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Harmonic vectors and matrix tree theorems

Siddhartha Sahi

This paper describes an explicit combinatorial formula for a har-
monic vector for the Laplacian of a directed graph with arbitrary
edge weights. This result was motivated by questions from math-
ematical economics, and the formula plays a crucial role in recent
work of the author on the emergence of prices and money in an
exchange economy.

It turns out that the formula is closely related to well-studied
problems in graph theory, in particular to the so-called weighted
matrix tree theorem due to W. Tutte and independently to R. Bott
and J. Mayberry. As a further application of our considerations,
we obtain a short new proof of both the matrix tree theorem as
well as its generalization due to S. Chaiken.
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1. Introduction

In this paper we prove a new result in graph theory that was motivated by
considerations in mathematical economics, more precisely, by the problem of
price formation in an exchange economy [4]. The aggregate demand/supply
in the economy is described by an n × n matrix A = (aij) where aij is the
amount of commodity j that is on offer for commodity i. In this context one
defines a market-clearing price vector to be a vector p with strictly positive
components pi, which satisfies the equation

(1)
∑
j

aijpj =
∑
j

ajipi for all i.

The left side of (1) represents the total value of all commodities being offered
for commodity i, while the right side represents the total value of commodity
i in the market. It was shown in [4] that if the matrix A is irreducible, i.e.
if it cannot be permuted to block upper-triangular form, then (1) admits a
positive solution vector p, which is unique up to a positive multiple.
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The primary purpose of the present paper is to describe an explicit
combinatorial formula for p. The formula and its proof are completely ele-
mentary, but nonetheless the result seems to be new. This formula plays a
crucial role in [5], which seeks to address a fundamental question in mathe-
matical economics: How do prices and money emerge in a barter economy?
We show in [5] that among a reasonable class of exchange mechanisms, trade
via a commodity money, even in the absence of transactions costs, minimizes
complexity in a very precise sense.

It turns out however that equation (1) is closely related to well-studied
problems in graph theory, in particular to the so-called matrix tree theorems.
Therefore as an additional application of our formula, we give an elementary
proof of the matrix tree theorem of W. Tutte [6], which was independently
discovered by R. Bott and J. Mayberry [2] coincidentally also in an economic
context. With a little additional effort, we also obtain a short new proof of
S. Chaiken’s generalization of the matrix tree theorem [3].

2. Harmonic vectors

We first give a slight reformulation and reinterpretation of equation (1)
in standard graph-theoretic language. Let G be a simple directed graph
(digraph) on the vertices 1, 2, . . . , n, with weight aij attached to the edge
ij from i to j. The weighted adjacency matrix of G is the n × n matrix
A = (aij), where aij = 0 for missing edges. The weighted degree matrix D
is the diagonal matrix with diagonal entries (d1, . . . , dn), where di =

∑
j aji

is the weighted in-degree of the vertex i. The Laplacian of G is the matrix
L = D − A and we say that a vector x = (xi) is harmonic if x is a null
vector of L, i.e. if it satisfies

(2) Lx = 0.

It is easy to see that equation (1) is equivalent to equation (2), i.e. the
market-clearing condition is the same as harmonicity of p.

To describe our construction of a harmonic vector, we introduce some
terminology. A directed tree, also known as an arborescence, is a digraph
with at most one incoming edge ij at each vertex j, and whose underlying
undirected graph is acyclic and connected (i.e. a tree). Following the edges
backwards from any vertex we eventually arrive at the same vertex called the
root. Dropping the connectivity requirement leads to the notion of a directed
forest, which is simply a vertex-disjoint union of directed trees. We define a
dangle to be a digraph D that is an edge-disjoint union of a directed forest
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F and a directed cycle C linking the roots of F ; note that D determines C

and F uniquely, the former as its unique simple cycle.

In the context of the digraph G, we will use the term i-tree to mean a

directed spanning tree of G with root i, and i-dangle to mean a spanning

dangle whose cycle contains i. We define the weight wt (Γ) of a subgraph

Γ of G to be the product of weights of all the edges of Γ, and we define

the weight vector of G to be w = (wi) where wi is the weighted sum of all

i-trees.

Theorem 1. The weight vector of a digraph is harmonic.

Proof. If Γ is an i-dangle in G with cycle C, and ij and ki are the unique

outgoing and incoming edges at i in C, then deleting one of these edges

from Γ gives rise to an j-tree and a i-tree, respectively. The dangle can be

recovered uniquely from each of the two trees by reconnecting the respective

edges; thus, writing Ti for the set of i-trees, we obtain bijections from the

set of i-dangles to each of the following sets

{(ij, t) : t ∈ Tj} , {(ki, t) : t ∈ Ti} ,

where ij and ki range over all outgoing and incoming edges at i in G.

Thus if vi is the weighted sum of all i-dangles, we get

∑
j

aijwj = vi =
∑
k

akiwi.

Rewriting this we get Aw = Dw, and hence (D −A)w = 0, as desired.

3. The matrix tree theorem

In this section we use Theorem 1 to derive the weighted matrix tree theorem

due to [6] (see also [2]). This is the following formula for the cofactors of the

Laplacian L, which generalizes a classical formula of Kirchoff for the number

of spanning trees in an undirected graph.

Theorem 2. The ij-th cofactor of the Laplacian L is given by

cij (L) =
∑
t∈Tj

wt (t) for all i, j.

We will prove this in a moment after some discussion on cofactors.
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3.1. Interlude on cofactors

We recall that ij-th cofactor of an n× n matrix X is

cij (X) = (−1)i+j detXij ,

where Xij is the matrix obtained from X by deleting row i and column j.
The adjoint of X is the n× n matrix adj (X) whose ij-th entry is cji (X).

Lemma 3. If detX = 0 then the columns of adj (X) are null vectors of X;
moreover these are the same null vector if the columns of X sum to 0.

Proof. By standard linear algebra we have X adj (X) = (detX) In. If
detX = 0 then X adj (X) is the zero matrix, which implies the first part.
For the second part we note that if X has zero column sums then necessarily
detX = 0. In view of the first part it suffices to show that cij (L) = ci+1,j (L)
for all i, j; or equivalently that

detLij + detLi+1,j = 0.

The left side above equals detP , where P is obtained from L by deleting
column j and replacing rows i and i+1 by the single row consisting of their
sum. But P too has zero column sums, and so detP = 0.

3.2. Proof of the matrix tree theorem

Proof. It suffices to prove Theorem 2 for the complete simple digraph Gn

on n vertices, with edge weights {aij | i �= j} regarded as variables, and we
work over the field of rational functions C (aij). The Laplacian L has zero
column sums by construction, and so by the previous lemma, cj := cij (L)
is independent of i and the vector c =(c1, . . . , cn)

t is a null vector for L.
To complete the proof it suffices to show that the null vectors c and w are
equal. Now the null space of L is 1-dimensional since cij (L) �= 0, and hence

(3) ciwj = cjwi for all i, j.

Note that cj and wj belong to the polynomial ring C [aij ]. We claim that
the polynomials cj are distinct and irreducible. Consider first cn = detB
where B = Lnn has entries

bij =

{
−aij if i �= j

anj +
∑n−1

k=1 akj if i = j
; for 1 ≤ i, j ≤ n− 1.
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This is an invertible C-linear map relating {bij} to the (n− 1)2 variables

{aij | 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1, i �= j} ,

which occur in cn. Thus the irreducibility of cn follows from the irreducibility

of the determinant as a polynomial in the matrix entries [1]. The argument

for the other ci is similar, and their distinctness is obvious.

Since ci and cj are distinct and irreducible, we conclude from formula (3)

that ci divides wi. Since ci and wi both have total degree n−1, we conclude

that wi = αci for some α ∈ C. To prove that α = 1, it suffices to note that

the monomial mi =
∏

j �=i aij occurs in both ci and wi with coefficient 1.

4. The all minors theorem

The all minors theorem [3] is a formula for detLIJ , where LIJ is the subma-

trix of L obtained by deleting rows I and columns J . It turns out this follows

from Theorem 2 by a specialization of variables. We will state and prove this
below after a brief discussion on signs of permutations and bijections.

4.1. Interlude on signs

Let I, J be equal-sized subsets of {1, . . . , n} and let ΣI ,ΣJ denote the sums

of their elements. If β : J → I is a bijection, we write inv (β) for the number

of inversions in β, i.e. pairs j < j′ in J such that β (j) > β (j′) and we define

ε (β) = (−1)inv(β)+ΣI+ΣJ .

Note that if J = I then ε (σ) = (−1)inv(σ) is the sign of σ as a permutation.

Lemma 4. If β : J → I, α : I → H are bijections then ε (αβ) = ε (α) ε (β).

Proof. This follows by combining the following mod 2 congruences

ΣH +ΣI +ΣI +ΣJ ≡ ΣH +ΣJ

inv (α) + inv (β) ≡ inv (αβ)

the first of which is obvious. To establish the second congruence we replace

α, β by the permutations λα, βμ of I, where λ : H → I, μ : I → J are

the unique order-preserving bijections; this does not affect inv (α) etc., and

reduces the second congruence to a standard fact about permutations.
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The meaning of ε (β) is clarified by the following result. For a bijection
β : J → I and any n× n matrix X, let Xβ be the matrix obtained from X
by replacing, for each j ∈ J , the jth column of X by the unit vector eβ(j).

Lemma 5. We have detXβ = ε (β) detXIJ .

Proof. If σ is a permutation of I then by the previous lemma, and standard
properties of the determinant, we have

ε (σβ) = ε (σ) ε (β) , detXσβ = ε (σ) detXβ.

Thus replacing β by a suitable σβ, we may assume inv (β) = 0 and write

I = {i1 < · · · < ip} , J = {j1 < · · · < jp} with β (jk) = ik for all k.

The lemma now follows from the identity

detXβ = (−1)ip+jp · · · (−1)i1+j1 detXIJ = (−1)ΣI+ΣJ detXIJ

obtained by iteratively expanding detXβ along columns jp, . . . , j1.

4.2. Directed forests

Let F (J) be the set of all directed spanning forests f of G with root set
J . Let F ⊂ F (J) be the subset consisting of those forests f such that each
tree of f contains a unique vertex of I. Note that the trees of f ∈ F give a
bijection βf : J → I. The all minors theorem is the following formula [3].

Theorem 6. We have detLIJ =
∑

f∈F ε (βf ) wt (f).

We fix a bijection β : J → I and define σf = β−1βf : J → J . In view
of Lemmas 4 and 5, it suffices to prove the following reformulation of the
previous theorem.

Theorem 7. We have detLβ =
∑

f∈F ε (σf ) wt (f).

Proof. As usual it is enough to treat the complete digraph Gn with arbitrary
edge weights aij . We fix an index j0 ∈ J and put i0 = β (j0), J0 = J \ {j0}.
We now consider a particular specialization āij of aij , and the entries l̄ij of
the specialized Laplacian L̄. For j /∈ J0 we set āij = aij and hence l̄ij = aij ;
while for j ∈ J0 we set

(4) āij =

⎧⎨
⎩

1 if i = i0
−1 if i = β (j)
0 otherwise

=⇒ l̄ij =

⎧⎨
⎩

−1 if i = i0
1 if i = β (j)
0 otherwise
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Note that L̄ and Lβ have the same entries outside of row i0 and column j0;
hence we get detLβ = ci0j0 (Lβ) = ci0j0(L̄) and it remains to show that

(5) ci0j0
(
L̄
) ?
=

∑
f∈F

ε (σf ) wt (f) .

Specializing Theorem 2 we get

ci0j0
(
L̄
)
=

∑
f∈F(J)

ψ (f) wt (f) , ψ (f) :=
∑
t∈Af

(−1)p(t) ,

where Af is the set of j0-trees t such that for each j ∈ J0 the unique edge ij
in t satisfies i = i0 or i = β (j), and for which deleting all such edges from t
yields the forest f ; and where p (t) is the number of edges in t of type i0j,
j ∈ J0. Therefore to prove equality in formula (5) it suffices to show

ψ (f)
?
=

{
0 if f /∈ F

ε (σf ) if f ∈ F .

First suppose f /∈ F . In this case if t ∈ Af there is some j ∈ J0 such that
the j-subtree contains no I vertex. Choose the largest such j and change
the edge ij, from i = i0 to i = β (j) or vice versa. This is a sign-reversing
involution on Af and hence we get ψ (f) = 0.

Now let f ∈ F , and for each subset S ⊂ J0 consider the graph obtained
from f by adding the edges i0j for j ∈ S, and β (j) j for j ∈ J0 \ S. This
graph is a tree in Af iff S meets every cycle c of the permutation σf of J ,
and is disconnected otherwise. Thus a tree t ∈ Af is prescribed uniquely by
choosing, for each cycle c of σf , a nonempty subset Sc of its vertex set Jc.

By definition we have (−1)p(t) =
∏

c (−1)|Jc|−|Sc|, and so ψ (f) factors as

ψ (f) =
∏
c

ψ (c) , ψ (c) :=
∑

Jc⊇Sc �=∅
(−1)|Jc|−|Sc| .

Now we get ψ (c) = (−1)|Jc|−1 using the elementary identity

m∑
k=1

(
m

k

)
(−1)m−k = (1− 1)m − (−1)m = (−1)m−1 .

Thus ψ (f) agrees with the standard formula
∏

c (−1)|Jc|−1 for ε (σf ).
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