Sidon sets and graphs without 4-cycles

MICHAEL TAIT^{*} AND CRAIG TIMMONS^{*}

The problem of determining the maximum number of edges in an n-vertex graph that does not contain a 4-cycle has a rich history in extremal graph theory. Using Sidon sets constructed by Bose and Chowla, for each odd prime power q we construct a graph with $q^2 - q - 2$ vertices that does not contain a 4-cycle and has at least $\frac{1}{2}q^3 - q^2 - O(q^{3/4})$ edges. This disproves a conjecture of Abreu, Balbuena, and Labbate concerning the Turán number $ex(q^2 - q 2, C_4$).

Keywords and phrases: Turan number, Sidon set, 4-cycle.

1. Introduction

Let F be a graph. The Turán number of F, denoted $ex(n, F)$, is the maximum number of edges in an *n*-vertex graph that does not contain F as a subgraph. Determining $ex(n, F)$ for different graphs F is one of the central problems in extremal combinatorics. One of the most studied cases is the Turán number of C_4 , the cycle on four vertices. It is known that $ex(n, C_4) \le$ $\frac{1}{2}n^{3/2} + o(n^{3/2})$ for every $n \to \infty$ (see [\[2\]](#page-9-0)). It is more difficult to construct *n*-vertex graphs without 4-cycles that have $\frac{1}{2}n^{3/2} + o(n^{3/2})$ edges. Using polarity graphs of projective planes, Brown $[4]$, Erdős, Rényi, and Sós $[7]$ independently proved that for each prime power q , $ex(q^2+q+1, C_4) \geq \frac{1}{2}q(q+1)^2$. To define polarity graphs we need some terminology from finite geometry.

Let P and L be disjoint sets and $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$. Elements of P are called points, elements of $\mathcal L$ are called *lines*, and $\mathcal I$ defines an incidence relation on the pair $(\mathcal{P}, \mathcal{L})$. Let $\pi : \mathcal{P} \cup \mathcal{L} \rightarrow \mathcal{P} \cup \mathcal{L}$ be a bijection such that $\pi(\mathcal{P}) = \mathcal{L}$, $\pi(\mathcal{L}) = \mathcal{P}, \pi^2 = id$, and for all $p \in \mathcal{P}$ and $l \in \mathcal{L}$ we have $(p, l) \in \mathcal{I}$ if and only if $(\pi(l), \pi(p)) \in \mathcal{I}$. The map π is a *polarity* of the geometry $(\mathcal{P}, \mathcal{L}, \mathcal{I})$. The polarity graph G_{π} of the geometry $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ with respect to π is the graph with vertex set $V(G_{\pi}) = \mathcal{P}$ and edge set

$$
E(G_{\pi}) = \{ \{p, q\} : p, q \in \mathcal{P}, p \neq q, \text{and } (p, \pi(q)) \in \mathcal{I} \}.
$$

arXiv: [1309.6350](http://arxiv.org/abs/1309.6350)

[∗]Both authors were partially supported by NSF Grant DMS-1101489 through Jacques Verstraëte.

A point p is an absolute point of π if $(p, \pi(p)) \in \mathcal{I}$.

If $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ is a finite projective plane of order q and π is an orthogonal polarity (one with exactly $q+1$ absolute points), then the polarity graph will have q^2+q+1 vertices, have $\frac{1}{2}q(q+1)^2$ edges, and will not contain a 4-cycle. The constructions of [\[4\]](#page-9-1) and [\[7\]](#page-10-0) are polarity graphs of the projective plane $PG(2, \mathbb{F}_q)$ where q is a prime power and \mathbb{F}_q is the finite field with q elements. The polarity is the orthogonal polarity sending the point (x_0, x_1, x_2) to the line $[x_0, x_1, x_2]$ and vice versa (see [\[2\]](#page-9-0) or [\[11\]](#page-10-1) for more details). These polarity graphs show that for any prime power q , $ex(q^2 + q + 1, C_4) \ge \frac{1}{2}q(q+1)^2$.

The exact value of $ex(n, C_4)$ was determined using computer searches ([\[6\]](#page-10-2), [\[14\]](#page-10-3)) for all $n \leq 31$. Füredi [\[10\]](#page-10-4) proved that whenever $q \geq 13$ is a prime power, $ex(q^2 + q + 1, C_4) \leq \frac{1}{2}q(q+1)^2$ thus we get the exact result $\operatorname{ex}(q^2 + q + 1, C_4) = \frac{1}{2}q(q+1)^2$ for all prime powers $q \ge 13$. It was also shown in [\[10\]](#page-10-4) that the only graphs with $q^2 + q + 1$ vertices and $\frac{1}{2}q(q+1)^2$ edges that do not contain 4-cycles are orthogonal polarity graphs of finite projective planes. Along with the constructions of [\[4\]](#page-9-1) and [\[7\]](#page-10-0), the results of Füredi are the most important contributions to the 4-cycle Turán problem. Recently Firke, Kosek, Nash, and Williford [\[9\]](#page-10-5) proved that for even q , $ex(q^2+$ q, C_4) $\leq \frac{1}{2}q(q+1)^2 - q$. If q is a power of two then we have the exact result $\exp(q^2 + q, C_4) = \frac{1}{2}q(q+1)^2 - q$. The lower bound in this case comes from taking an orthogonal polarity graph of a projective plane of order q and removing a vertex of degree q.

The results we have mentioned so far describe all of the cases in which an exact formula for $ex(n, C_4)$ is known. Using known results on densities of primes, one has the asymptotic result $ex(n, C_4) = \frac{1}{2}n^{3/2} + o(n^{3/2})$ but there are still many open problems concerning graphs with 4-cycles. For example, Erdős and Simonovits $[8]$ conjectured that if G is any n-vertex graph with $ex(n, C_4) + 1$ edges, then G must contain at least $n^{1/2} + o(n^{1/2})$ copies of C_4 . For more on the Turán problems for C_4 and other bipartite Turán problems we refer the reader to the excellent survey of Füredi and Simonovits $[11]$.

While investigating adjacency matrices of polarity graphs of $PG(2, \mathbb{F}_q)$ with respect to the orthogonal polarity, Abreu, Balbuena, and Labbate [\[1\]](#page-9-2) were able to find subgraphs of a polarity graph that have many edges. By deleting such a subgraph, Abreu et al. [\[1\]](#page-9-2) proved that for any prime power q ,

$$
\operatorname{ex}(q^2 - q - 2, C_4) \ge \begin{cases} \frac{1}{2}q^3 - q^2 - \frac{q}{2} + 1 & \text{if } q \text{ is odd,} \\ \frac{1}{2}q^3 - q^2 & \text{if } q \text{ is even.} \end{cases}
$$

They conjectured that these bounds are best possible. Our main result shows that when q is an odd prime power, this lower bound can be improved by $\frac{q}{2} - O(q^{3/4}).$

Theorem 1.1. If q is an odd prime power, then

$$
\operatorname{ex}(q^2 - q - 2, C_4) \ge \frac{1}{2}q^3 - q^2 - O(q^{3/4}).
$$

We will construct graphs without 4-cycles using the Sidon sets con-structed by Bose and Chowla [\[3\]](#page-9-3). Let Γ be an abelian group. A set $A \subset \Gamma$ is a Sidon set if whenever $a + b = c + d$ with $a, b, c, d \in A$, the pair (a, b) is a permutation of (c, d) . Sidon sets are well studied objects in combinatorial number theory and for more on Sidon sets we recommend O'Bryant's survey $|13|$.

Let q be a prime power and θ be a generator of the multiplicative group $\mathbb{F}_{q^2}^*$ where $\mathbb{F}_{q^2}^*$ is the nonzero elements of the finite field \mathbb{F}_{q^2} . Bose and Chowla proved [\[3\]](#page-9-3) that

$$
A(q, \theta) := \{ a \in \mathbb{Z}_{q^2 - 1} : \theta^a - \theta \in \mathbb{F}_q \}
$$

is a Sidon set in the group \mathbb{Z}_{q^2-1} . Furthermore,

$$
(1) \t\t |A(q, \theta)| = q.
$$

To see this, one observes that $\theta^a - \theta = \theta^b - \theta$ implies that $a \equiv b \pmod{q^2 - 1}$. In addition, since θ generates $\mathbb{F}_{q^2}^*$, $\mathbb{F}_{q}^* \subset \mathbb{F}_{q^2}^* = \{\theta^a : a \in \mathbb{Z}_{q^2-1}\} = \{\theta^a - \theta : \theta^a = \theta\}$ $a \in \mathbb{Z}_{q^2-1}$.

Definition 1.2. Let q be a prime power and θ be a generator of the multiplicative group $\mathbb{F}_{q^2}^*$. The graph $G_{q,\theta}$ is the graph with vertex set \mathbb{Z}_{q^2-1} and two distinct vertices i and j are adjacent if and only if $i + j = a$ for some $a \in A(q, \theta)$.

It is known that Sidon sets can be used to construct graphs without 4-cycles. We will prove a result about the Bose-Chowla Sidon sets (see Lemma [2.6\)](#page-4-0) that helps us find a subgraph of $G_{q,\theta}$ with $q+1$ vertices that contains many edges. We remove this subgraph to obtain a graph with q^2-q-2 vertices and at least $\frac{1}{2}q^3 - q^2 - O(q^{3/4})$ edges. In addition to providing examples of graphs with no 4-cycles, the graphs $G_{q,\theta}$ have been used to solve other extremal problems (see $|5|$).

We would like to remark that we could have defined $G_{a,\theta}$ as a polarity graph in the following way. Let $\mathcal{P} = \mathbb{Z}_{q^2-1}$ and let $\mathcal L$ be the set of q^2-1 translates of $A(q, \theta)$. That is, $\mathcal{L} = \{A_1, A_2, \ldots, A_{q^2-1}\}\$ where $A_i := A(q, \theta) +$ i. This defines a geometry in the obvious way; $i \in \mathcal{P}$ is incident to $A_i \in \mathcal{L}$ if and only if $i \in A_i$. We define a polarity by $\pi(i) = A_{q^2-1-i}$ for all $i \in \mathcal{P}$, and $\pi(A_i) = q^2 - 1 - i$ for all $A_i \in \mathcal{L}$. The fact that π is a polarity can be checked directly. We choose to use Definition [1.2](#page-2-0) as it is more convenient for our argument.

2. Proof of Theorem [1.1](#page-2-1)

In this section we fix an odd prime power q and a generator θ of the multiplicative group $\mathbb{F}_{q^2}^*$. We write A for the Sidon set $A(q, \theta)$ in \mathbb{Z}_{q^2-1} and observe that $|A| = q$ by [\(1\)](#page-2-2). All of our manipulations will be done in the group \mathbb{Z}_{q^2-1} or in the finite field \mathbb{F}_{q^2} . If it is not clear from the context, we will state which algebraic structure we are working in.

The first two lemmas are known. We present proofs for completeness.

Lemma 2.1. The graph $G_{a,\theta}$ does not contain a 4-cycle.

Proof. Suppose *ijkl* is a 4-cycle in $G_{q,\theta}$. There are elements $a, b, c, d \in A$ such that $i + j = a$, $j + k = b$, $k + l = c$, and $l + i = d$. This implies

$$
a + c = b + d.
$$

Since A is a Sidon set, (a, c) is a permutation of (b, d) . If $a = b$ then $i + j =$ $j + k$ so $i = k$. If $a = d$ then $i + j = l + i$ so $j = l$. In either case we have a contradiction thus $G_{q,\theta}$ does not contain a 4-cycle. **The Second Service**

Lemma 2.2. If $A - A := \{a - b : a, b \in A\}$ then

$$
A - A = \mathbb{Z}_{q^2-1} \setminus \{q+1, 2(q+1), 3(q+1), \ldots, (q-2)(q+1)\}.
$$

Proof. Suppose $s(q+1) \in A-A$ for some $1 \leq s \leq q-2$. Write $s(q+1) = a-b$ where $a, b \in A$ and $a \neq b$. We have for some $\alpha, \beta \in \mathbb{F}_q$,

$$
\theta^{s(q+1)} = \theta^{a-b} = \theta^a \theta^{-b} = (\theta + \alpha)(\theta + \beta)^{-1}.
$$

From this we obtain

$$
\theta + \alpha = (\theta + \beta)(\theta^{q+1})^s
$$

but $\theta^{q+1} \in \mathbb{F}_q$ so $\theta + \alpha = (\theta + \beta)\gamma$ for some $\gamma \in \mathbb{F}_q$. Since θ does not satisfy a nontrivial linear relation over \mathbb{F}_q we must have $\gamma = 1$ hence $\alpha = \beta$ (in \mathbb{F}_{q^2}) so $a = b$ (in \mathbb{Z}_{q^2-1}). From this we get $s(q+1) = 0$ which contradicts the fact that $1 \leq s \leq q-2$. This shows that

$$
(A-A)\cap \{q+1,2(q+1),\ldots,(q-2)(q+1)\}=\emptyset.
$$

Since A is a Sidon set, $|A - A| = q(q - 1) + 1$ which is precisely the number of elements in the set

$$
\mathbb{Z}_{q^2-1}\backslash\{q+1,2(q+1),\ldots,(q-2)(q+1)\}
$$

and this completes the proof of the lemma.

We note that for i a vertex in $G_{q,\theta}$, if i is an absolute point (see the end of Section [1\)](#page-0-1), then $i + i \in A$ and the degree of i is $q - 1$. If i is not an absolute point, then $i + i \notin A$ and the degree of i is q.

Lemma 2.3. Distinct vertices i and j in $G_{q,\theta}$ have a common neighbor if and only if $i - j \in (A - A) \setminus \{0\}.$

Proof. First suppose i and j are distinct vertices that have a common neighbor k. Then $i + k = a$ and $k + j = b$ for some $a, b \in A$ so $i - j =$ $(a - k) - (b - k) = a - b$. Since $i \neq j$, we get that $a - b \neq 0$.

Now suppose $i - j = a - b$ for some $a, b \in A$ with $a \neq b$. Let $k = a - i$. Then $k + i = a$ so k is adjacent to i. Also, $k = a - i = b - j$ so $k + j = b$ and k is adjacent to j .

Lemma 2.4. If i is an absolute point then $i + \frac{q^2-1}{2}$ is also an absolute point.

Proof. If $2i = a$ for some $a \in A$ then $2(i + \frac{q^2-1}{2}) = 2i = a$.

Lemma 2.5. Let i and j be two distinct absolute points of $G_{q,\theta}$. If $i \neq$ $j + \frac{q^2-1}{2}$ then i and j have a common neighbor and if $i = j + \frac{q^2-1}{2}$ then i and j do not have a common neighbor.

Proof. By Lemmas [2.2](#page-3-0) and [2.3,](#page-4-1) i and j have a common neighbor unless $i-j = s(q+1)$ for some $1 \leq s \leq q-2$. Since i and j are absolute points, there exist elements $a, b \in A$ such that $2i = a$ and $2j = b$ thus $a - b = 2s(q + 1)$. By Lemma [2.2,](#page-3-0) it must be the case that $a = b$ so $2i = 2j$. The solutions to $2x \equiv 2y \pmod{q^2 - 1}$ are $x = y$ and $x = y + \frac{q^2 - 1}{2}$ hence $i = j$ or $i = j + \frac{q^2-1}{2}$. Thus i and j will have a common neighbor whenever they are distinct absolute points with $i \neq j + \frac{q^2-1}{2}$ and will not have a common neighbor when $i = j + \frac{q^2 - 1}{2}$.

Lemma 2.6. Let $\{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\}$ be subsets of A with a_1, a_2 , and a_3 all distinct and $b_1, b_2,$ and b_3 all distinct. If

$$
2b_1 - a_1 = 2b_2 - a_2 = 2b_3 - a_3
$$

then two of the ordered pairs (a_1, b_1) , (a_2, b_2) , (a_3, b_3) are equal.

The proof of Lemma [2.6](#page-4-0) is simple but it is not short. For this reason we postpone the proof until after the proof of Theorem [1.1.](#page-2-1)

Lemma 2.7. Any vertex j is adjacent to at most two absolute points.

Proof. Suppose j is a vertex of $G_{q,\theta}$ that is adjacent to three distinct absolute points i_i, i_2 , and i_3 . There exist elements $a_1, a_2, a_3, b_1, b_2, b_3 \in A$ such that

$$
2i_k = a_k \quad \text{and} \quad i_k + j = b_k
$$

for $k = 1, 2, 3$. Since i_1, i_2, i_3 are all distinct, b_1, b_2 , and b_3 must all be distinct. If $a_k = a_l$ for some $1 \leq k < l \leq 3$, then $i_k = i_l + \frac{q^2-1}{2}$. In this case, the vertices i_k and i_l are absolute points with a common neighbor but this is impossible by Lemma [2.5.](#page-4-2) We conclude that a_1, a_2 , and a_3 are all distinct. For each k, we can write $i_k + j = b_k$ as $2j = 2b_k - a_k$ so that

$$
2b_1 - a_2 = 2b_2 - a_2 = 2b_3 - a_3.
$$

By Lemma [2.6,](#page-4-0) $(a_k, b_k) = (a_l, b_l)$ for some $1 \leq k < l \leq 3$ but we have already argued that a_k and a_l are distinct. This gives the needed contradiction and completes the proof of the lemma. Г

Proof of Theorem [1.1.](#page-2-1) Let P be the absolute points of $G_{q,\theta}$. Lemma [2.4](#page-4-3) implies that the absolute points come in pairs so we can write

$$
P = \{i_1, i_1 + \frac{q^2 - 1}{2}, i_2, i_2 + \frac{q^2 - 1}{2}, \dots, i_t, i_t + \frac{q^2 - 1}{2}\}\
$$

where 2t is the number of absolute points of $G_{q,\theta}$. When q is odd, $q^2 - 1$ is even and we can write $q^2 - 1 = 2^r m$ where $r \ge 1$ is an integer and m is odd. If $a \in A$, then the congruence

$$
2x \equiv a \pmod{2^r m}
$$

has no solution when a is odd and two solutions if a is even. Therefore t is exactly the number of even elements of A when we view A as a subset of \mathbb{Z} . Lindström $[12]$ proved that dense Sidon sets are close to evenly distributed among residue classes. In particular, the results of [\[12\]](#page-10-8) imply that

(2)
$$
t = \frac{q}{2} + O(q^{3/4})
$$

so we know that we have $q + O(q^{3/4})$ absolute points in $G_{q,\theta}$. The number of vertices of $G_{q,\theta}$ is $q^2 - 1$ and the number of edges of $G_{q,\theta}$ is

$$
e(G) = \frac{1}{2} \left(q(q^2 - 1 - 2t) + (q - 1)(2t) \right) = \frac{1}{2} q^3 - \frac{1}{2} q - t.
$$

Let $S \subset V(G_{q,\theta})$ with $|S|=q+1$ and let t_S be the number of absolute points in S. The graph $G_{q,\theta} \backslash S$ has $q^2 - q - 2$ vertices and

(3)
$$
\frac{1}{2}q^{3} - \frac{1}{2}q - t - e(S) - e(S, \overline{S})
$$

edges. Here $e(S,\overline{S})$ is the number of edges of $G_{q,\theta}$ with exactly one endpoint in S. We can rewrite $e(S) + e(S, \overline{S})$ as

$$
e(S) + e(S, \overline{S}) = \sum_{i \in S} d(i) - e(S) = (q + 1 - ts)q + ts(q - 1) - e(S)
$$

$$
= q^2 + q - ts - e(S).
$$

By [\(3\)](#page-6-0) we can write the number of edges of $G_{q,\theta} \backslash S$ as

(4)
$$
\frac{1}{2}q^3 - \frac{1}{2}q - t - (q^2 + q - t_S - e(S)) = \frac{1}{2}q^3 - q^2 - \frac{3}{2}q - t + t_S + e(S).
$$

For any $1 \leq j_1 < j_2 \leq t$, the pair i_{j_1} and i_{j_2} of absolute points have a For any $1 \leq J_1 \leq J_2 \leq t$, the pan t_{J_1} and t_{J_2} or absolute points have a unique common neighbor by Lemmas [2.5](#page-4-2) and [2.1.](#page-3-1) Set $k = \lfloor \frac{1}{2} \sqrt{8q+9} - \frac{1}{2} \rfloor$ and note that for large enough q we have $k \leq t$. The integer k is chosen so that it is as large as possible and still satisfies the inequality ${k \choose 2} + k \leq q+1$. Let $S_1 = \{i_1, \ldots, i_k\}$. For each pair $1 \leq j_1 < j_2 \leq k$, let x_{j_1, j_2} be the unique common neighbor of the absolute points i_{j_1} and i_{j_2} . Let $S_2 = \{x_{j_1,j_2} : 1 \leq j_2\}$ $j_1 < j_2 \leq k$. By Lemma [2.7,](#page-4-4) S_2 consists of $\binom{k}{2}$ distinct vertices. A short calculation shows that ${k \choose 2} + k \geq q - O(\sqrt{q})$. Let S_3 be a set of $q + 1 - {k \choose 2} - k$ vertices chosen arbitrarily from $V(G_{q,\theta})\backslash (S_1 \cup S_2)$. Let S be the subgraph of $G_{q,\theta}$ induced by the vertices $S_1 \cup \overline{S_2} \cup S_3$. By construction, S has $q+1$ vertices and at least $2\binom{k}{2}$ edges so

$$
t_S + e(S) \ge k + 2{k \choose 2} \ge 2q - O(\sqrt{q}).
$$

By [\(2\)](#page-5-0) and [\(4\)](#page-6-1), removing the vertices of S from $G_{q,\theta}$ leaves a graph with $q^2 - q - 2$ vertices and at least

$$
\frac{1}{2}q^3 - q^2 - 2q + 2q - O(q^{3/4}) = \frac{1}{2}q^3 - q^2 - O(q^{3/4})
$$

edges.

Now we return to the proof of Lemma [2.6.](#page-4-0)

Г

Proof of Lemma [2.6.](#page-4-0) Let $\{a_1, a_2, a_3\}, \{b_1, b_2, b_3\}$ ⊂ A with a_1, a_2 , and a_3 all distinct, and b_1, b_2 , and b_3 all distinct. Since $a_k, b_k \in A$, there exist elements $c_k, d_k \in \mathbb{F}_q$ such that

$$
\theta^{a_k} = \theta + c_k \text{ and } \theta^{b_k} = \theta + d_k
$$

for $k = 1, 2, 3$. Observe that c_1, c_2 , and c_3 are all distinct and so are d_1, d_2 , and d_3 .

The generator θ satisfies a degree two polynomial over \mathbb{F}_q , say $\theta^2 = \alpha \theta + \beta$ where $\alpha, \beta \in \mathbb{F}_q$. Since θ generates $\mathbb{F}_{q^2}^*$, it cannot be the case that $\alpha = 0$ and if $\beta = 0$, then $\theta(\theta - \alpha) = 0$ which is impossible since $\theta \notin \mathbb{F}_q$. The polynomial $X^2 - 3X + 3\beta \in \mathbb{F}_q[X]$ has at most two roots in \mathbb{F}_q . Without loss of generality, we may assume that

$$
(5) \qquad \qquad c_1^2 - 3c_1\alpha + 3\beta \neq 0
$$

since c_1, c_2 , and c_3 are all distinct. This fact will be important towards the end of the proof.

Consider the equation $2b_1 + a_2 = 2b_2 + a_1$. We can rewrite this as

$$
(\theta + d_1)^2 (\theta + c_2) = (\theta + d_2)^2 (\theta + c_1).
$$

If we expand, use $\theta^2 = \alpha \theta + \beta$, and regroup we obtain

$$
\theta(2d_1\alpha + c_2\alpha + d_1^2 + 2d_1c_2) + (2d_1\beta + c_2\beta + d_1^2c_2)
$$

=
$$
\theta(2d_2\alpha + c_1\alpha + d_2^2 + 2d_2c_1) + (2d_2\beta + c_1\beta + d_2^2c_1).
$$

These coefficients are all in \mathbb{F}_q so we must have

(6)
$$
2d_1\alpha + c_2\alpha + d_1^2 + 2d_1c_2 = 2d_2\alpha + c_1\alpha + d_2^2 + 2d_2c_1
$$

and

(7)
$$
2d_1\beta + c_2\beta + d_1^2c_2 = 2d_2\beta + c_1\beta + d_2^2c_1.
$$

Similar arguments show that both (6) and (7) hold with c_3 replacing c_2 and d_3 replacing d_2 . We view c_1 and d_1 as begin fixed and (c_2, d_2) and (c_3, d_3) as solutions to the system

(8)
$$
2d_1\alpha + X\alpha + d_1^2 + 2d_1X = 2Y\alpha + c_1\alpha + Y^2 + 2Yc_1,
$$

Sidon sets and graphs without 4-cycles 163

(9)
$$
2d_1\beta + X\beta + d_1^2X = 2Y\beta + c_1\beta + Y^2c_1.
$$

One solution is $(X, Y) = (c_1, d_1)$. If we can show that the system [\(8\)](#page-7-2), [\(9\)](#page-8-0) has at most two solutions then we are done as this forces two of the pairs $(c_1, d_1), (c_2, d_2), (c_3, d_3)$ to be the same and the pair (c_k, d_k) uniquely determines the pair (a_k, b_k) . Multiply [\(8\)](#page-7-2) by c_1 and then subtract [\(9\)](#page-8-0) to eliminate Y^2 and obtain (10)

$$
(2c_1d_1\alpha+c_1d_1^2+c_1\beta-2d_1\beta-c_1^2\alpha)+X(\alpha c_1+2c_1d_1-\beta-d_1^2)=Y(2c_1^2+2c_1\alpha-2\beta).
$$

Next we subtract α times [\(9\)](#page-8-0) from β times [\(8\)](#page-7-2) to get

(11)
$$
d_1^2 \beta + X(2d_1 \beta - d_1^2 \alpha) = Y^2(\beta - \alpha c_1) + Y(2c_1 \beta).
$$

If we knew that the coefficient of X was nonzero in [\(10\)](#page-8-1) and $\beta - \alpha c_1 \neq 0$ then we could easily deduce that there are at most two solutions (X, Y) . Unfortunately we do not know this and so we have to work to overcome this obstacle.

Suppose (10) is an equation where the coefficients of X and Y are both 0. Then

$$
2c_1^2 + 2c_1\alpha - 2\beta = 0
$$
 and $\alpha c_1 + 2c_1d_1 - \beta - d_1^2 = 0$.

Since q is odd, the first equation can be rewritten as $c_1^2+c_1\alpha-\beta$. Subtracting the second equation $c_1^2 + c_1\alpha - \beta$ gives $c_1^2 - 2c_1d_1 + d_1^2 = 0$ hence $(c_1 - d_1)(c_1 +$ d_1) = 0.

If $c_1 = d_1$ then $\theta^{a_1} = \theta + c_1 = \theta + d_1 = \theta^{b_1}$ so $a_1 = b_1$ (in \mathbb{Z}_{q^2-1}). Using $2b_1 - a_1 = 2b_2 - a_2$ we get $b_1 + a_2 = b_2 + b_2$ so $b_1 = b_2$, a contradiction. Assume $c_1 = -d_1$. Then $c_1 \neq 0$ and $d_1 \neq 0$ otherwise $c_1 = d_1$ which we already know does not occur. Since both coefficients of X and Y are 0 in [\(10\)](#page-8-1) the constant term must also be 0 so, using $c_1 = -d_1$,

$$
0 = 2c_1d_1\alpha + c_1d_1^2 + c_1\beta - 2d_1\beta - c_1^2\alpha
$$

= -3c_1^2\alpha + c_1^3 + 3c_1\beta
= c_1(c_1^2 - 3c_1\alpha + 3\beta).

By (5) this is impossible. We conclude that at least one of the coefficients of X or Y in (10) must be nonzero.

If the coefficient of X in [\(10\)](#page-8-1) is nonzero then we can write $X = \gamma_1 Y + \gamma_2$ for some $\gamma_1, \gamma_2 \in \mathbb{F}_q$. Substituting this equation into [\(8\)](#page-7-2) gives a quadratic equation in Y which has at most two solutions and Y uniquely determines X since $X = \gamma_1 Y + \gamma_2$ and we are done.

Assume now that $\alpha c_1 + 2c_1 d_1 - \beta - d_1^2 = 0$. Then [\(10\)](#page-8-1) gives a unique solution for Y. Since $(X, Y) = (c_1, d_1)$ is a solution, we must have that all solutions to the system (8) , (9) have $Y = d_1$. Substituting into (8) and (9) we get

$$
X(\alpha + 2d_1) = c_1(\alpha + 2d_1)
$$

$$
X(\beta + d_1^2) = c_1(\beta + d_1^2).
$$

If $d_1 = 0$ then $X\alpha = c_1\alpha$ and since $\alpha \neq 0$ we get $X = c_1$ are we are done.

Assume $d_1 \neq 0$. If either $\alpha + 2d_1$ or $\beta + d_1^2$ are nonzero then we are done. Assume $\alpha + 2d_1 = \beta + d_1^2 = 0$. If we substitute $Y = d_1$ into [\(11\)](#page-8-2) then we get

$$
Xd_1(2\beta - d_1\alpha) = d_1c_1(2\beta - d_1\alpha).
$$

Again, if $2\beta - d_1\alpha$ is nonzero we are done, so assume $2\beta - d_1\alpha = 0$. Using the three equations

$$
\alpha + 2d_1 = 0, \ \beta + d_1^2 = 0 \ , 2\beta - d_1\alpha = 0
$$

we have

$$
0 = 2\beta - d_1\alpha = 2(-d_1^2) - d_1(-4d_1) = 2d_1^2
$$

so $d_1 = 0$ giving the needed contradiction.

References

- [1] M. Abreu, C. Balbuena, D. Labbate, Adjacency matrices of polarity graphs and other C_4 -free graphs of large size, Des. Codes Cryptogr. (2010), 55, 221–233. [MR2608429](http://www.ams.org/mathscinet-getitem?mr=2608429)
- [2] B. Bollobás, *Extremal Graph Theory*, Academic Press Inc. (London) Ltd., 1978. [MR0506522](http://www.ams.org/mathscinet-getitem?mr=0506522)
- [3] R. C. Bose, S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv. **37** (1962), 141–147. [MR0144877](http://www.ams.org/mathscinet-getitem?mr=0144877)
- [4] W. G. Brown, On graphs that do not contain a Thomsen graph, Canada Math. Bull. **9** (1966), 281–289. [MR0200182](http://www.ams.org/mathscinet-getitem?mr=0200182)
- [5] F. R. K. Chung, Diameters and eigenvalues, Journal of the American Mathematical Society, Vol. 2, No. 2, 187–196, 1989. [MR0965008](http://www.ams.org/mathscinet-getitem?mr=0965008)

- [6] C. R. J. Clapham, A. Flockhart, J. Sheehan, Graphs without four-cycles, J. Graph Theory **13** (1989), no. 1, 29–47. [MR0982865](http://www.ams.org/mathscinet-getitem?mr=0982865)
- $[7]$ P. Erdős, A. Rényi, V. T. Sós, *On a problem of graph theory*, Studia Sci. Math. Hungar. **1** (1966), 215–235. [MR0223262](http://www.ams.org/mathscinet-getitem?mr=0223262)
- [8] P. Erdős, M. Simonovits, *Cube-saturated graphs and related problems*, Progress in Graph Theory (Waterloo, Ont., 1982), 203–218, Academic Press, Toronto, 1984. [MR0776802](http://www.ams.org/mathscinet-getitem?mr=0776802)
- [9] F. Firke, P. Kosek, E. Nash, J. Williford, Extremal graphs without 4-cycles, Journal of Combinatorial Theory, Series B **103**, 327–336 (2013). [MR3048158](http://www.ams.org/mathscinet-getitem?mr=3048158)
- [10] Z. Füredi, On the number of edges of quadrilateral-free graphs, Journal of Combinatorial Theory, Series B **68**, 1–6 (1996). [MR1405701](http://www.ams.org/mathscinet-getitem?mr=1405701)
- [11] Z. Füredi, M. Simonovits, The history of degenerate (bipartite) extremal graph problems, arXiv:1306.5167.
- [12] B. Lindström, *Well distribution of Sidon sets in residue classes*, Journal of Number Theory **69** (2), 197–200 (1998). [MR1617317](http://www.ams.org/mathscinet-getitem?mr=1617317)
- [13] K. O'Bryant, A complete annotated bibliography of work related to Sidon sequences, Electronic J. of Combinatorics **DS 11** (2004).
- [14] P. Rowlinson, Y. Yuansheng, On extremal graphs without four-cycles, Utilitas Math. **41** (1992), 204–210. [MR1162526](http://www.ams.org/mathscinet-getitem?mr=1162526)

MICHAEL TAIT Department of Mathematics University of California, San Diego USA E-mail address: mtait@math.ucsd.edu

Craig Timmons Department of Mathematics University of California, San Diego USA E-mail address: ctimmons@math.ucsd.edu

Received September 25, 2013