(1− 4z)(2− 3z)(v2 + v4)

+ 2z2(1− 4z)v3 − 2z(1− 4z)(3− 4z)v5

+ (3− 47z + 142z2 − 104z3)v6

)
t4

− 2048z3(1− z)(1− 2z)(1− 4z)(v1z − v6)t
5.
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Figure 10: (a) A sequence of Halin graphs AY0, AY1, AY2, . . ..
(b) Quadrangulation of a plane imbedding of AY3.

Conjecture 6.2. We define the polynomial qn(z) to be the coefficient of tn

in the generating function

Q(t) =
∑
n≥1

qn(z)t
n,

for Q(t) as in (17). Then the genus polynomials for the sequence of cubic

Halin graphs with genus polynomial qn(z) are log-concave for any initial

vector P1(z) = (v1, v2, . . . , v6).

For example, if P1(z) = (v1, v2, . . . , v6) = A = (2, 0, 0, 0, 0, 2z), then Q(t)

is the generating function for the genus polynomial

(((AMY t)MY t) · · ·MY t)MY t,

which is given by Q′(t)/Q′′(t), where

Q′(t) = 2t
(
(1 + z)− 2(1 + 10z + 12z2)t− 4z(3 + 4z)(2− 13z)t2

+ 64z2(2− 3z − 12z2)t3 − 256z4(1− 4z)t4
)
,

Q′′(t) = (1− (1 + 20z)t− 16z(1− 8z)t2 + 64z2(1− 4z)t3)·
· (1− 2(1 + 8z)t− 32z(1− 2z)t2).

This genus polynomial corresponds to the sequence of cubic Halin graphs

illustrated in Figure 10.
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Appendix A. Log-concavity proof for Example 4.5

Theorem A.1. The genus polynomial as defined in Example 4.5 is log-

concave.

Proof. Let gn(j) be defined as in (14). By direct calculations, with the help

of mathematical programming, we can see that the function gn(j) can be

expressed as

g′n(j) = (gn(j))
2 − gn(j − 1)gn(j + 1)

=
82j−2pn(j)(n− 2− j)!(n− 1− j)!

j!(j + 1)!(n+ 4− 2j)!(n+ 6− 2j)!

=
82j−2

(
an(j) + bn(j)2

n−2j + cn(j)2
2n−4j

)
(n− 2− j)!(n− 1− j)!

j!(j + 1)!(n+ 5− 2j)!(n+ 7− 2j)!
,

for all j = 0, 1, 2, . . . , n+4
2 . Fix n0 = 5. (It is not hard to see that gn(z) is a

log-concave polynomial, for n = 0, 1, . . . , n0 − 1.) Note that

pn(
n+ 4

2
) = 0,

pn(
n+ 3

2
) =

3

2048
(n− 5)(n2 − 1)2(n2 − 9)2(n+ 5)3,

pn(
n+ 2

2
) =

3

1024
n2(n2 − 16)(n2 − 4)2(3n2 + 34n+ 104)2,

pn(
n+ 1

2
) =

1

2048
(n2 − 3)(n2 − 1)2

(
397n6 + 13980n5 + 191365n4

+ 1300200n3 + 5232943n2 + 11254140n+ 14170815
)
,

pn(
n

2
) =

3

2048
n2(n2 − 4)

(
747n8 + 35544n7 + 635960n6 + 5330304n5

+ 27585968n4 + 96775296n3 + 207246080n2 + 328052736n

+ 424673280
)
,

pn(0) = 256(n− 1)(n+ 6)(n+ 5)(n+ 4)2(n+ 3)2(n+ 2)2(n+ 1)2n2,

which shows that g′n(j) ≥ 0, for all j = 0, n/2, . . . , n+4
2 , where n ≥ n0. Thus,

it remains to show that pn(j) ≥ 0 for all n ≥ n0 and j = j0, j0+1, . . . , n−m
2 ,

where j0 = 1 and m = 1. By help of mathematical programming, we have
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cn(j)

64j(j + 1)

= 2j(j + 1)
(
44j8 + 1496j7 + 19099j6 + 108761j5 + 272641j4 + 223379j3

+ 91976j2 − 70836j − 41760
)
+
(
16j10 + 1616j9 + 38136j8 + 372814j7

+ 1694724j6 + 3580360j5 + 3479084j4 + 1362866j3 − 519000j2 − 549816j

− 83520
)
(n− 2j − 1) +

(
192j9 + 10986j8 + 186496j7 + 1333805j6

+ 4356455j5 + 6563369j4 + 4379461j3 + 350132j2 − 1071664j

− 324624
)
(n− 2j − 1)2 +

(
984j8 + 38618j7 + 477683j6 + 2465405j5

+ 5699415j4 + 5896237j3 + 2059190j2 − 795164j − 510384
)
(n− 2j − 1)3

+
(
2816j7 + 79327j6 + 708717j5 + 2585905j4 + 4088631j3 + 2548087j2

− 8383j − 413140
)
(n− 2j − 1)4 +

(
4945j6 + 100227j5 + 633035j4

+ 1576145j3 + 1562517j2 + 370267j − 175156
)
(n− 2j − 1)5 +

(
5524j5

+ 79080j4 + 340468j3 + 538758j2 + 263590j − 27396
)
(n− 2j − 1)6

+
(
3946j4 + 38480j3 + 105812j2 + 90034j + 7740)(n− 2j − 1)7 + (1768j3

+ 11031j2 + 16901j + 4740
)
(n− 2j − 1)8

+ (473j2 + 1671j + 996)(n− 2j − 1)9 + 4(25 + 17j)(n− 2j − 1)10

+ 4(n− 2j − 1)11.

Note that each coefficient (n− 1− 2j)k in cn(j) is non-negative (to see
this, we expand it as a Taylor series at j = 1) for all j = j0, j0 + 1, . . . , n−m

2
and n ≥ n0, which implies that cn(j) ≥ 0. By considering the polynomial
b′n(j) = bn(j) + 2cn(j)(n− 2j), we can write

b′n(j)

2j

= 4j(j + 1)2
(
2114j8 + 71731j7 + 925904j6 + 5579116j5 + 17427686j4

+ 32050309j3 + 43226256j2 + 9744324j − 11049840
)
+ (j + 1)

(
10082j10

+ 454321j9 + 7680439j8 + 61907776j7 + 262181550j6 + 645130555j5
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+ 1119325261j4 + 1174012884j3 + 367290188j2 − 182491296j

− 49544640
)
(n− 2j − 1) +

(
1554j11 + 176992j10 + 4935781j9

+ 59186354j8 + 358814772j7 + 1221679428j6 + 2695500871j5

+ 4142206876j4 + 3806547986j3 + 1327933310j2 − 336379012j

− 201485808
)
(n− 2j − 1)2 +

(
18657j10 + 1179722j9 + 22969084j8

+ 198950098j7 + 886460794j6 + 2332944710j5 + 4149168772j4

+ 4798258248j3 + 2670254581j2 + 9055894j − 335614096
)
(n− 2j − 1)3

+
(
95517j9 + 4102990j8 + 57791208j7 + 366417456j6 + 1231628848j5

+ 2585411604j4 + 3623269603j3 + 2789382330j2 + 509187784j

− 290774124
)
(n− 2j − 1)4 +

(
272217j8 + 8360350j7 + 85575280j6

+ 399853916j5 + 1040794390j4 + 1756122824j3 + 1767468877j2

+ 626324782j − 130173756
)
(n− 2j − 1)5 +

(
473154j7 + 10454268j6

+ 77270344j5 + 269375610j4 + 558835786j3 + 720028758j2

+ 394308268j − 15248716
)
(n− 2j − 1)6 +

(
517065j6 + 8103196j5

+ 43007904j4 + 115604554j3 + 191125107j2 + 151161034j

+ 14704212
)
(n− 2j − 1)7 +

(
353319j5 + 3832486j4 + 14871169j3

+ 32398334j2 + 36637976j9011484
)
(n− 2j − 1)8 +

(
145113j4

+ 1072206j3 + 3300683j2 + 5503362j + 2483116
)
(n− 2j − 1)9

+
(
32808j3 + 176084j2 + 471768j + 382764

)
(n− 2j − 1)10

+ (3396j2 + 18384j + 31884)(n− 2j − 1)11 + (96j + 1120)(n− 2j − 1)12.

Note here that each coefficient (n − 1 − 2j)k in b′n(j) is non-negative

(again, we need only expand it as a Taylor series at j = 1) for all j =

j0, j0+1, . . . , n−m
2 and n ≥ n0, which implies that b′n(j) ≥ 0. By considering

the polynomial

b′′n(j) = an(j) + 2bn(j)(n− 2j) + 4cn(j)(n− 2j)2
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we can write

b′′n(j)

2j

= 4j(j + 1)2
(
2114j8 + 71731j7 + 925904j6 + 5579116j5 + 17427686j4

+ 32050309j3 + 43226256j2 + 9744324j − 11049840
)
+ (j + 1)

(
10082j10

+ 454321j9 + 7680439j8 + 61907776j7 + 262181550j6 + 645130555j5

+ 1119325261j4 + 1174012884j3 + 367290188j2 − 182491296j

− 49544640
)
(n− 2j − 1) + (1554j11 + 176992j10 + 4935781j9

+ 59186354j8 + 358814772j7 + 1221679428j6 + 2695500871j5

+ 4142206876j4 + 3806547986j3 + 1327933310j2 − 336379012j

− 201485808
)
(n− 2j − 1)2 +

(
18657j10 + 1179722j9 + 22969084j8

+ 198950098j7 + 886460794j6 + 2332944710j5 + 4149168772j4

+ 4798258248j3 + 2670254581j2 + 9055894j − 335614096
)
(n− 2j − 1)3

+
(
95517j9 + 4102990j8 + 57791208j7 + 366417456j6

+ 1231628848j5 + 2585411604j4 + 3623269603j3 + 2789382330j2

− 290774124 + 509187784j
)
(n− 2j − 1)4 +

(
272217j8 + 8360350j7

+ 85575280j6 + 399853916j5 + 1040794390j4 + 1756122824j3

+ 1767468877j2 + 626324782j − 130173756
)
(n− 2j − 1)5

+
(
473154j7 + 10454268j6 + 77270344j5 + 269375610j4

+ 558835786j3 + 720028758j2 + 394308268j − 15248716
)
(n− 2j − 1)6

+
(
517065j6 + 8103196j5 + 43007904j4 + 115604554j3

+ 191125107j2 + 151161034j + 14704212
)
(n− 2j − 1)7

+
(
353319j5 + 3832486j4 + 14871169j3 + 32398334j2

+ 36637976j + 9011484
)
(n− 2j − 1)8 +

(
145113j4 + 1072206j3

+ 3300683j2 + 5503362j + 2483116
)
(n− 2j − 1)9 +

(
32808j3
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+ 176084j2 + 471768j + 382764
)
(n− 2j − 1)10 +

(
3396j2

+ 18384j + 31884
)
(n− 2j − 1)11 + (96j + 1120)(n− 2j − 1)12.

Note here, too, that each coefficient (n−1−2j)k in b′′n(j) is non-negative
(once again, we need only expand it as a Taylor series at j = 1) for all
j = j0, j0+1, . . . , n−m

2 and n ≥ n0, which implies that b′′n(j) ≥ 0. Therefore,
by Theorem 5.1, the polynomial g′n(j) ≥ 0 for all j = j0, j0+1, . . . , n−m

2 and
n ≥ 5. It follows that the polynomial gn(z) is log-concave.
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