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Cops and Robbers playing on edges
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†

In the game of cops and robbers, the cops try to capture a robber
moving on the vertices of the graph. The minimum number of cops
required to win on a given graph G is called the cop number of G.
In this paper, we consider the variant of the game in which both
players play on edges instead of vertices, yielding the edge cop
number. We relate the new graph parameter to the classic one,
investigate Meyniel extremal families, and characterize edge cop-
win graphs. We also play the game on random graphs and planar
graphs.

1. Introduction

The game of Cops and Robbers, introduced independently by Nowakowski
and Winkler [23] and Quilliot [28] thirty years ago, is played on a fixed
graph G. We will always assume that G is undirected, simple, and finite.
There are two players, a set of k cops, where k ≥ 1 is a fixed integer, and
the robber. The cops begin the game by occupying any set of k vertices (in
fact, for a connected G, their initial position does not matter). The robber
then chooses a vertex, and the cops and robber move in alternate rounds.
The players use edges to move from vertex to vertex. More than one cop
is allowed to occupy a vertex, and the players may remain on their current
positions. The players know each other’s current locations. The cops win and
the game ends if at least one of the cops eventually occupies the same vertex
as the robber; otherwise, that is, if the robber can avoid this indefinitely,
he wins. As placing a cop on each vertex guarantees that the cops win, we
may define the cop number, written c(G), which is the minimum number of
cops needed to win on G. The cop number was introduced by Aigner and
Fromme [1] who proved (among other things) that if G is connected and
planar, then c(G) ≤ 3. For more results on vertex pursuit games such as Cops
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and Robbers, the reader is directed to the surveys on the subject [3, 14, 17]
and recent monograph [10].

Suppose now that both players are slightly bored and, in order to make
the game more interesting, they have decided to play on edges instead of
vertices. In other words, the players start the game on edges and use vertices
to move from edges to edges. The other rules of the game remain unchanged.
We define the edge cop number, c̄(G), to be the counterpart of the cop
number for the classic game. It is clear that playing the new game on a
graph G is equivalent to playing the classic game on L(G), the line graph
of G; that is, c̄(G) = c(L(G)). However, it seems that it is not beneficial to
look at the problem this way, especially if one is interested in discovering
properties of the new graph parameter and trying to relate it to some other
parameters, including the classic cop number. For example, as we already
mentioned c(G) ≤ 3 for any connected, planar graph G but, since L(G) is
usually not planar, we cannot say anything about c̄(G). However, by playing
on edges of G and using the planarity of this graph one can show that the
bound of 3 still holds. The only proof in this paper that uses the fact that
c̄(G) = c(L(G)) is the proof of Lemma 3.3.

In Section 2, we relate the edge cop number to the classic one. We
characterize graphs with the edge cop number equal to one in Section 3.
In Section 4, we investigate Meyniel extremal families. In particular, the
edge cop number of incidence graphs of the projective plane is studied.
Random graphs are considered in Section 5 and planar graphs in Section 6.
We conclude the paper with some open problems and future directions that
can be found in Section 7.

2. Relation to the cop number

In this section, we relate the edge cop number c̄(G) to the classic cop number
c(G).

Theorem 2.1. Let G be any connected graph. Then⌈
c(G)

2

⌉
≤ c̄(G) ≤ c(G) + 1.

Before we move to the proof of this theorem, let us mention that this
result is sharp. For the upper bound, note that for n ≥ 4, c̄(Kn) = 2 whereas
c(Kn) = 1. (Characterization of graphs with c̄(G) = c(G) + 1 is left as an
open problem—see Section 7 for more details.) For the lower bound, one
can check that the Petersen graph (or the graph presented in Figure 1) has
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Figure 1: A plane representation of the dodecahedron.

the classic and the edge cop number of 3 and of 2, respectively, yielding
�32� = 2. (Having said that, we note that a small improvement may be
possible and perhaps �(c(G)+1)/2� ≤ c̄(G)—see Section 7 for more details.)
More importantly, we will show (Theorem 5.1) that asymptotically almost
surely the ratio c̄(G(n, p))/c(G(n, p)) is equal to 1/2+o(1) for dense random
graphs. This, in particular, implies that for almost all graphs the classic cop
number is (roughly) twice as much as the edge one.

Proof of Theorem 2.1. For both inequalities that are to be proved, we are
going to relate the two corresponding games: the edge variant of the game
and the classic one. Hence, a winning strategy for one game can be translated
to a winning strategy of the other. At any point of the game on edges and
for every player occupying an edge e = uv (regardless whether it is a cop
or the robber), we call one of the endpoints (say, u) a head of this player
and the other endpoint (say, v) is a tail. When a player makes a move, he
can move from edge to edge either through a head or a tail, making sure
the distances travelled by heads and tails are at most 1. For example, when
a player moves from e = uv to e′ = vw, vertex v that used to be a tail
becomes a head and w is a tail.

Let us start with a proof of c̄(G) ≤ c(G) + 1. We play the edge variant
of the game with c+1 cops, having in mind that c = c(G) cops can win the
classic variant. The players start the game as usual, the team of c+1 cops go
first to some edges and then the robber goes to some edge. We distinguish
two phases in this game. At the beginning of the first phase, we select any
c cops that will be actively playing during this phase; the remaining cop is
passive, getting ready for the second phase. By looking at heads of all active
players, we can mimic the classic game on vertices so that c heads of cops
are chasing the head of the robber. (Note that it might happen that a head
of some player needs to move to a tail of this player. But this causes no
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problem, since we may simply swap them.) Since G is connected, there is a
winning strategy which guarantees that at some point a head of some cop
catches the head of the robber, and the first phase ends. During the second
phase, the cop that caught the head of the robber will have a special task
of chasing the robber till the end of the game so that their heads are always
matched. The remaining c cops (including the one that was passive in the
first phase), mimicking the classic game, follow their winning strategy which
guarantees that a tail of some cop catches the tail of the robber. The robber
is caught in the next round and the upper bound holds.

Now, we move to a proof of c(G) ≤ 2c̄(G). We play the classic variant of
the game with 2c cops, having in mind that c = c̄(G) cops can win the edge
variant. The cops start the game by occupying edges u1v1, u2v2, . . . , ucvc, so
we send 2c cops to occupy all endpoints of these edges. (It might happen that
more than one cop is sent to one vertex.) The robber responds by occupying
a vertex v. Let u be any neighbour of v (recall that G is connected so v has
at least one neighbour). To couple the two games, we may assume that the
robber starts the edge variant by occupying the edge uv. From that point
on, we couple the two games as before. Since c cops have a strategy to win
the edge variant of the game, one of 2c cops catch the robber in the classic
game. The lower bound holds and the proof is finished.

3. Characterization of edge cop-win graphs

In this section, we investigate the special case when one cop can win the
game. If c(G) = 1 (or c̄(G) = 1), we say G is cop-win (or edge cop-win, re-
spectively). Nowakowski and Winkler [23] and, independently Quilliot [28],
considered the game with one cop only. As we already mentioned, the intro-
duction of the cop number came in [1].

The structure of cop-win graphs has been relatively well-understood.
In [23, 28, 29] a kind of ordering of the vertex set—now called a cop-win
ordering—was introduced which completely characterizes such graphs. If u
is a vertex, then the closed neighbour set of u, written N [u], consists of u
along with the neighbours of u. A vertex u is a corner if there is some vertex
v, v �= u, such that N [u] ⊆ N [v]. A graph is dismantlable if some sequence
of deleting corners results in the graph with a single vertex. For example,
each tree is dismantlable and, more generally, so are chordal graphs (that
is, graphs with no induced cycles of length more than three). To prove the
latter fact, it is enough to note that a chordal graph contains a vertex (called
simplicial) whose neighbour set is a clique.

The following theorem provides a characterization of cop-win graphs.
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Theorem 3.1. [23, 28, 29]

(i) If u is a corner of a graph G, then G is cop-win if and only if G − u
is cop-win.

(ii) A graph is cop-win if and only if it is dismantlable.

From Theorem 3.1, cop-win graphs have a recursive structure, made
explicit in the following sense. A permutation v1, v2, . . . , vn of the vertices of
G is a cop-win ordering if there exist vertices w1, w2, . . . , wn such that, for
all i ∈ {1, 2, . . . , n}, N [vi] ⊆ N [wi] in V (G) \ {vj : j < i} and vi �= wi. This
result implies that the family of cop-win graphs is quite rich. On the other
hand, it was shown by Bonato, Kemkes, and the third author that almost
all cop-win graphs contain a universal vertex, that is, a vertex that is joined
to all other vertices [9]. (See also [24] where this result was generalized and
it was shown that almost all k-cop-win graphs contain a dominating set of
cardinality k.)

In this section, we characterize edge cop-win graphs. The following the-
orem is the main result of this section.

Theorem 3.2. A graph G is edge cop-win if and only if the following three
properties hold:

(i) G is connected,
(ii) G is chordal,
(iii) G is K4-free.

We start with a definition of the following useful process. Let G2 be a
graph consisting of two vertices v1, v2 and a single edge v1v2. For a given
integer t ≥ 3, we construct Gt from Gt−1 by adding one more vertex vt and
performing a vertex step or an edge step. When a vertex step is performed,
any vertex vi ∈ V (Gt−1) is selected and one edge vivt is added. When an
edge step is performed, any edge vivj ∈ E(Gt−1) is selected and two edges
vivt and vjvt are added. Note that a graph Gt consists of t vertices. We say
that a graph G on n vertices is constructible if it can be generated during
this process; that is, there exists a process generating a sequence of graphs
(Gt : t ≥ 2) with G = Gn.

Lemma 3.3. Graph G is edge cop-win if and only if G is constructible.

Proof. Consider any process (Gt : t ≥ 2). We will show first that for any
t ≥ 3 we have c̄(Gt−1) = 1 if and only if c̄(Gt) = 1. In order to prove the
claim, we simply use Theorem 3.1 and use the fact that playing the game on
edges of G is equivalent to playing the classic game on the line graph of G.
Suppose first that in order to get Gt from Gt−1 a vertex step was performed.
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Let e = vivt be the edge added at this step and e′ = vjvi be any other edge
incident to e. Since N [e] ⊆ N [e′] in the line graph L(G), e is a corner and
the claim holds by Theorem 3.1(i). Suppose then that Gt was created after
an edge step was performed; an edge e = vivj was selected, and two edges
e′ = vivt and e′′ = vjvt were added. Since N [e′] ⊆ N [e], e′ is a corner in
L(G) (e′′ is also a corner) and the claims holds as well.

Using the claim, we get immediately one direction of the statement: if G
is constructible, then c̄(G) = 1. Hence, it remains to prove the converse. We
prove it by induction on number of vertices. For the base step note than the
only connected graph on 2 vertices is both edge cop-win and constructible.
Let n ∈ N, n ≥ 3, and G be any graph on n vertices such that c̄(G) = 1.
Assuming that every edge cop-win graph on n − 1 vertices is constructible
we need to show that G is constructible. Consider the game played on G.
The cop has a strategy to catch the robber but we assume that the robber
tries to play as long as possible. What happens when the game is about to
end? The robber occupies an edge uv and the cop occupies an edge incident
to uv, say, vw. No matter what the robber does in the next round, he will
be caught by the cop and the game ends. The only two possible scenarios
are: u has only one neighbour, vertex v, or u has two neighbours, v and w.
(In every other scenario, the robber could survive for another round.) No
matter which situation actually occurs, G can be constructed from G − u
by performing a vertex step or an edge step, respectively. Since c̄(G) = 1,
we can use the claim one more time to get that c̄(G − u) = 1. From the
assumption it follows that G − u is constructible, hence G is constructible
as well and the proof is finished.

Theorem 3.2 follows immediately from Lemma 3.3 and the following
lemma.

Lemma 3.4. A graph G is constructible if and only if the following three
properties hold:

(i) G is connected,
(ii) G is chordal,
(iii) G is K4-free.

Proof. It is an easy observation that a constructible graph G satisfies the
three properties. Suppose then that a graph G satisfies properties (i)–(iii).
Since G is chordal (property (ii)), there exists a simplicial vertex v ∈ V (G);
that is, N [v] induces a clique. Since G is K4-free (property (iii)), N [v] is
isomorphic to K2 or K3. It follows that G can be constructed from G − v
by performing a vertex step or an edge step, respectively. Moreover, since v
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is simplicial, G− v is chordal and so we can keep repeating the argument to

deconstruct G (G is connected by property (i)). The result holds.

Since any connected, chordal graph is cop-win we get immediately the

following corollary.

Corollary 3.5. If G is edge cop-win, then G is cop-win.

Moreover, every constructible graph is planar and sparse (every con-

structible graph Gn on n vertices has at most 2n − 1 edges) and so every

edge cop-win graph has the two properties.

4. Meyniel’s conjecture and projective planes

The most important open problem in this area is Meyniel’s conjecture (com-

municated by Frankl [13]). It states that c(n) = O(
√
n), where c(n) is

the maximum of c(G) over all n-vertex connected graphs. If true, the es-

timate is best possible as one can construct a bipartite graph based on

the finite projective plane with the cop number of order at least
√
n. (See

below for more details.) Up until recently, the best known upper bound

of O(n log log n/ log n) was given in [13]. It took 20 years to show that

c(n) = O(n/ log n) as proved in [12]. Today we know that the cop num-

ber is at most n2−(1+o(1))
√

log2 n (which is still n1−o(1)) for any connected

graph on n vertices (the result obtained independently by Lu and Peng [21],

Scott and Sudakov [30], and Frieze, Krivelevich, and Loh [15]).

It is believed that the conjecture is true. However, if one looks for coun-

terexamples for Meyniel’s conjecture it is natural to study first the cop num-

ber of random graphs. It was recently shown that it is impossible and, in fact,

Meyniel’s conjecture holds asymptotically almost surely for binomial random

graphs [27] as well as random d-regular graphs [26]. (See the next section for

more.) These results for random graph models support Meyniel’s conjecture

although there is currently a huge gap in the deterministic bounds: it is still

not known whether there exists ε > 0 such that the cop number of connected

graphs of order n is O(n1−ε).

In this paper, we study the edge cop number c̄(G). It follows from The-

orem 2.1 that c(G)/2 ≤ c̄(G) ≤ 2c(G) for every connected graph G. As a

result, Meyniel’s conjecture for the new graph parameter c̄(G) is equivalent

to the classic conjecture for c(G). However, even if we believe the conjecture

is true, the question remains how close the cop numbers can approach
√
n

from below. We address this question in this section.
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Following terminology that was introduced by Baird and Bonato in [4],
we call an infinite family of graphs (Gn : n ≥ 1) Meyniel extremal (or d-
Meyniel extremal) if there exists a universal constant d such that for all n we
have c(Gn) ≥ d

√
|V (Gn)|. As pointed out in [4], incidence graphs are very

useful in constructing graphs with large cop numbers (see [8] for more). An
incidence structure S consists of a set P of points, and a set L of lines along
with an incidence relation consisting of ordered pairs of points and lines.
Projective planes are some of the most well-studied examples of incidence
structures. A projective plane of order q, PG(2, q), consists of a set P of
points and a set L of lines satisfying the following:

• There is exactly one line incident with every pair of distinct points;
• There is exactly one point incident with every pair of distinct lines;
• Every line consists of q + 1 points and every point lies on q + 1 lines;
• |P | = |L| = q2 + q + 1.

Given an incidence structure S, we define its incidence graph G(S) to be the
bipartite graph whose vertices consist of the points (one partite set), and
lines (the second partite set), with a point joined to a line if it is incident
with the line in S.

A girth of a graph G is defined as the length of a shortest cycle. As
proved in [1] by Aigner and Fromme, if the girth of G is at least 5, then
c(G) ≥ δ(G), where δ(G) is the minimum degree of G. It is known (see,
for example, [16]) that for every q that is a prime power the projective
plane P := PG(2, q) exists. Let G(P ) be the corresponding incidence graph.
It immediately follows from the above properties of PG(2, q) that G(P ) is
connected, has girth 6, is (q+1)-regular, and has 2(q2+q+1)-many vertices.
Hence,

c(G(P )) ≥ q + 1 =

√
2(q2 + 2q + 1)

2
≥

√
|V (G(P ))|

2
,

and so this family is (1/
√
2)-Meyniel extremal. (In fact, c(G(P )) = q + 1 as

shown by the third author in [25].) It is not known if this family yields the
largest constant d (since Meyniel’s conjecture is still open!), but no better
construction has been found.

Let us now come back to the edge cop number c̄(G) we investigate in
this paper. Meyniel extremal families for the new parameter can be defined
the same way. Moreover, it follows from Theorem 2.1 that every d-Meyniel
extremal family for the classic cop number is (d/2)-Meyniel extremal for
the edge cop number. In particular, the family of incidence graphs of the
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projective plane is (1/2
√
2)-Meyniel extremal. However, this time it is not

clear if the constant is best possible. Our goal is to show that, in fact, this
family is (1/

√
2)-Meyniel extremal for the edge variant of the game. As a

result, this family provides the best known construction, as for the classic
case.

We start with the following observation, the counterpart of the obser-
vation of Aigner and Fromme from [1] that appears to be slightly more
complicated for the edge cop number.

Lemma 4.1. Let G be any connected graph with girth at least 6. Then

c̄(G) ≥ δ(G).

Proof. Let G = (V,E) be any connected graph with girth at least 6. We start
with a few definitions. Suppose that the robber occupying an edge uv ∈ E
is not caught and that it is his turn to make a move. An edge incident to
uv is called bad if it is occupied by a cop (that is, the distance to a closest
cop is 0). An edge incident to uv that is not bad is called threatening if it
is incident to an edge occupied by a cop (that is, the distance to a closest
cop is 1). An incident edge that is neither bad nor threatening is called good
(that is, the distance to a closest cop is at least two). Similarly, an endpoint
v is bad if it is incident to a bad edge. An endpoint v that is not bad is
called threatening if it is incident to a threatening edge. Finally, v is good if
it is neither bad nor threatening.

We play the game against δ(G)− 1 cops. Since G is connected, we may
assume that all cops start at a single edge. Since the girth is at least 6, the
robber can start by going to an edge uv that is at distance at least three
from all the cops. No matter what they do in the next round, the distance
between players is going to be at least two so both u and v are not going
to be bad. We will show (by induction) that the robber has a strategy to
guarantee that at every round of the game, when it is his turn to make a
move, he is not caught and at least one endpoint is not bad.

Suppose that the robber occupying an edge uv is not caught, at least one
endpoint is not bad, and it is his turn to move. If both endpoints are good,
the robber stands still. No matter what cops do in the next round, both
endpoints might become threatening but are still not bad. Suppose then
that u is threatening or bad, and v is threatening or good (in particular,
there is no bad edge incident to v). At least one cop is within distance two
from u in G − uv (the distance between an edge incident to u and u is 1,
etc.). Let us fix one such cop and call him dangerous. Since the girth is at
least 6, dangerous cop is at distance at least 3 from v in G−uv. As a result,
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Figure 2: The 1st phase of the game played on G(P ).

dangerous cop does not make any edge incident to v threatening. Moreover,
every other cop can make at most one edge incident to v threatening. Since
there are δ(G)−2 other cops (dangerous cop is disregarded) and the number
of edges incident to v is δ(G)− 1, there is at least one edge, say, vw that is
good. The robber moves from uv to vw, and no matter what cops do in the
next round w is not going to be bad. The result holds.

Since G(P ) is (q+1)-regular, it follows from Lemma 4.1 that c̄(G(P )) ≥
q + 1, and so the family is (1/

√
2)-Meyniel extremal. On the other hand,

from Theorem 2.1 we have that c̄(G(P )) ≤ c(G(P ))+1 = q+2, so only two
values are possible. We eliminate one of them in the next theorem.

Theorem 4.2. Let P := PG(2, q) be the projective plane of order q. The
incidence graph G(P ) of P satisfies the following:

c̄(G(P )) = q + 1.

Proof. As we already mentioned, the lower bound of q + 1 follows immedi-
ately from Lemma 4.1. It remains to show that q + 1 cops can catch the
robber. We will distinguish two phases of the game. In the first phase, we
provide a strategy for cops so that one of them moves at distance one from
the robber. (In fact, for that we could use the property that c(G(P )) = q+1
and exploit an idea from the proof of Theorem 2.1 to couple the classic game
with the game on edges. However, we provide an explicit strategy in order
to avoid referencing to a result from [25] so that the argument presented
here is self-contained.) During the second phase, the cop that is close to the
robber keeps chasing him and the remaining cops make sure the bad guy is
caught.

The cops start the game (and the first phase) by occupying q + 1 inde-
pendent edges ci = cipc

i
� (i = 1, 2, . . . , q+1)—see Figure 2. Subscripts p and
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Figure 3: The 2nd phase of the game played on G(P ).

� indicate that a vertex is a point and a line, respectively. We may assume
that the robber goes to another independent edge r = rpr�; otherwise, he
would be caught immediately. Let p1, p2, . . . , pq be points on the line rl that
are different than rp (recall that each line consists of q+1 points). For each
i = 1, 2, . . . , q, a pair of points pi, c

i
p belongs to a line �i, and so ith cop can

be moved from cipc
i
� to cip�i. The remaining (q + 1)st cop has similar task.

He is moved from cq+1
p cq+1

� to cq+1
p �q+1, where �q+1 is the line containing

both cq+1
p and rp. Regardless of what the robber does in the next round, ith

cop (i = 1, 2, . . . , q) moves to pi�i, (q + 1)st cop moves to rp�q+1, and some
cop occupies an edge incident to the one occupied by the robber—again,
see Figure 2. This cop receives the task of chasing the robber till the end of
the game. In order to keep the notation simple we may relabel cops so that
(q + 1)st cop is chasing the robber.

Let cp be any point and c1� , c
2
� , . . . , c

q
� , � be q + 1 lines this point belongs

to. At the beginning of the second phase, the remaining q cops move to
the star centered at cp; that is, ith cop (i = 1, 2, . . . , q) goes to cpc

i
�—see

Figure 3. (Recall that G(P ) is connected so it is possible.) Once they are at
the desired positions, they wait till the robber and the chasing cop share a
point; that is, say, the robber occupies an edge rpr� and the chasing cop is at

rpc
q+1
� . A subtle but important observation is that we may assume that rp

belongs to �. Indeed, if it were not the case, then rp would have to belong to
a line ci� for some i, as rp and cp share some line. But, since in the previous

round the robber was at the edge rpc
q+1
� currently occupied by the chasing

cop, the cop occupying cpc
i
� could have moved to rpc

i
� and the robber would

have been already caught.
Assuming that rp belongs to �, we get that no pi (i = 1, 2, . . . , q) belongs

to �, since this would imply that there is a cycle (pi, �, rp, r�) of length 4
but the girth of G(P ) is 6. Hence, for every i = 1, 2, . . . , q we have that
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pi belongs to cj� for some j = 1, 2, . . . , q, as pi and cp belong to some line.
In the next round, the regular team of q cops moves so that each point pi
(i = 1, 2, . . . , q) is incident to a cop; the chasing cop keeps doing his job. No
matter what the robber does in the next round, he will be trapped and the
end of the game is near. The result holds.

5. Random graphs

Let us recall the classic model of random graphs that we study in this
paper. The binomial random graph G(n, p) is defined as a random graph
with vertex set [n] = {1, 2, . . . , n} in which a pair of vertices appears as
an edge with probability p, independently for each such pair. As typical in
random graph theory, we shall consider only asymptotic properties of G(n, p)
as n → ∞, where p = p(n) may and usually does depend on n. We say that
an event in a probability space holds asymptotically almost surely (a.a.s.)
if its probability tends to one as n goes to infinity. (For more on random
graphs, see, for example, [6, 18].)

Let us first briefly describe some known results on the classic cop number
of G(n, p). (One can find much more on the related topics: for random d-
regular graphs see [26], for random geometric graphs see [2, 5], and for the
robber performing a random walk see [19, 20].) Bonato, Wang, and the
third author investigated such games in G(n, p) random graphs, and their
generalizations used to model complex networks with a power-law degree
distribution (see [11]). From their results it follows that if 2 log n/

√
n ≤ p <

1− ε for some ε > 0, then a.a.s.

c(G(n, p)) = Θ(log n/p).

So Meyniel’s conjecture holds a.a.s. for such p. Moreover, if p = n−o(1) and
p < 1− ε for some ε > 0, then a.a.s.

(1) c(G(n, p)) = (1 + o(1)) log1/(1−p) n.

A simple argument using dominating sets shows that Meyniel’s conjecture
also holds a.a.s. if p tends to one as n goes to infinity (see [25] for this and
stronger results). Somewhat surprisingly, it was shown by �Luczak and the
third author [22] that for sparse random graphs the cop number has more
complicated behaviour. It follows that a.a.s. logn c(G(n, nx−1)) is asymptoti-
cally equal to the function f(x) shown in Figure 4. Moreover, Bollobás, Kun,
and Leader [7] showed that if d = p(n − 1) > (2 + ε) logn for some ε > 0,
then a.a.s. c(G(n, nx−1)) = O(

√
n log n).
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Figure 4: The “zigzag” function f .

From the above results, we know that Meyniel’s conjecture holds a.a.s.

for random graphs except perhaps when np = n1/(2k)+o(1) for some k ∈ N,

or np = no(1). In [27], Wormald and the third author of this paper showed

that the conjecture holds a.a.s. in G(n, p) provided that np > (1/2+ ε) logn

for some ε > 0. Note that Meyniel’s conjecture is restricted to connected

graphs, but G ∈ G(n, p) is a.a.s. disconnected when np ≤ (1−ε) logn. Thus,

the following equivalent statement of Meyniel’s conjecture holds a.a.s. for

G ∈ G(n, p) for all p: if G is connected then c(G) = O(
√
n).

In this paper, we investigate the edge cop number c̄(G). Since there is

only a multiplicative constant factor difference between the two cop numbers

(by Theorem 2.1), all known results for random graphs also hold for the edge

cop number (up to a constant). In particular, Meyniel’s conjecture holds

a.a.s. for the edge cop number for G ∈ G(n, p) for all p. On the other hand,

the asymptotic value of the classic cop number is known only for dense

random graphs; that is, when p = n−o(1). We will show that in this case, the

edge cop number is essentially two times smaller than its classic counterpart

(see (1)).

Theorem 5.1. Let p = p(n) be such that p = n−o(1) and p < 1− ε for some

ε > 0. Then, a.a.s.

c̄(G(n, p)) =
(
1

2
+ o(1)

)
log1/(1−p) n.

Before we move to the proof of this theorem, let us mention an asymp-

totic behaviour of the logarithm used in the formula for the edge cop number,
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and state one general observation that will be useful in the proof. If p is a
constant smaller than 1,

log1/(1−p) n = Θ(log n).

However, if p = o(1) we have that

(2) log1/(1−p) n =
log n

− log(1− p)
= (1 + o(1))

logn

p
,

which tends to infinity faster than natural logarithm.
A set of vertices S is a dominating set in G if each vertex not in S is

joined to some vertex of S. The domination number of G, written γ(G),
is the minimum cardinality of a dominating set in G. A straightforward
observation is that c(G) ≤ γ(G) (place a cop on each vertex of dominating
set with minimum cardinality and catch the bad guy in the next round).
Our goal here is to discover a similar bound for the edge cop number.

An edge cover of a set S is a set of edges C in a graph induced by S such
that each vertex in S is incident with at least one edge in C. A minimum
edge covering of S is an edge covering of smallest possible size. The edge
covering number of a set S inducing a graph with no isolated vertex, written
ρ(S), is the size of a minimum edge covering of S. Finally, for a graph G
with no isolated vertex, let

ξ(G) = min{ρ(S) : S ∈ S},

where S is a family of dominating sets satisfying the following property: for
every set S ∈ S we have that a graph induced by S has no isolated vertex.
(The reason G is assumed to have no isolated vertex is to make sure ξ(G)
is well defined.)

Now, we are ready to state a lemma that will be very useful in investi-
gating dense random graphs. We present it as an independent result since
it might be also applied to other families of graphs.

Lemma 5.2. Let G = (V,E) be any connected graph. Then

c̄(G) ≤ ξ(G) + 1.

Note that the result is sharp, since for any n ≥ 4 we have c̄(Kn) = 2
and ξ(Kn) = 1.

Proof of Lemma 5.2. Let S ∈ S be a dominating set that yields ξ(G) with
a minimum edge cover C of cardinality c = ξ(G). The regular team of c
cops start at the edge cover C; one extra cop starts anywhere in the graph.
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The robber goes to an edge e ∈ E. Since every vertex of S is covered, the
robber is immediately caught if e has at least one endpoint in S. Hence, we
may assume that both endpoints of e (say, u and v) are not in S. Since u is
dominated by S (recall that S is a dominating set), there exists u′ ∈ S such
that uu′ ∈ E. Since S induces no isolated vertex and C covers all vertices
of S, there is an edge e′ in C incident to u′. The cop occupying e′ moves to
uu′ and this cop will have a special task of chasing the robber till the end of
the game. (If there are more cops incident to u′, the decision of which cop
should be chasing the robber can be made arbitrarily.) Now, the extra cop
replaces the chasing cop, joins the regular team of c cops, and moves to the
edge e′ of the edge cover C that was previously occupied by the chasing cop.
Since G is connected, this task takes at most |V (G)| − 1 steps. Once he is
at the desired position, all cops look around and see the robber moving to
an edge e′′ with endpoints x and y. As before, we may assume that neither
endpoint is in S. The chasing cop moves as usual to secure one endpoint,
say x. For the other endpoint, y, we take y′ ∈ S such that yy′ ∈ E and move
a cop occupying an edge incident to yy′ towards the robber. The robber is
caught in the next round and the result holds.

Now we come back to the proof of the main result of this section.

Proof of Theorem 5.1. It follows from (1) that a.a.s. c(G(n, p)) = (1+o(1)) ·
log1/(1−p) n. By Theorem 2.1 we have c̄(G) ≥ c(G)/2, and the lower bound
follows immediately.

Let

k = log1/(1−p) n+ 2 log1/(1−p) ω,

where ω = ω(n) = p−1 logn. Clearly, ωp = logn → ∞ as n → ∞, but note
also that log1/(1−p) ω = o(k) so, in fact, k = (1 + o(1)) log1/(1−p) n. Indeed,
if p = Ω(1), then log1/(1−p) ω = Θ(log log n) = o(log n) = o(k). On the other

hand, for p = o(1) we have ω = no(1) and

log1/(1−p) ω = (1 + o(1))
logω

p
= o

(
log n

p

)
= o(k).

For the upper bound we are going to use Lemma 5.2. Our goal is to find
a set that is a.a.s. dominating and has small edge cover. Fix any set X of
cardinality k. First of all, we will show that a.a.s. there exists a set Y ⊆ X of
cardinality log1/(1−p) n+ log1/(1−p) ω = k − log1/(1−p) ω which has a perfect
matching. In order to do it, we consider the following process. Select any
vertex x1 and expose all edges from x1 to other vertices of X. If at least
one edge is found, select any neighbour x2 of x1 and pick another vertex
x3 ∈ X \ {x1, x2}. This time we expose all edges from x3 to X \ {x1, x2, x3}
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with a hope that at least one edge is discovered and the process can be
continued. The only reason for the process to terminate at a given round is
when no edge is found. We will show that a.a.s. the process does not stop
before all but r := log1/(1−p) ω vertices are matched. Indeed, the probability
the process does not stop earlier is equal to(
1− (1− p)k−1

)(
1− (1− p)k−3

)
· . . . ·

(
1− (1− p)r+1

)
=

k/2−1∏
i=r/2

(
1− (1− p)2i+1

)

= exp

(
−(1 + o(1))(1− p)

k/2−1∑
i=r/2

(1− p)2i

)

= exp

(
−(1 + o(1))(1− p)

((1− p)2)r/2 − ((1− p)2)k/2

1− (1− p)2

)

= exp

(
−(1 + o(1))

1− p

1− (1− p)2
ω−1

)
= exp

(
−O

(
(pω)−1

))
,

which tends to one, since pω tends to infinity as n → ∞.
Second of all, we will show that a.a.s. Y ⊆ X dominates all vertices of

V \X. (Note that edges between Y and V \X are not exposed yet. However,
edges between Y and X\Y are already exposed and so we cannot investigate
if X \ Y is dominated by Y or not.) Since |Y | = log1/(1−p) n + log1/(1−p) ω
and |X| = log1/(1−p) n+ 2 log1/(1−p) ω, this probability is equal to

(
1− (1− p)|Y |)n−|X| ≥ 1− (n− |X|)(1− p)|Y |

≥ 1− n(1− p)log1/(1−p) n+log1/(1−p) ω

= 1− 1/ω,

which tends to one as n → ∞.
Third of all, we will show that a.a.s. the set X \ Y induces a graph with

no isolated vertex. (Note that edges within X \Y are not exposed yet.) The
probability that a given vertex inX\Y is isolated is (1−p)|X\Y |−1 = O(ω−1).
Hence, the expected number of isolated vertices is

O(ω−1 log1/(1−p) ω) = O

(
logω

logn

)
= o(1),

and the result holds by Markov’s inequality.
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Putting the three claims together we will get the upper bound. It follows
that a.a.s. X is a dominating set (since Y ⊆ X dominates V \ X a.a.s.).
Moreover, a.a.s.

ρ(X) ≤ ρ(Y ) + ρ(X \ Y ) ≤ |Y |
2

+ |X \ Y | = 1

2
log1/(1−p) n+

3

2
log1/(1−p) ω,

since a.a.s. Y has a perfect matching, and X \ Y induces no isolated vertex
so one can simply take any incident edge for each vertex of X \ Y . Hence,
a.a.s.

ξ(G) ≤ ρ(X) ≤ (1/2 + o(1)) log1/(1−p) n.

The proof of the upper bound follows, since c̄(G) ≤ ξ(G) + 1 by Lem-
ma 5.2.

The upper bound presented in the proof of the previous theorem can be
easily extended to sparser graphs. As we already mentioned, the reason we
focus on p = n−o(1) is because for sparser graphs the bounds for the classic
cop number are not tight and so there is no easy argument to get a matching
lower bound.

Moreover, let us mention that it is known that a.a.s. G(n, p) has a perfect
matching, provided that p is above the threshold for disappearing isolated
vertices (see, for example, [6, 18]). This result could be used to show that
the set X in the proof of the previous theorem has a perfect matching a.a.s.
(of course, some rescaling is need, since the number of vertices is not n, and
so the argument is more subtle). We presented an independent simple proof
to make the argument self-contained.

6. Planar graphs

As was already mentioned in the introduction, Aigner and Fromme [1] proved
that any connected planar graph G satisfies c(G) ≤ 3. Here we prove an
analogous result for the new variant of the game.

Theorem 6.1. Let G be any connected planar graph. Then

c̄(G) ≤ 3.

Before we move to the proof, we note that the bound is best possible,
since one can easily verify that the edge cop number of the graph on Figure 5
is at least 3 (and consequently, exactly 3).

The proof is a direct adaptation of the approach taken by Aigner and
Fromme [1]. We say that a cop c controls a path P if whenever the robber



148 Andrzej Dudek et al.

Figure 5: A plane representation of the soccer ball. (Each pentagon is sur-
rounded by 5 hexagons.)

tries to cross P , then he is caught by c on his responding moves. First we
prove an auxiliary result showing that one cop suffices to control any shortest
path in an arbitrary connected graph.

Lemma 6.2. Let G be any graph, u, v ∈ V (G), u �= v, and P = (u =
v0, v1, . . . , vs = v) be a shortest path between u and v. A single cop can
control P after a finite number moves.

The idea of the proof of Theorem 6.1 is to divide the pursuit into stages.
In stage i, we assign to the robber r a certain subgraph Gi, the robber’s
territory, which contains all edges which r may still safely enter, and we
show that, after a finite number of cop-moves, Gi is reduced to Gi+1 � Gi.
Eventually, there is no safe edge left for the robber and the game ends. In
each iteration, at most two shortest paths in Gi must be controlled. Due
to Lemma 6.2, this requires one cop per path, and the third cop moves to
control another shortest path in Gi. See [1] for the details of the proof.

It remains to prove the auxiliary lemma.

Proof of Lemma 6.2. We will deduce Lemma 6.2 from a similar result
from [1]. In the following definition we assume that the robber and cops
play on vertices. We say that a set of cops guard (vertex-wise) a path P
from a set of robbers if whenever a robber steps onto P , he steps onto a
cop or is caught by a cop on his responding move. It was shown in [1] that
one cop suffices to guard any shortest path from one robber. In order to
achieve it, a projection of the vertex r occupied by the robber on the path
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P was introduced. This projected vertex, s, was called the shadow of the
robber. The cop strategy is simply to catch the shadow of the robber and
keep following it. We will show that this is also the case for the new variant
of the game.

We start the game played on edges with the cop going to any edge c
on the path P = (v0, v1, . . . , vs) and r goes anywhere. At any point of the
game played on edges and for any player p occupying an edge e (regardless
whether it is a cop or the robber), we couple p with two vertex players p(1)
and p(2) which are the endpoints of e. Every move of p induces a move of
both p(1) and p(2). In particular, every edge-move of r induces a vertex-
move of r(1) and r(2). Clearly, when the robber moves, the corresponding
vertices r(1) and r(2) move to their neighbours and the distance between
them is one. The key observation is that the corresponding shadows s(1)
and s(2) move to neighbours or remain still, and the distance between s(1)
and s(2) is always at most one. In order to show that a cop c controls P , we
prove that c(1) and c(2) can guard P from r(1) and r(2) by catching their
shadows s(1) and s(2), respectively. (If s(1) = s(2) = s, then c(1) catches s
and c(2) occupies any neighbour of s.)

During the first phase of the game, the cop plays so that c(1) catches
s(1) as in the classic version of the game. If s(2) = s(1) or s(2) = c(2), then
the path is already guarded. Hence, due to the symmetry, we may suppose
that c(1) = s(1) = vi, s(2) = vi+1, and c(2) = vi−1. If the robber stands still,
we can easily catch his shadows: the cop moves to get c(1) = vi+1 = s(2) and
c(2) = vi = s(1), and the path is guarded, since we may always swap c(1)
and c(2), if needed. If the robber moves so that s(1) = vi−1 and s(2) = vi,
the cop does not move and the desired property holds. If the robber moves
so that s(1) = s(2), the cop can respond to finish the task as well. The
only reasonable move for the robber is to move so that s(1) = vi+1 and
s(2) = vi+2 (if such a move exists), but the cop can chase the robber and
move towards vs with no problem. However, since the path is finite, the
robber has to finally give up and at some point of the game both shadows
are guarded.

It remains to show that the cop has a strategy to keep following the
shadows. Due to the symmetry, we may assume that s(1) is always as close
to v0 as s(2). Suppose first that s(1) = s(2) = c(1) = vi and c(2) = vi+1

(the case c(2) = vi−1 is symmetric and so omitted). If the robber stands
still or moves so that s(1) = s(2) = vi+1 or s(1) = vi and s(2) = vi+1,
the cop does not move. If the robber moves so that s(1) = s(2) = vi−1 or
s(1) = vi−1 and s(2) = vi, then the cop moves towards v0. Suppose then
that s(1) = c(1) = vi and s(2) = c(2) = vi+1. If the robber moves so that
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s(1) = vi−1 and s(2) = vi (or s(1) = vi+1 and s(2) = vi+2), the cop moves
towards v0 (or vs, respectively). If the robber moves so that s(1) = s(2), the
cop remains still. Hence, the cop has a strategy to guard the path P and
the proof is finished.

7. Open problems

We finish the paper with a few open problems and future directions.

• As we already mentioned, the upper bound for c̄(G) in Theorem 2.1
is sharp. Graphs with c(G) = 1 are characterized (see [23]) and in
this paper we characterize graphs with c̄(G) = 1. Hence, there is a
characterization of graphs with c(G) = 1 and c̄(G) = 2. Is there any
graph with c̄(G) = c(G) + 1 > 2? If the answer is yes, it should be the
case that these graphs have some structure that should be relatively
easy to investigate. We leave it as an open problem to characterize
graphs with this property.

• The lower bound for c̄(G) in Theorem 2.1 is equivalent to c(G) ≤
2c̄(G). However, it follows from Corollary 3.5 that there is no graph G
with c̄(G) = 1 and c(G) = 2. We provided an example with c(G) = 3
and c̄(G) = 2 but no example is known for which c(G) = 2c̄(G). We
feel that there is a small improvement possible and, in fact, c(G) ≤
2c̄(G)− 1 for any connected graph. On the other hand, the result for
random graphs implies that the multiplicative factor of 2 cannot be
improved.

• Let

A =

{
c̄(G)

c(G)
: G is a connected graph

}
.

It follows from Theorem 2.1 that the closure of A, Ā, satisfies the
following

Ā ⊆ B :=

[
1

2
, 1

]
∪

{
2,

3

2
,
4

3
, . . .

}
,

but all we showed is that {1/2, 2/3, 1, 2} ⊆ Ā. Is it true that A = B?
• We characterized graphs with the edge cop number one. Is there a
characterization of graphs with c̄(G) = k for some k ∈ N?

• We concentrated on dense random graphs; that is, when p = n−o(1). As
we mentioned earlier, the asymptotic value of the classic cop number
is not known for sparse random graphs. However, it still might be
possible that the edge cop number is essentially two times smaller
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than its classic counterpart; that is, it might be possible to show that

a.a.s. the ratio c̄(G(n, p))/c(G(n, p)) is equal to 1/2 + o(1) without

investigating the behaviour of c(G(n, p)).
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York, 2000. MR1782847

[19] A. Kehagias and P. Pra�lat, Some remarks on cops and drunk robbers.

Theoretical Computer Science 463 (2012), 133–147. MR2992504

[20] A. Kehagias, D. Mitsche, and P. Pra�lat, Cops and invisible robbers:

The cost of drunkenness. Theoretical Computer Science 481 (2013),

100–120. MR3037800

[21] L. Lu and X. Peng, On Meyniel’s conjecture of the cop number. Journal

of Graph Theory 71 (2012), 192–205. MR2965383

[22] T. �Luczak and P. Pra�lat, Chasing robbers on random graphs: Zigzag

theorem. Random Structures and Algorithms 37 (2010), 516–524.

MR2760362

[23] R. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph.

Discrete Mathematics 43 (1983), 230–239. MR0685631

[24] P. Pra�lat, Almost all k-cop-win graphs contain a dominating set of

cardinality k, preprint.

[25] P. Pra�lat, When does a random graph have constant cop number? Aus-

tralasian Journal of Combinatorics 46 (2010), 285–296. MR2598712

[26] P. Pra�lat and N. C. Wormald, Meyniel’s conjecture holds for random

d-regular graphs, preprint.

[27] P. Pra�lat and N. C. Wormald, Meyniel’s conjecture holds for random

graphs, preprint.

http://www.ams.org/mathscinet-getitem?mr=0890640
http://www.ams.org/mathscinet-getitem?mr=2419780
http://www.ams.org/mathscinet-getitem?mr=2979296
http://www.ams.org/mathscinet-getitem?mr=1829620
http://www.ams.org/mathscinet-getitem?mr=2378748
http://www.ams.org/mathscinet-getitem?mr=1782847
http://www.ams.org/mathscinet-getitem?mr=2992504
http://www.ams.org/mathscinet-getitem?mr=3037800
http://www.ams.org/mathscinet-getitem?mr=2965383
http://www.ams.org/mathscinet-getitem?mr=2760362
http://www.ams.org/mathscinet-getitem?mr=0685631
http://www.ams.org/mathscinet-getitem?mr=2598712


Cops and Robbers playing on edges 153

[28] A. Quilliot, Jeux et pointes fixes sur les graphes. Thèse de 3ème Cycle.
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[29] A. Quilliot, Problèmes de jeux, de point Fixe, de connectivité et de
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