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Sidon sets and graphs without 4-cycles

Michael Tait
∗
and Craig Timmons

∗

The problem of determining the maximum number of edges in an
n-vertex graph that does not contain a 4-cycle has a rich history in
extremal graph theory. Using Sidon sets constructed by Bose and
Chowla, for each odd prime power q we construct a graph with
q2 − q− 2 vertices that does not contain a 4-cycle and has at least
1
2q

3 − q2 − O(q3/4) edges. This disproves a conjecture of Abreu,
Balbuena, and Labbate concerning the Turán number ex(q2 − q −
2, C4).
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1. Introduction

Let F be a graph. The Turán number of F , denoted ex(n, F ), is the max-
imum number of edges in an n-vertex graph that does not contain F as a
subgraph. Determining ex(n, F ) for different graphs F is one of the central
problems in extremal combinatorics. One of the most studied cases is the
Turán number of C4, the cycle on four vertices. It is known that ex(n,C4) ≤
1
2n

3/2 + o(n3/2) for every n → ∞ (see [2]). It is more difficult to construct

n-vertex graphs without 4-cycles that have 1
2n

3/2+ o(n3/2) edges. Using po-
larity graphs of projective planes, Brown [4], Erdős, Rényi, and Sós [7] inde-
pendently proved that for each prime power q, ex(q2+q+1, C4) ≥ 1

2q(q+1)2.
To define polarity graphs we need some terminology from finite geometry.

Let P and L be disjoint sets and I ⊂ P × L. Elements of P are called
points, elements of L are called lines, and I defines an incidence relation on
the pair (P ,L). Let π : P ∪ L → P ∪ L be a bijection such that π(P) = L,
π(L) = P , π2 = id, and for all p ∈ P and l ∈ L we have (p, l) ∈ I if and only
if (π(l), π(p)) ∈ I. The map π is a polarity of the geometry (P ,L, I). The
polarity graph Gπ of the geometry (P ,L, I) with respect to π is the graph
with vertex set V (Gπ) = P and edge set

E(Gπ) = {{p, q} : p, q ∈ P , p 	= q, and (p, π(q)) ∈ I}.
arXiv: 1309.6350
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A point p is an absolute point of π if (p, π(p)) ∈ I.
If (P ,L, I) is a finite projective plane of order q and π is an orthogonal

polarity (one with exactly q+1 absolute points), then the polarity graph will
have q2+q+1 vertices, have 1

2q(q+1)2 edges, and will not contain a 4-cycle.
The constructions of [4] and [7] are polarity graphs of the projective plane
PG(2,Fq) where q is a prime power and Fq is the finite field with q elements.
The polarity is the orthogonal polarity sending the point (x0, x1, x2) to the
line [x0, x1, x2] and vice versa (see [2] or [11] for more details). These polarity
graphs show that for any prime power q, ex(q2 + q + 1, C4) ≥ 1

2q(q + 1)2.
The exact value of ex(n,C4) was determined using computer searches

([6], [14]) for all n ≤ 31. Füredi [10] proved that whenever q ≥ 13 is a
prime power, ex(q2 + q + 1, C4) ≤ 1

2q(q + 1)2 thus we get the exact result
ex(q2 + q + 1, C4) = 1

2q(q + 1)2 for all prime powers q ≥ 13. It was also
shown in [10] that the only graphs with q2 + q + 1 vertices and 1

2q(q + 1)2

edges that do not contain 4-cycles are orthogonal polarity graphs of finite
projective planes. Along with the constructions of [4] and [7], the results of
Füredi are the most important contributions to the 4-cycle Turán problem.
Recently Firke, Kosek, Nash, and Williford [9] proved that for even q, ex(q2+
q, C4) ≤ 1

2q(q + 1)2 − q. If q is a power of two then we have the exact result
ex(q2 + q, C4) = 1

2q(q + 1)2 − q. The lower bound in this case comes from
taking an orthogonal polarity graph of a projective plane of order q and
removing a vertex of degree q.

The results we have mentioned so far describe all of the cases in which
an exact formula for ex(n,C4) is known. Using known results on densities of
primes, one has the asymptotic result ex(n,C4) =

1
2n

3/2 + o(n3/2) but there
are still many open problems concerning graphs with 4-cycles. For example,
Erdős and Simonovits [8] conjectured that if G is any n-vertex graph with
ex(n,C4)+1 edges, then G must contain at least n1/2+o(n1/2) copies of C4.
For more on the Turán problems for C4 and other bipartite Turán problems
we refer the reader to the excellent survey of Füredi and Simonovits [11].

While investigating adjacency matrices of polarity graphs of PG(2,Fq)
with respect to the orthogonal polarity, Abreu, Balbuena, and Labbate [1]
were able to find subgraphs of a polarity graph that have many edges. By
deleting such a subgraph, Abreu et al. [1] proved that for any prime power q,

ex(q2 − q − 2, C4) ≥
{

1
2q

3 − q2 − q
2 + 1 if q is odd,

1
2q

3 − q2 if q is even.

They conjectured that these bounds are best possible. Our main result shows
that when q is an odd prime power, this lower bound can be improved by
q
2 −O(q3/4).
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Theorem 1.1. If q is an odd prime power, then

ex(q2 − q − 2, C4) ≥
1

2
q3 − q2 −O(q3/4).

We will construct graphs without 4-cycles using the Sidon sets con-
structed by Bose and Chowla [3]. Let Γ be an abelian group. A set A ⊂ Γ
is a Sidon set if whenever a+ b = c+ d with a, b, c, d ∈ A, the pair (a, b) is
a permutation of (c, d). Sidon sets are well studied objects in combinatorial
number theory and for more on Sidon sets we recommend O’Bryant’s survey
[13].

Let q be a prime power and θ be a generator of the multiplicative group
F
∗
q2 where F

∗
q2 is the nonzero elements of the finite field Fq2 . Bose and Chowla

proved [3] that

A(q, θ) := {a ∈ Zq2−1 : θ
a − θ ∈ Fq}

is a Sidon set in the group Zq2−1. Furthermore,

(1) |A(q, θ)| = q.

To see this, one observes that θa−θ = θb−θ implies that a ≡ b (mod q2−1).
In addition, since θ generates F∗

q2 , F
∗
q ⊂ F

∗
q2 = {θa : a ∈ Zq2−1} = {θa − θ :

a ∈ Zq2−1}.
Definition 1.2. Let q be a prime power and θ be a generator of the mul-
tiplicative group F

∗
q2 . The graph Gq,θ is the graph with vertex set Zq2−1 and

two distinct vertices i and j are adjacent if and only if i + j = a for some
a ∈ A(q, θ).

It is known that Sidon sets can be used to construct graphs without
4-cycles. We will prove a result about the Bose-Chowla Sidon sets (see
Lemma 2.6) that helps us find a subgraph of Gq,θ with q+1 vertices that con-
tains many edges. We remove this subgraph to obtain a graph with q2−q−2
vertices and at least 1

2q
3 − q2 − O(q3/4) edges. In addition to providing ex-

amples of graphs with no 4-cycles, the graphs Gq,θ have been used to solve
other extremal problems (see [5]).

We would like to remark that we could have defined Gq,θ as a polarity
graph in the following way. Let P = Zq2−1 and let L be the set of q2 − 1
translates of A(q, θ). That is, L = {A1, A2, . . . , Aq2−1} where Ai := A(q, θ)+
i. This defines a geometry in the obvious way; i ∈ P is incident to Aj ∈ L
if and only if i ∈ Aj . We define a polarity by π(i) = Aq2−1−i for all i ∈ P ,
and π(Ai) = q2 − 1 − i for all Ai ∈ L. The fact that π is a polarity can be
checked directly. We choose to use Definition 1.2 as it is more convenient for
our argument.
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2. Proof of Theorem 1.1

In this section we fix an odd prime power q and a generator θ of the mul-
tiplicative group F

∗
q2 . We write A for the Sidon set A(q, θ) in Zq2−1 and

observe that |A| = q by (1). All of our manipulations will be done in the
group Zq2−1 or in the finite field Fq2 . If it is not clear from the context, we
will state which algebraic structure we are working in.

The first two lemmas are known. We present proofs for completeness.

Lemma 2.1. The graph Gq,θ does not contain a 4-cycle.

Proof. Suppose ijkl is a 4-cycle in Gq,θ. There are elements a, b, c, d ∈ A
such that i+ j = a, j + k = b, k + l = c, and l + i = d. This implies

a+ c = b+ d.

Since A is a Sidon set, (a, c) is a permutation of (b, d). If a = b then i+ j =
j + k so i = k. If a = d then i+ j = l + i so j = l. In either case we have a
contradiction thus Gq,θ does not contain a 4-cycle.

Lemma 2.2. If A−A := {a− b : a, b ∈ A} then

A−A = Zq2−1\{q + 1, 2(q + 1), 3(q + 1), . . . , (q − 2)(q + 1)}.

Proof. Suppose s(q+1) ∈ A−A for some 1 ≤ s ≤ q−2. Write s(q+1) = a−b
where a, b ∈ A and a 	= b. We have for some α, β ∈ Fq,

θs(q+1) = θa−b = θaθ−b = (θ + α)(θ + β)−1.

From this we obtain

θ + α = (θ + β)(θq+1)s

but θq+1 ∈ Fq so θ + α = (θ + β)γ for some γ ∈ Fq. Since θ does not satisfy
a nontrivial linear relation over Fq we must have γ = 1 hence α = β (in Fq2)
so a = b (in Zq2−1). From this we get s(q+1) = 0 which contradicts the fact
that 1 ≤ s ≤ q − 2. This shows that

(A−A) ∩ {q + 1, 2(q + 1), . . . , (q − 2)(q + 1)} = ∅.

Since A is a Sidon set, |A−A| = q(q− 1) + 1 which is precisely the number
of elements in the set

Zq2−1\{q + 1, 2(q + 1), . . . , (q − 2)(q + 1)}

and this completes the proof of the lemma.
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We note that for i a vertex in Gq,θ, if i is an absolute point (see the

end of Section 1), then i + i ∈ A and the degree of i is q − 1. If i is not an

absolute point, then i+ i 	∈ A and the degree of i is q.

Lemma 2.3. Distinct vertices i and j in Gq,θ have a common neighbor if

and only if i− j ∈ (A−A)\{0}.

Proof. First suppose i and j are distinct vertices that have a common

neighbor k. Then i + k = a and k + j = b for some a, b ∈ A so i − j =

(a− k)− (b− k) = a− b. Since i 	= j, we get that a− b 	= 0.

Now suppose i− j = a− b for some a, b ∈ A with a 	= b. Let k = a− i.

Then k + i = a so k is adjacent to i. Also, k = a − i = b − j so k + j = b

and k is adjacent to j.

Lemma 2.4. If i is an absolute point then i+ q2−1
2 is also an absolute point.

Proof. If 2i = a for some a ∈ A then 2(i+ q2−1
2 ) = 2i = a.

Lemma 2.5. Let i and j be two distinct absolute points of Gq,θ. If i 	=
j + q2−1

2 then i and j have a common neighbor and if i = j + q2−1
2 then i

and j do not have a common neighbor.

Proof. By Lemmas 2.2 and 2.3, i and j have a common neighbor unless

i−j = s(q+1) for some 1 ≤ s ≤ q−2. Since i and j are absolute points, there

exist elements a, b ∈ A such that 2i = a and 2j = b thus a− b = 2s(q + 1).

By Lemma 2.2, it must be the case that a = b so 2i = 2j. The solutions

to 2x ≡ 2y(mod q2 − 1) are x = y and x = y + q2−1
2 hence i = j or

i = j + q2−1
2 . Thus i and j will have a common neighbor whenever they

are distinct absolute points with i 	= j + q2−1
2 and will not have a common

neighbor when i = j + q2−1
2 .

Lemma 2.6. Let {a1, a2, a3} and {b1, b2, b3} be subsets of A with a1, a2, and

a3 all distinct and b1, b2, and b3 all distinct. If

2b1 − a1 = 2b2 − a2 = 2b3 − a3

then two of the ordered pairs (a1, b1), (a2, b2), (a3, b3) are equal.

The proof of Lemma 2.6 is simple but it is not short. For this reason we

postpone the proof until after the proof of Theorem 1.1.

Lemma 2.7. Any vertex j is adjacent to at most two absolute points.
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Proof. Suppose j is a vertex of Gq,θ that is adjacent to three distinct ab-
solute points ii, i2, and i3. There exist elements a1, a2, a3, b1, b2, b3 ∈ A such
that

2ik = ak and ik + j = bk

for k = 1, 2, 3. Since i1, i2, i3 are all distinct, b1, b2, and b3 must all be distinct.
If ak = al for some 1 ≤ k < l ≤ 3, then ik = il +

q2−1
2 . In this case, the

vertices ik and il are absolute points with a common neighbor but this is
impossible by Lemma 2.5. We conclude that a1, a2, and a3 are all distinct.
For each k, we can write ik + j = bk as 2j = 2bk − ak so that

2b1 − a2 = 2b2 − a2 = 2b3 − a3.

By Lemma 2.6, (ak, bk) = (al, bl) for some 1 ≤ k < l ≤ 3 but we have already
argued that ak and al are distinct. This gives the needed contradiction and
completes the proof of the lemma.

Proof of Theorem 1.1. Let P be the absolute points of Gq,θ. Lemma 2.4
implies that the absolute points come in pairs so we can write

P = {i1, i1 +
q2 − 1

2
, i2, i2 +

q2 − 1

2
, . . . , it, it +

q2 − 1

2
}

where 2t is the number of absolute points of Gq,θ. When q is odd, q2 − 1 is
even and we can write q2− 1 = 2rm where r ≥ 1 is an integer and m is odd.
If a ∈ A, then the congruence

2x ≡ a(mod 2rm)

has no solution when a is odd and two solutions if a is even. Therefore t is
exactly the number of even elements of A when we view A as a subset of Z.
Lindström [12] proved that dense Sidon sets are close to evenly distributed
among residue classes. In particular, the results of [12] imply that

(2) t =
q

2
+O(q3/4)

so we know that we have q + O(q3/4) absolute points in Gq,θ. The number
of vertices of Gq,θ is q2 − 1 and the number of edges of Gq,θ is

e(G) =
1

2

(
q(q2 − 1− 2t) + (q − 1)(2t)

)
=

1

2
q3 − 1

2
q − t.
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Let S ⊂ V (Gq,θ) with |S| = q + 1 and let tS be the number of absolute
points in S. The graph Gq,θ\S has q2 − q − 2 vertices and

(3)
1

2
q3 − 1

2
q − t− e(S)− e(S, S)

edges. Here e(S, S) is the number of edges of Gq,θ with exactly one endpoint
in S. We can rewrite e(S) + e(S, S) as

e(S) + e(S, S) =
∑
i∈S

d(i)− e(S) = (q + 1− tS)q + tS(q − 1)− e(S)

= q2 + q − tS − e(S).

By (3) we can write the number of edges of Gq,θ\S as

(4)
1

2
q3 − 1

2
q − t− (q2 + q − tS − e(S)) =

1

2
q3 − q2 − 3

2
q − t+ tS + e(S).

For any 1 ≤ j1 < j2 ≤ t, the pair ij1 and ij2 of absolute points have a
unique common neighbor by Lemmas 2.5 and 2.1. Set k = 12

√
8q + 9− 1

2�
and note that for large enough q we have k ≤ t. The integer k is chosen so
that it is as large as possible and still satisfies the inequality

(
k
2

)
+k ≤ q+1.

Let S1 = {i1, . . . , ik}. For each pair 1 ≤ j1 < j2 ≤ k, let xj1,j2 be the unique
common neighbor of the absolute points ij1 and ij2 . Let S2 = {xj1,j2 : 1 ≤
j1 < j2 ≤ k}. By Lemma 2.7, S2 consists of

(
k
2

)
distinct vertices. A short

calculation shows that
(
k
2

)
+k ≥ q−O(

√
q). Let S3 be a set of q+1−

(
k
2

)
−k

vertices chosen arbitrarily from V (Gq,θ)\(S1 ∪ S2). Let S be the subgraph
of Gq,θ induced by the vertices S1 ∪ S2 ∪ S3. By construction, S has q + 1

vertices and at least 2
(
k
2

)
edges so

tS + e(S) ≥ k + 2

(
k

2

)
≥ 2q −O(

√
q).

By (2) and (4), removing the vertices of S from Gq,θ leaves a graph with
q2 − q − 2 vertices and at least

1

2
q3 − q2 − 2q + 2q −O(q3/4) =

1

2
q3 − q2 −O(q3/4)

edges.

Now we return to the proof of Lemma 2.6.
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Proof of Lemma 2.6. Let {a1, a2, a3}, {b1, b2, b3} ⊂ A with a1, a2, and

a3 all distinct, and b1, b2, and b3 all distinct. Since ak, bk ∈ A, there exist

elements ck, dk ∈ Fq such that

θak = θ + ck and θbk = θ + dk

for k = 1, 2, 3. Observe that c1, c2, and c3 are all distinct and so are d1, d2,

and d3.

The generator θ satisfies a degree two polynomial over Fq, say θ2 = αθ+β

where α, β ∈ Fq. Since θ generates F
∗
q2 , it cannot be the case that α = 0

and if β = 0, then θ(θ − α) = 0 which is impossible since θ /∈ Fq. The

polynomial X2 − 3X + 3β ∈ Fq[X] has at most two roots in Fq. Without

loss of generality, we may assume that

(5) c21 − 3c1α+ 3β 	= 0

since c1, c2, and c3 are all distinct. This fact will be important towards the

end of the proof.

Consider the equation 2b1 + a2 = 2b2 + a1. We can rewrite this as

(θ + d1)
2(θ + c2) = (θ + d2)

2(θ + c1).

If we expand, use θ2 = αθ + β, and regroup we obtain

θ(2d1α+ c2α+ d21 + 2d1c2) + (2d1β + c2β + d21c2)

= θ(2d2α+ c1α+ d22 + 2d2c1) + (2d2β + c1β + d22c1).

These coefficients are all in Fq so we must have

(6) 2d1α+ c2α+ d21 + 2d1c2 = 2d2α+ c1α+ d22 + 2d2c1

and

(7) 2d1β + c2β + d21c2 = 2d2β + c1β + d22c1.

Similar arguments show that both (6) and (7) hold with c3 replacing c2 and

d3 replacing d2. We view c1 and d1 as begin fixed and (c2, d2) and (c3, d3)

as solutions to the system

(8) 2d1α+Xα+ d21 + 2d1X = 2Y α+ c1α+ Y 2 + 2Y c1,
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(9) 2d1β +Xβ + d21X = 2Y β + c1β + Y 2c1.

One solution is (X,Y ) = (c1, d1). If we can show that the system (8), (9)
has at most two solutions then we are done as this forces two of the pairs
(c1, d1), (c2, d2), (c3, d3) to be the same and the pair (ck, dk) uniquely deter-
mines the pair (ak, bk). Multiply (8) by c1 and then subtract (9) to eliminate
Y 2 and obtain
(10)
(2c1d1α+c1d

2
1+c1β−2d1β−c21α)+X(αc1+2c1d1−β−d21)=Y (2c21+2c1α−2β).

Next we subtract α times (9) from β times (8) to get

(11) d21β +X(2d1β − d21α) = Y 2(β − αc1) + Y (2c1β).

If we knew that the coefficient of X was nonzero in (10) and β − αc1 	= 0
then we could easily deduce that there are at most two solutions (X,Y ).
Unfortunately we do not know this and so we have to work to overcome this
obstacle.

Suppose (10) is an equation where the coefficients of X and Y are both
0. Then

2c21 + 2c1α− 2β = 0 and αc1 + 2c1d1 − β − d21 = 0.

Since q is odd, the first equation can be rewritten as c21+c1α−β. Subtracting
the second equation c21+c1α−β gives c21−2c1d1+d21 = 0 hence (c1−d1)(c1+
d1) = 0.

If c1 = d1 then θa1 = θ + c1 = θ + d1 = θb1 so a1 = b1 (in Zq2−1). Using
2b1 − a1 = 2b2 − a2 we get b1 + a2 = b2 + b2 so b1 = b2, a contradiction.
Assume c1 = −d1. Then c1 	= 0 and d1 	= 0 otherwise c1 = d1 which we
already know does not occur. Since both coefficients of X and Y are 0 in
(10) the constant term must also be 0 so, using c1 = −d1,

0 = 2c1d1α+ c1d
2
1 + c1β − 2d1β − c21α

= −3c21α+ c31 + 3c1β

= c1(c
2
1 − 3c1α+ 3β).

By (5) this is impossible. We conclude that at least one of the coefficients
of X or Y in (10) must be nonzero.

If the coefficient of X in (10) is nonzero then we can write X = γ1Y +γ2
for some γ1, γ2 ∈ Fq. Substituting this equation into (8) gives a quadratic
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equation in Y which has at most two solutions and Y uniquely determines
X since X = γ1Y + γ2 and we are done.

Assume now that αc1 + 2c1d1 − β − d21 = 0. Then (10) gives a unique
solution for Y . Since (X,Y ) = (c1, d1) is a solution, we must have that all
solutions to the system (8), (9) have Y = d1. Substituting into (8) and (9)
we get

X(α+ 2d1) = c1(α+ 2d1)

X(β + d21) = c1(β + d21).

If d1 = 0 then Xα = c1α and since α 	= 0 we get X = c1 are we are done.
Assume d1 	= 0. If either α+2d1 or β+d21 are nonzero then we are done.

Assume α+2d1 = β+ d21 = 0. If we substitute Y = d1 into (11) then we get

Xd1(2β − d1α) = d1c1(2β − d1α).

Again, if 2β − d1α is nonzero we are done, so assume 2β − d1α = 0. Using
the three equations

α+ 2d1 = 0, β + d21 = 0 , 2β − d1α = 0

we have

0 = 2β − d1α = 2(−d21)− d1(−4d1) = 2d21

so d1 = 0 giving the needed contradiction.
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