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Harmonic vectors and matrix tree theorems

SIDDHARTHA SAHI

This paper describes an explicit combinatorial formula for a har-
monic vector for the Laplacian of a directed graph with arbitrary
edge weights. This result was motivated by questions from math-
ematical economics, and the formula plays a crucial role in recent
work of the author on the emergence of prices and money in an
exchange economy.

It turns out that the formula is closely related to well-studied
problems in graph theory, in particular to the so-called weighted
matrix tree theorem due to W. Tutte and independently to R. Bott
and J. Mayberry. As a further application of our considerations,
we obtain a short new proof of both the matrix tree theorem as
well as its generalization due to S. Chaiken.
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1. Introduction

In this paper we prove a new result in graph theory that was motivated by
considerations in mathematical economics, more precisely, by the problem of
price formation in an exchange economy [4]. The aggregate demand/supply
in the economy is described by an n x n matrix A = (a;;) where a;; is the
amount of commodity j that is on offer for commodity . In this context one
defines a market-clearing price vector to be a vector p with strictly positive
components p;, which satisfies the equation

(1) Z aijpj = Z a;jip; for all 7.

The left side of (1) represents the total value of all commodities being offered
for commodity 4, while the right side represents the total value of commodity
i in the market. It was shown in [4] that if the matrix A is irreducible, i.e.
if it cannot be permuted to block upper-triangular form, then (1) admits a
positive solution vector p, which is unique up to a positive multiple.
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The primary purpose of the present paper is to describe an explicit
combinatorial formula for p. The formula and its proof are completely ele-
mentary, but nonetheless the result seems to be new. This formula plays a
crucial role in [5], which seeks to address a fundamental question in mathe-
matical economics: How do prices and money emerge in a barter economy?
We show in [5] that among a reasonable class of exchange mechanisms, trade
via a commodity money, even in the absence of transactions costs, minimizes
complexity in a very precise sense.

It turns out however that equation (1) is closely related to well-studied
problems in graph theory, in particular to the so-called matrix tree theorems.
Therefore as an additional application of our formula, we give an elementary
proof of the matrix tree theorem of W. Tutte [6], which was independently
discovered by R. Bott and J. Mayberry [2] coincidentally also in an economic
context. With a little additional effort, we also obtain a short new proof of
S. Chaiken’s generalization of the matrix tree theorem [3].

2. Harmonic vectors

We first give a slight reformulation and reinterpretation of equation (1)
in standard graph-theoretic language. Let G be a simple directed graph
(digraph) on the vertices 1,2,...,n, with weight a;; attached to the edge
ij from i to j. The weighted adjacency matrix of G is the n x n matrix
A = (aij), where a;; = 0 for missing edges. The weighted degree matrix D
is the diagonal matrix with diagonal entries (d1,...,d,), where d; =) ; @ji
is the weighted in-degree of the vertex i. The Laplacian of G is the matrix
L = D — A and we say that a vector x = (x;) is harmonic if x is a null
vector of L, i.e. if it satisfies

(2) Lx =0.

It is easy to see that equation (1) is equivalent to equation (2), i.e. the
market-clearing condition is the same as harmonicity of p.

To describe our construction of a harmonic vector, we introduce some
terminology. A directed tree, also known as an arborescence, is a digraph
with at most one incoming edge ij at each vertex j, and whose underlying
undirected graph is acyclic and connected (i.e. a tree). Following the edges
backwards from any vertex we eventually arrive at the same vertex called the
root. Dropping the connectivity requirement leads to the notion of a directed
forest, which is simply a vertex-disjoint union of directed trees. We define a
dangle to be a digraph D that is an edge-disjoint union of a directed forest
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F' and a directed cycle C' linking the roots of F'; note that D determines C
and F' uniquely, the former as its unique simple cycle.

In the context of the digraph G, we will use the term i-tree to mean a
directed spanning tree of G with root i, and i-dangle to mean a spanning
dangle whose cycle contains i. We define the weight wt (I') of a subgraph
I' of G to be the product of weights of all the edges of I', and we define
the weight vector of G to be w = (w;) where w; is the weighted sum of all
i-trees.

Theorem 1. The weight vector of a digraph is harmonic.

Proof. If T" is an i-dangle in G with cycle C, and 7j and ki are the unique
outgoing and incoming edges at ¢ in C, then deleting one of these edges
from I' gives rise to an j-tree and a i-tree, respectively. The dangle can be
recovered uniquely from each of the two trees by reconnecting the respective
edges; thus, writing 7; for the set of i-trees, we obtain bijections from the
set of i-dangles to each of the following sets

{(ij,t):té'n}, {(k?i,t):teﬁ},

where ¢ and ki range over all outgoing and incoming edges at ¢ in G.
Thus if v; is the weighted sum of all i-dangles, we get

E aijwj = V; = E Qe Wy«
7 k

Rewriting this we get Aw = Dw, and hence (D — A) w = 0, as desired. [
3. The matrix tree theorem

In this section we use Theorem 1 to derive the weighted matriz tree theorem
due to [6] (see also [2]). This is the following formula for the cofactors of the
Laplacian L, which generalizes a classical formula of Kirchoff for the number
of spanning trees in an undirected graph.

Theorem 2. The ij-th cofactor of the Laplacian L is given by

cij (L) = Z wt (t) for all i, j.

teT;

We will prove this in a moment after some discussion on cofactors.
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3.1. Interlude on cofactors

We recall that ij-th cofactor of an n X n matrix X is
Cij (X) = (—1)Z+] det X’ij7

where X;; is the matrix obtained from X by deleting row 7 and column j.
The adjoint of X is the n x n matrix adj (X) whose ij-th entry is cj; (X).

Lemma 3. Ifdet X = 0 then the columns of adj (X) are null vectors of X;
moreover these are the same null vector if the columns of X sum to 0.

Proof. By standard linear algebra we have X adj(X) = (detX)I,. If
det X = 0 then X adj(X) is the zero matrix, which implies the first part.
For the second part we note that if X has zero column sums then necessarily
det X = 0. In view of the first part it suffices to show that ¢;; (L) = ¢;11,5 (L)
for all 4, j; or equivalently that

det Li]’ + det Li+1,j =0.

The left side above equals det P, where P is obtained from L by deleting
column j and replacing rows ¢ and ¢+ 1 by the single row consisting of their
sum. But P too has zero column sums, and so det P = 0. Il

3.2. Proof of the matrix tree theorem

Proof. 1t suffices to prove Theorem 2 for the complete simple digraph G,
on n vertices, with edge weights {a;; | i # j} regarded as variables, and we
work over the field of rational functions C (a;;). The Laplacian L has zero
column sums by construction, and so by the previous lemma, ¢; := ¢;; (L)
is independent of i and the vector ¢ =(cy,...,cp)" is a null vector for L.
To complete the proof it suffices to show that the null vectors ¢ and w are
equal. Now the null space of L is 1-dimensional since ¢;; (L) # 0, and hence

(3) ciw; = cjw; for all 4, j.

Note that ¢; and w; belong to the polynomial ring C [a;;]. We claim that
the polynomials c¢; are distinct and irreducible. Consider first ¢, = det B
where B = L, has entries

bij _ { — Qi if 4 75 ]

_ 00y for1<idj<n—1.
anj+zzz%akj ifi=j J
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This is an invertible C-linear map relating {b;;} to the (n — 1)* variables
fag[1<i<n1<j<n—1i#j},

which occur in ¢,. Thus the irreducibility of ¢, follows from the irreducibility
of the determinant as a polynomial in the matrix entries [1]. The argument
for the other ¢; is similar, and their distinctness is obvious.

Since ¢; and ¢; are distinct and irreducible, we conclude from formula (3)
that ¢; divides w;. Since ¢; and w; both have total degree n — 1, we conclude
that w; = ac; for some o € C. To prove that o = 1, it suffices to note that
the monomial m; =[] i (i occurs in both ¢; and w; with coefficient 1. [

4. The all minors theorem

The all minors theorem [3] is a formula for det Ly, where Ly is the subma-
trix of L obtained by deleting rows I and columns J. It turns out this follows
from Theorem 2 by a specialization of variables. We will state and prove this
below after a brief discussion on signs of permutations and bijections.

4.1. Interlude on signs

Let I, J be equal-sized subsets of {1,...,n} and let X7, ¥; denote the sums
of their elements. If 5 : J — [ is a bijection, we write inv (§) for the number
of inversions in 3, i.e. pairs j < j’ in J such that 8 (j) > 8 (j') and we define

e(B) = (=1)mvB+EAES

Note that if J = I then ¢ (¢) = (—1)") is the sign of o as a permutation.
Lemma 4. If 5:J — I, a: I — H are bijections then € (af) = ¢ (o) € (B).

Proof. This follows by combining the following mod 2 congruences

YH X+ X +Yy =Yg+ 2
inv (@) + inv () = inv (af)

the first of which is obvious. To establish the second congruence we replace
a, B by the permutations Aa, Sy of I, where A : H — I,u : I — J are
the unique order-preserving bijections; this does not affect inv («) etc., and
reduces the second congruence to a standard fact about permutations. [
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The meaning of € (f) is clarified by the following result. For a bijection
B :J — I and any n x n matrix X, let Xg be the matrix obtained from X
by replacing, for each j € J, the jth column of X by the unit vector eg

Lemma 5. We have det Xg = ¢ () det X7;.

i)

Proof. If o is a permutation of I then by the previous lemma, and standard
properties of the determinant, we have

e(of) =c€(o)e(f), det Xop =€ (o) det Xp.
Thus replacing 3 by a suitable o3, we may assume inv (8) = 0 and write
I'={iy<---<ipt, J={j1 < <jp} with 3 (ji) = i, for all k.
The lemma now follows from the identity
det Xg = (—1)" 1 ... (=1)" I det Xp5 = (1) det X1
obtained by iteratively expanding det Xg along columns j,,. .., ji. O
4.2. Directed forests

Let F(J) be the set of all directed spanning forests f of G with root set
J. Let F C F(J) be the subset consisting of those forests f such that each
tree of f contains a unique vertex of I. Note that the trees of f € F give a
bijection f¢: J — I. The all minors theorem is the following formula [3].

Theorem 6. We have det Ly = >z (Br) wt (f).

We fix a bijection 3 : J — I and define oy = B‘lﬂf :J — J. In view
of Lemmas 4 and 5, it suffices to prove the following reformulation of the
previous theorem.

Theorem 7. We have det Lg = ;€ (o) wt (f).

Proof. As usual it is enough to treat the complete digraph G,, with arbitrary
edge weights a;;. We fix an index jo € J and put ig = 5 (jo), Jo = J \ {Jo}-
We now consider a particular specialization a;; of a;;, and the entries Zij of
the specialized Laplacian L. For j ¢ Jo we set a;; = a;; and hence l_ij = a;j;
while for j € Jy we set

1 ifi=1p B -1 ifi=1g
(4) ajj = -1 ifi=p(y) = lLij= 1 ifi=p())
0 otherwise 0  otherwise
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Note that L and Lg have the same entries outside of row 7y and column jo;

hence we get det Lg = ¢;,j, (Lg) = ¢iyj, (L) and it remains to show that

(5) Ciojo (L) = Y e (o) wt (f) .

feFr

Specializing Theorem 2 we get

Cingo (L) = D ()Wt (f), ¥ (f) =D (-1)PY,
)

feFr(J teAy

where A is the set of jo-trees t such that for each j € Jy the unique edge 7j
in ¢ satisfies i = ig or i = B (j), and for which deleting all such edges from ¢
yields the forest f; and where p(¢) is the number of edges in ¢ of type g7,
j € Jo. Therefore to prove equality in formula (5) it suffices to show

? 0 it f¢F
vif)= { e(oy) if feF

First suppose f ¢ F. In this case if t € Ay there is some j € Jy such that
the j-subtree contains no I vertex. Choose the largest such j and change
the edge ij, from ¢ = ip to i = [ (j) or vice versa. This is a sign-reversing
involution on Ay and hence we get ¥ (f) = 0.

Now let f € F, and for each subset S C Jy consider the graph obtained
from f by adding the edges igj for j € S, and S (j)j for j € Jo \ S. This
graph is a tree in Ay iff S meets every cycle c of the permutation o of J,
and is disconnected otherwise. Thus a tree t € Ay is prescribed uniquely by
choosing, for each cycle ¢ of oy, a nonempty subset S, of its vertex set J..
By definition we have (—1)P® = I (=1)<I=15l "and so v (f) factors as

v =[Iv@, ¢@:= 3 (sl

J2S.#0

Now we get 9 (¢) = (—1)|‘J°|_1 using the elementary identity

Zm: (Z) ()™ F = (1 —1)™ — (—1)™ = (—1)".

k=1

Thus 1 (f) agrees with the standard formula [], (=)= for & (of). O
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