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Three topics in online list coloring∗
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In online list coloring (introduced by Zhu and by Schauz in 2009),
on each round the set of vertices having a particular color in their
lists is revealed, and the coloring algorithm chooses an independent
subset to receive that color. The paint number of a graph G is
the least k such that there is an algorithm to produce a successful
coloring with no vertex being shown more than k times; it is at least
the choice number. We study paintability of joins with complete or
empty graphs, obtaining a partial result toward the paint analogue
of Ohba’s Conjecture. We also determine upper and lower bounds
on the paint number of complete bipartite graphs and characterize
3-paint-critical graphs.
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1. Introduction

The list version of graph coloring, introduced by Vizing [18] and Erdős–
Rubin–Taylor [2], has now been studied in hundreds of papers. Instead of
having the same colors available at each vertex, each vertex v has a set
L(v) (called its list) of available colors. An L-coloring is a proper coloring
f such that f(v) ∈ L(v) for each vertex v. A graph G is k-choosable if an
L-coloring exists whenever |L(v)| ≥ k for all v ∈ V (G). The choosability or
choice number χ�(G) is the least k such that G is k-choosable. Since the
lists at vertices could be identical, always χ(G) ≤ χ�(G). More generally,
G is f -choosable if a proper coloring can be chosen from the lists whenever
|L(v)| = f(v) for each vertex v.

An online version of list coloring was introduced by Zhu [20]; indepen-
dently, Schauz [16] introduced an equivalent notion in a game setting. The
lists are revealed one color at a time, by marking the vertices with that color
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in their lists. The coloring algorithm, which we call Painter, must choose an
independent set of marked vertices to receive that color. Colored vertices
will not be marked again; in essence, they are removed from the graph. The
online choice number χp(G) (also called the paintability or paint number)
is the least k such that Painter can guarantee producing a proper coloring
with no vertex marked more than k times.

More generally, each vertex v can tolerate being marked f(v) times be-
fore it must be colored, and the graph is f -paintable if Painter can guarantee
coloring the graph subject to these tolerances. When G is f -paintable with
f(v) = k for all v, we say that G is k-paintable; the online choice number is
the least k such that G is k-paintable.

In the game setting, Painter has an adversary called Lister who specifies
the marked sets. Again each vertex v has a tolerance f(v). Lister wins by
marking some vertex v more than f(v) times; Painter wins by producing a
proper coloring before this happens. To facilitate discussion, we imagine a
pile of f(v) tokens at v. When Lister marks v, one of these tokens is used,
and Lister wins if v is marked when it has no tokens.

The behavior of Lister models the need for Painter to win against “worst-
case” presentation of lists in online list coloring, so the problems are equiv-
alent. (Schauz originally called the players “Mr. Paint and Mrs. Correct”;
“Marker/Remover” has also been used.)

If G is not f -choosable, then G is not f -paintable, since Lister can mimic
a bad list assignment L by marking in round i the set {v ∈ V (G) : i ∈ L(v)};
winning moves by Painter would form an L-coloring, which does not exist.
In particular, χp(G) ≥ χ�(G) ≥ χ(G). These values may all be distinct; they
equal 4, 3, 2 for K4,r when 12 ≤ r ≤ 18, for K5,s when 9 ≤ s ≤ 12, and for
K6,t when 8 ≤ s ≤ 10.

Question 1.1. Does there exist G such that χp(G) − χ�(G) is arbitrarily
large? At least 2?

For example, let G = K3,...,3 with k parts. Kierstead [6] proved χ�(G) =
�(4k − 1)/3�. Another proof appears in [9], where the authors also showed
χp(G) ≤ 3k/2. However, it remains unknown whether χp(G) > �(4k − 1)/3�.
Another candidate is Km,m. Using the bound by Radhakrishnan and Srini-
vasan [15] on the number of edges needed to form a non-k-choosable k-
uniform hypergraph, Alon observed that χ�(Km,m) ≤ lgm−(12−o(1)) lg lgm,
but [7] showed only χp(Km,m) ≤ lgm. As yet no graph G is known with
χp(G)− χ�(G) > 1.

Since χ�(G) ≥ χ(G), a theme in the study of choosability has been to
show that some earlier upper bound on χ(G) holds also for χ�(G), thereby
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strengthening the earlier result. Since always χp(G) ≥ χ�(G), paintability
can be studied in a similar way. Schauz strengthened several choosability
results to paintability, showing [16] that planar graphs are 5-paintable and
that bipartite graphs are Δ(G)-edge-paintable. In [17] and [3], he strength-
ened the Alon–Tarsi Theorem [1] to the setting of paintability by a purely
combinatorial proof, and from this he obtained strengthenings to paintabil-
ity of various choosability consequences of the Alon–Tarsi Theorem. In the
language of online choosability, Zhu [20] characterized 2-paintable graphs
and proved results about 3-paintability for complete bipartite graphs.

Since χ�(G) ≥ χ(G), it is natural to ask when χ�(G) = χ(G); such
graphs are chromatic-choosable. More restrictively, G is chromatic-paintable
if χp(G) = χ(G). Ohba [11] conjectured that G is chromatic-choosable when
|V (G)| ≤ 2χ(G)+1; after partial results in [8, 11, 12, 14], this was proved by
Noel, Reed, and Wu [10]. Various researchers (see [7]) noted that the com-
plete multipartite graph K2,...,2,3 is chromatic-choosable but not chromatic-
paintable, so the paintability analogue is different:

Conjecture 1.2. [5] If |V (G)| ≤ 2χ(G), then G is chromatic-paintable.

In [5], the Combinatorial Nullstellensatz was used to show that K2,...,2

and some other graphs with |V (G)| = 2χ(G) are chromatic-paintable. For
K2,...,2 this was reproved in [7] by an explicit strategy for Painter. We do not
even know whether |V (G)| ≤ cχ(G) implies χp(G) = χ(G) for any c ∈ (1, 2].

Lacking such a result, we study lower-order terms. Ohba [11] proved that
G is chromatic-choosable when |V (G)| ≤ χ(G) +

√
2χ(G). We strengthen

and extend this in Section 2, proving that G is chromatic-paintable when
|V (G)| ≤ χ(G)+2

√
χ(G)− 1. The join of graphs G and H, denoted1 G H,

is obtained by adding to the disjoint union of G and H the edges {uv : u ∈
V (G), v ∈ V (H)}. We show that if G is k-paintable and |V (G)| ≤ t

t−1k, then

χp(G Kt) ≤ k+1. The application then follows by induction on χ(G). We
also prove for all G that G Kt is chromatic-paintable when t is sufficiently
large; this was proved independently by Kozik, Micek, and Zhu [9], who used
it to obtain a slightly weaker strengthening of Ohba’s result.

In Section 3, the general problem of f -paintability leads to a recurrence
that provides an upper bound on the smallest r such that Kk+j,r is not k-
paintable. This echoes both the elementary result by Vizing [18] that Kk,r

is k-choosable if and only if r < kk and the subsequent result by Hoffman

1This notation is new; it is consistent with the “Czech notation” introduced by
Nešetřil in which the notation displays the result of the operation on K2 and K2,
it evokes the additivity of the vertex sets, and it avoids conflicting with the proper
use of “+” for disjoint union.
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and Johnson [4] that Kk+1,r is k-choosable if and only if r < kk − (k − 1)k.
It turns out that Kk,r is k-paintable if and only if r < kk, but Kk+1,r fails to
be k-paintable when r is smaller than kk − (k − 1)k by a constant fraction.

A graph is paint-critical if every proper subgraph has smaller paint num-
ber. Building on results in [19], in Section 4 we characterize paint-critical
graphs with paint number 3. The list is similar to the characterization of
3-choice-critical graphs by Voigt [19]. The 3-paint-critical graphs are the odd
cycles, the complete bipartite graph K4,2, “bicycles” (graphs consisting of
two edge-disjoint cycles connected by one path of length at least 0), and
certain “theta-graphs”. The generalized theta-graph Θ�1,...,�k consists of two
vertices joined by internally disjoint paths of lengths �1, . . . , �k. The rest of
the list of paint-critical graphs with paint number 3 consists of Θ2r,2s,2t and
Θ2r−1,2s−1,2t−1 with r ≥ 1 and s, t ≥ 2. Riasat and Schauz [13] independently
explored 3-paint-critical graphs, giving for example a characterization of the
minimal ones with respect to vertex deletion.

2. Paintability of graph joins

In this section we strengthen results of Ohba [11]. When describing strate-
gies, we say that Lister marks or plays M and that Painter deletes or colors
an independent subset ofM . When f is a token assignment onG andH ⊆ G,
we say that H is f -paintable when Painter has a winning strategy on H for
the restriction of f to V (H); that is, when each vertex of H starts with f(v)
tokens. Let dG(v) denote the degree of vertex v in a graph G.

Proposition 2.1. The following statements hold for Lister/Painter games.

(a) If G is f -paintable, then every subgraph H of G is f -paintable.
(b) If f(v) > dG(v), then G is f -paintable if and only if G − v is f -

paintable.
(c) If G is not f -paintable, then Lister can force a win with no marked set

before the last being independent.

Proof. (a) Edge deletion does not invalidate Painter moves, so we may let H
be an induced subgraph. In the game on H, Painter can respond to Lister’s
moves as in G and win.

(b) By (a), we may assume that G − v is f -paintable. To win on G,
Painter follows a winning strategy for G−v, deleting v when marked only if
none of its neighbors are deleted by that strategy. In this way at most dG(v)
tokens will be used at v, so Lister cannot win.

(c) If Lister plays an independent set M , then Painter can delete it, and
Lister must then win on the remaining graph. Hence Lister can win by not
playing M and instead playing the rest of the winning strategy.
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The importance of Proposition 2.1(b) is that if in the course of the
game on a graph H a position arises in which a vertex has more remaining
tokens than its remaining degree, then this vertex can be deleted without
affecting who wins. For example, d-degenerate graphs (where every subgraph
has a vertex of degree at most d) are (d + 1)-paintable. We thus invoke
Proposition 2.1(b) to discard vertices by saying “by degeneracy”.

The observations in Proposition 2.1 lead to our tool for extending Ohba’s
Theorem. In the special case t = 1, the second condition is vacuous, implying
(when iterated) that G Kr is (k + r)-paintable when G is k-paintable.

Theorem 2.2. If G is k-paintable and |V (G)| ≤ t
t−1k, then G Kt is (k+1)-

paintable.

Proof. We give an explicit strategy for Painter. Let T denote the added
independent set of t vertices. By Proposition 2.1(c), we may assume that
Lister marks at least one vertex in V (G) until no such vertices remain.

Let S be a winning strategy for Painter on G with k tokens at each
vertex. Painter uses S until V (G) is exhausted, except for one special round
associated with the extra token at the vertices of G. When Lister plays M ,
say that the vertices of T−M are omitted. Painter responds withinM∩V (G)
as specified by S, unless condition (*) holds:

Each vertex of T −M was omitted at least μ times, where μ = k
t−1 . (*)

When (*) first occurs, Painter deletes T ∩ M . Subsequently, Painter
continues to use S (some vertices of G may have an extra token). It suffices
to show that (1) condition (*) must occur before Lister can win, and (2)
after the round when (*) occurs, each vertex of T − M has more tokens
remaining than the number of vertices remaining in G. By degeneracy, the
rest of T can be ignored, and continuing to use S enables Painter to win.

(1): We show that Lister cannot win without (*) occurring. That is,
while (*) has not occurred, Lister cannot mark a vertex v of T more than k
times. When v is marked and (*) has not occurred, each round that marked
v has omitted at least one vertex of T that was not yet omitted μ times.
Hence v has been marked fewer than (t− 1)μ times. Since (t− 1)μ ≤ k and
v is any marked vertex of T , Lister has not won.

(2): Suppose that (*) occurs when Lister plays M in round r. A vertex
v ∈ T−M still has at least k+1−(r−μ) tokens. This value exceeds t

t−1k−r.
Since dG(v) = |V (G)|, and at least one vertex is deleted from V (G) on each
of these r rounds, the remaining degree of v is at most t

t−1k − r.
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Definition 2.3. Let G be a complete multipartite graph with t distinct
sizes of parts, k1, . . . , kt, where there are ri parts of size ki. Following [7],
we denote G by Kk1∗r1,...,kt∗rt . In addition, when ri = 1, we drop “∗ri” from
the notation.

Erdős, Rubin, and Taylor [2] proved that K2∗r is chromatic-choosable,
and K2∗r was shown to be chromatic-paintable in [7]. Theorem 2.2 yields
this immediately using t = 2.

Corollary 2.4. If G is chromatic-paintable, and |V (G)| ≤ 2χ(G), then
G K2 is chromatic-paintable. In particular, K2∗r is chromatic-paintable.

Theorem 2.2 also yields chromatic-paintability for some other complete
multipartite graphs, providing partial results toward Conjecture 1.2. Let Ga

denote the class of graphs having an optimal coloring in which each color
class has size at most a. Corollary 2.4 proves Conjecture 1.2 for graphs in
G2. We next prove chromatic-paintability for a subset of G3. By Proposi-
tion 2.1(a), it suffices to consider complete multipartite graphs.

Corollary 2.5. K1∗q,2∗r,3∗s is chromatic-paintable for q≥1 and 3s ≤ q+3.

Proof. IfK1∗q,3∗s is chromatic-paintable and q+3s ≤ 2(q+s), then adding in-
dependent sets of size 2 preserves chromatic-paintability, as observed above.
The inequality reduces to s ≤ q, which holds when 3s ≤ q + 3 with q ≥ 1
and s is an integer. Therefore, it suffices to show that K1∗q,3∗s is chromatic-
paintable when 3s ≤ q + 3.

We start with K1∗q and iteratively take the join with independent
sets of size 3. Consider G K3. To apply Theorem 2.2, we need |V (G)| ≤
(3/2)χp(G). By induction on s, K1∗q,3∗s will be chromatic-paintable if q +
3(s− 1) ≤ (3/2)(q + s− 1), which simplifies to 3s ≤ q + 3.

Here there are at most 2k + 1 − 2
3q vertices, where k is the chromatic

number. We require q ≥ 1 because K2∗r,3 is not 3-paintable for r > 1 [7].
Ohba [11] proved chromatic-choosability when |V (G)| ≤ χ(G)+

√
2χ(G).

Using Theorem 2.2, we obtain chromatic-paintability in a larger class.

Theorem 2.6. If |V (G)| ≤ χ(G) + 2
√

χ(G)− 1, then G is chromatic-
paintable.

Proof. Let n = |V (G)| and k = χ(G). A proper k-coloring of G expresses G
as a subgraph of a complete k-partite graph, so we may assume that G is a
complete k-partite graph. Let q be the number of parts of size 1. We prove
the claim by induction on k − q. When k − q = 1, G has the form Kt Kq,
which is chromatic-paintable by repeatedly applying Theorem 2.2, adding
one vertex each time.
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When k−q > 1, let T be a smallest non-singleton part, with t = |T |, and
let G′ = G− T . It suffices to prove (1) G′ is small enough for the induction
hypothesis to make G′ chromatic-paintable, and (2) t is small enough for
Theorem 2.2 to apply when T is added to G′.

(1): We are given n ≤ k+ 2
√
k − 1 and need n− t ≤ (k− 1) + 2

√
k − 2.

Thus it suffices to prove k+2
√
k − 1− t ≤ k− 1+ 2

√
k − 2. This inequality

simplifies to t−1 ≥ 2(
√
k − 1−

√
k − 2). The difference of consecutive square

roots is small; since t ≥ 2 and k ≥ 3, the inequality holds.
(2): Again we are given n ≤ k + 2

√
k − 1, but now we need n − t ≤

t
t−1(k−1). It suffices to prove k+2

√
k − 1− t ≤ t

t−1(k−1), which simplifies

to 2
√
k − 1 ≤ t− 1+ k−1

t−1 . The right side is minimized when t− 1 =
√
k − 1,

and there equality holds.

The bound in Theorem 2.6 holds with equality when k − 1 is a perfect
square and G is the complete k-partite graph with k− 2 parts of size 1 and
two parts of size 1 +

√
k − 1.

Consider now G Kt. Although always χ(G Kt) = χ(G) + t, adding t
vertices need not increase the paint number by t. In fact, G Kt is chromatic-
paintable when t is sufficiently large. Kozik, Micek, and Zhu [9] also proved
this, but without an explicit bound on the value of t that suffices. We prove
a technically more general statement; it applies to all graphs because always
G is d-degenerate when d is the maximum degree.

Let [k] denote {1, . . . , k}. When χ(G) = k, a proper k-coloring is an
optimal coloring.

Theorem 2.7. Let G be a d-degenerate graph having an optimal coloring
with color classes V1, . . . , Vk such that |Vi| ≤ a for i ∈ [k]. If t ≥ (a + 1)d,
then χp(G Kt) = χ(G Kt).

Proof. Let π be an ordering of V (G) in which each vertex has at most d
earlier neighbors. Let T be the set of t added dominating vertices not in G.
Since χ(G Kt) = k + t, it suffices to give a strategy for Painter to show
that G Kt is (k + t)-paintable.

When M ⊆ V (G), Painter deletes an independent subset of M chosen
greedily with respect to π. For v ∈ V (G), in at most d such rounds v is
marked but not removed, by the choice of π. Hence we will reserve d + 1
tokens for such rounds; they are not used on rounds with M ∩T �= ∅. When
M ∩ T �= ∅, Painter will delete a vertex of M ∩ T or a subset of M ∩ V (G).
We must ensure that the first option is not used too often when v ∈ M ; the
second option causes no trouble if d+ 1 tokens are reserved for v.

Let v be a vertex of G remaining when round s begins. Let g(v, s) denote
the number of earlier steps on which M ∩T �= ∅ and v /∈ M . Let Vi,s = {v ∈
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Vi∩V (Gs) : g(v, s) ≤ d}. Intuitively, Vi,s is the set of vertices in class Vi that

do not yet have d+1 tokens reserved for use within G. Always Vi,s+1 ⊆ Vi,s.

When M ∩ T �= ∅, if Vi,s ⊆ M for some i, then Painter deletes Vi,s for

some such i. Otherwise, Painter deletes a vertex of M ∩ T .

Claim 1: While
⋃

i Vi,s �= ∅, at most ad+k−1 rounds with M ∩T �= ∅

have been played. On at most k−1 such rounds, Painter deleted a nonempty

set Vi,s, since a nonempty one remains. When Painter deletes a vertex of

M ∩T , some vertex of Vi,s is not in M . Since |Vi| ≤ a, this happens at most

ad times while Vi,s remains nonempty.

Claim 2: While v ∈ Vi,s, there remain more than d tokens at v. Since

t ≥ (a+ 1)d, vertex v starts with at least (a+ 1)d+ k tokens. By Claim 1,

at most ad+k−1 rounds were played with M ∩T �= ∅. Hence at least d+1

tokens remain available at v.

Claim 3: A vertex of T loses at most k + t tokens before removal. A

vertex of T loses tokens only when M ∩ T �= ∅. On such rounds, Painter

deletes a vertex of T or the set Vi,s for some i. There are at most t rounds

of the first type and at most k of the second type.

By Claim 3, all of T is removed. By Claim 2, d+ 1 tokens get reserved

at each vertex of G. Hence the Painter strategy succeeds.

3. Complete bipartite graphs

Vizing [18] proved that Kk,r is k-choosable if and only if r < kk. We ex-

tend this characterization to k-paintability by considering a more general

f -paintability problem on Kk,r. The theorem leads to further results about

the k-paintability of Kk+j,r.

Theorem 3.1. Consider Kk,r with k ≤ r, having parts X and Y with

X = x1, . . . , xk. When f(xi) = ti and f(y) = k for y ∈ Y , Painter has a

winning strategy if and only if r <
∏

ti.

Proof. (Necessity) It suffices to show that Kk,r is not f -choosable when

r =
∏

ti, Let L(xi) = Ui so that |Ui| = ti and U1, . . . , Uk are pairwise

disjoint. Let {L(y) : y ∈ Y } = U1×· · ·×Uk. Any coloring chosen from these

lists puts a color from Ui on xi for 1 ≤ i ≤ k, but then the vertex in Y

having this set as its list cannot be properly colored.

(Sufficiency) Note that r <
∏

ti requires min ti ≥ 1. We use induction on∑
ti. When

∑
ti = k, we have Y = ∅, and Painter will win. For

∑
ti > k,

consider the first marked set M . By Proposition 2.1(c), we may assume that

M intersects both X and Y . We may also assume |M ∩X| = 1; otherwise,
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Painter deletes M ∩X and each remaining vertex in Y has more tokens than
its degree. We may assume M ∩X = {xk}. Let q = |M ∩ Y |.

Case 1: q <
∏k−1

i=1 ti. Painter deletes vk; there remain k − 1 vertices
in X. By degeneracy, vertices of Y − M are now irrelevant. Each of the q
vertices of Y ∩M has k − 1 tokens; the induction hypothesis applies.

Case 2: q ≥
∏k−1

i=1 ti. Painter deletes M ∩ Y . Since r <
∏k

i=1 ti, the

number of vertices left in Y is less than
∏k

i=1 ti −
∏k−1

i=1 ti, which equals

(tk − 1)
∏k−1

i=1 ti. Since tk − 1 tokens remain on vk, the induction hypothesis
applies.

Corollary 3.2. Kk,r is k-paintable if and only if r < kk.

Hoffman and Johnson [4] proved that Kk+1,r fails to be k-choosable if
and only if r ≥ kk − (k − 1)k. We show in Corollary 3.8 that the least r
such that Kk+1,r is not k-paintable is smaller than this when k ≥ 4 (also for
k = 3, by computer search). Let Kl,r have partite sets X of size l and Y of
size r. We present a recursive strategy for Lister on Kl,r when each vertex
in Y has k tokens and the vertices in X have t1, . . . , tl tokens, respectively.

Definition 3.3. Fix nonnegative integers k and l. Given an l-tuple t of
nonnegative integers, and S ⊆ [l], let tS denote the l-tuple obtained from
t by reducing by 1 the coordinates indexed by S, and let t|S denote the
(l−|S|)-tuple obtained from t by restricting t to the coordinates indexed by
[l]− S. Define g(k, t) recursively by letting

g(k, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if
∏

ti = 0,

1 if k = 0,

∞ if l < k,

min
S⊆[l]

[
g(k − 1, t|S) + g(k, tS)

]
otherwise.

Proposition 3.4. If l = k, then g(k, t) =
∏l

i=1 ti.

Proof. We use induction on
∏

ti. By definition, the claim holds when min ti =
0. Otherwise, the boundary cases imply that in the nontrivial case the min-
imum occurs only when |S| = 1. By symmetry, we may assume S = {l}. By
the induction hypothesis, g(k, t) =

∏l−1
i=1 ti + (tl − 1)

∏l−1
i=1 ti =

∏l
i=1 ti.

Thus the next theorem includes, within the special case l = k, a proof
that Kk,r is not k-paintable when r ≥ kk.

Theorem 3.5. Consider Kl,r with l ≤ r, having parts X and Y with X =
x1, . . . , xl. When f(xi) = ti and f(y) = k for y ∈ Y , Lister has a winning
strategy if r ≥ g(k, t).
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Proof. We give a recursive strategy for Lister, using induction on
∏

ti. If
min ti = 0, then Lister wins by playing a vertex in X with no tokens, even
if Y is empty.

When min ti > 0, we may assume r = g(k, t) and let S be an index
subset of [l] that yields the minimum in the definition of g(k, t). Lister plays
{xi : i ∈ S} plus g(k − 1, t|S) vertices in Y . By Proposition 2.1(a), Painter
deletes a maximal independent subset of M .

Case 1: Painter deletes M ∩ X. Lister continues play on (X − M) ∪
(M ∩ Y ), ignoring the vertices of Y − M . Each vertex of M ∩ Y now has
k− 1 tokens. Since |M ∩Y | = g(k− 1, t|S), the induction hypothesis implies
that Lister has a winning strategy in the remaining game.

Case 2: Painter deletes M ∩ Y . Lister continues play on the remaining
graph, with vertices (Y −M) ∪X. The token-count vector on X is now tS .
Since Y −M = g(k, tS), the induction hypothesis implies that Lister has a
winning strategy in the remaining game.

When Painter deletes M ∩ Y , Lister would prefer to have marked as
many vertices of X as possible to obtain the maximum reduction in tokens
on X. The danger, of course, is that when M ∩ X is larger, Painter may
then decide to delete M ∩X.

Theorem 3.5 provides only an upper bound on the least r such that Lis-
ter has a winning strategy. Ignoring Y − M when Painter deletes M ∩ X
limits Lister’s options; possibly Lister should use these vertices. By Propo-
sition 2.1(b), we may assume that |S| ≤ j + 1. This restriction on Lister
allows us to compute upper bounds for larger examples.

Example 3.6. One approach for Lister is to always mark l− k+1 vertices
in X with the most tokens. This strategy is optimal when l = k (always
|M ∩X| = 1, but it did not matter in Proposition 3.4 which was marked).

Consider Kk+1,r, where l = k + 1 and each ti is k. If |M ∩X| = 2 and
Painter deletesM∩X, then the remaining game has the form in Theorem 3.1.
Lister can win it if

∏
i/∈S ti vertices remain (with k−1 tokens each) in M ∩Y

(that is, |M ∩ Y | = g(k − 1, t|S)). By making M ∩ Y this size, Lister forces
Painter to delete M ∩ Y to avoid losing.

By summing instances of
∏

i/∈S ti as the token counts in X decrease, we
can accumulate enough vertices in Y to ensure a win for Lister. Eventually
some token count in X is driven to 0, and Lister wins by marking that vertex
with no need for additional vertices in Y . We thus obtain a value of r such
that Kk+1,r is not k-paintable. Below we list the computation for k ≤ 4.
At each step, we list the vector t of token counts in X and the number of
vertices in Y that Lister will mark and Painter will delete.



Three topics in online list coloring 125

k = 2 k = 3 k = 4

(2,2,2) 2 (3,3,3,3) 9 (4,4,4,4,4) 64
(1,1,2) 1 (2,2,3,3) 4 (3,3,4,4,4) 36

(2,2,2,2) 4 (3,3,3,3,4) 27
(1,1,2,2) 1 (2,3,3,3,3) 18
(1,1,1,1) 1 (2,2,2,3,3) 8

(2,2,2,2,2) 8
(1,1,2,2,2) 2
(1,1,1,1,2) 1

Total 3 Total 19 Total 164

We conclude that K3,3 is not 2-paintable, K4,19 is not 3-paintable, and
K5,164 is not 4-paintable. In general, the threshold on r for χp(Kk+1,r > k is
smaller than the threshold kk−(k−1)k for χ�(Kk+1,r > k [4] (for χ�(K4,r) >
3 it is r = 19, but for χ�(K5,r) > 4 it is r = 175, larger than 164).

In fact, Lister can win even with smaller r. Exhaustive computer search
of the games has shown that K4,12 is not 3-paintable, improving the bound
r ≤ 19 computed above (K4,11 is 3-paintable). We have not determined
the least r such that K5,r is not 4-paintable. However, optimizing over S
to compute the recursive bound g(4, (4, 4, 4, 4, 4)) from Theorem 3.5 shows
that K5,126 is not 4-paintable, improving on K5,164.

Marking the vertices in X with highest token counts minimizes the prod-
uct of the remaining counts. This is a good heuristic, but sometimes Lister
does better by marking vertices with smaller counts. We also found instances
where Lister should mark fewer than l−k+1 vertices in X. These anomalies
suggest that computing χp(Kl,r) is very hard; we only present bounds.

Proposition 3.7. If t is the (k + 1)-tuple (k, . . . , k), then h(t) ≤ k+1
2k (kk −

1)+kk−1, where h is the result of the recursive computation in Definition 3.3
when S always corresponds to two vertices in X with the most tokens.

Proof. The iteration to compute h takes no more than (k−1)(k+1)
2 +1 rounds.

Each round accumulates the product of all remaining entries except the two
largest, and those largest decrease by 1. To get an upper bound on the
product at each round, replace all entries with their average. Summing over
0 ≤ n ≤ (k − 1)(k + 1)/2, we have

h(t) ≤
∑(

k − 2n

k + 1

)k−1

≤ kk−1 +

∫ (k−1)(k+1)

2

0

(
k − 2x

k + 1

)k−1

dx

=
k + 1

2k
(kk − 1) + kk−1.
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Corollary 3.8. When k is sufficiently large, Kk+1,r is k-choosable when
r < (.62 + o(1))kk, but Kk+1,r is not k-paintable when r > (.5 + o(1))kk.

Proof. The threshold kk − (k − 1)k for non-k-choosability [4] is asymptotic
to kk(1 − e−1). On the other hand, the bound from Proposition 3.7 is less
than 1

2k
k(1 + 3/k).

4. Paint-critical graphs

Voigt in [19] characterized 3-choice-critical graphs, using the characteri-
zation of 2-choosable graphs. Using an analogous characterization of 2-
paintable graphs [20], we adapt the methods of Voigt to characterize 3-
paint-critical graphs.

Definition 4.1. A graph G is k-paint-critical if χp(G) > χp(G−e) whenever
e ∈ E(G). The core of a graph is the subgraph obtained by iteratively
deleting vertices of degree 1.

Theorem 4.2 (Zhu [20]). A graph is 2-paintable if and only if each compo-
nent of its core is K1, an even cycle, or Θ2,2,2.

The difference between 2-choosability and 2-paintability is that a graph
whose core is Θ2,2,2k with k > 1 is 2-choosable but not 2-paintable.

Theorem 4.3. A graph is 3-paint-critical if and only if it is one of the
following

1. An odd cycle.
2. Two edge-disjoint even cycles connected by a path.
3. Θ2r,2s,2t with r > 1, s ≥ 1, t ≥ 1.
4. Θ2r+1,2s+1,2t+1 with r ≥ 1, s ≥ 1, t ≥ 0.
5. Θ2,2,2,2.

Proof. It suffices to consider connected graphs. Let P be the family of graphs
listed above. Graphs in P are not 2-paintable, since they are cores but not
in the list of Theorem 4.2. They are 2-degenerate, however, so they are 3-
paintable. To show that they are 3-paint-critical, it suffices to check that
deleting any edge from any graph in P yields a graph whose core is named
in Theorem 4.2. From C2k+1, we get K1. From two even cycles joined by
a path, we get one even cycle or disjoint even cycles. From a theta-graph
consisting of three paths whose lengths have the same parity, we get an even
cycle. From Θ2,2,2,2, we get Θ2,2,2.

It remains to show that every 3-paint-critical graph G is in P . Note first
that G is connected. Also G has no vertex v of degree 1; deleting v would
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Figure 1: Ways to add an ear or closed ear to Θ2,2,2.

not reduce the paintability. Since G − e is 2-paintable whenever e ∈ E(G),
each component of its core is K1, an even cycle, or Θ2,2,2 (by Theorem 4.2).
Since G is connected, the core of G− e has at most two components.

Suppose first that the core of G − e has two components. If either is
K1, then G has a vertex of degree 1, already excluded. Otherwise, each
component has a cycle, and they are connected in G by a path through e.
Now G has a proper non-2-paintable subgraph (and hence is not 3-critical)
unless G itself consists of two even cycles connected by a path.

We may therefore assume that the core of G− e is connected. Hence e is
not a cut-edge of G, and G has a cycle C through e. If G has no other cycle,
then G is a unicyclic graph with minimum degree at least 2 and hence is a
cycle (in fact an odd cycle if not 2-paintable).

Hence G has a cycle other than C. If G has a cycle that shares no edges
with C, then since G is connected there is a path connecting them. As argued
earlier, G now properly contains a graph in P or belongs to P .

Finally, suppose that G has a cycle sharing an edge with C. Now G
contains a theta-graph consisting of three paths joining two vertices. If any
two have lengths of opposite parity, then G properly contains an odd cycle.
Otherwise, the three lengths have the same parity. Now G properly contains
a theta-graph in P unless all three paths have length 2. If G = Θ2,2,2, then
G is 2-paintable. Hence Θ2,2,2 occurs as a proper subgraph G′ of G.

Since G is 2-edge-connected, we can grow G from any 2-edge-connected
subgraph by iteratively adding ears (paths through new vertices that connect
existing vertices) or closed ears (cycles using exactly one existing vertex).
Consider growing G from G′ in this way. The possibilities for the first such
addition are shown in Figure 1.

If a cycle is added or an added path forms a cycle with one edge of G′

(cases (a), (b), and (c) in Figure 1), then the cycle has odd length or yields
edge-disjoint even cycles.

If the added path connects the two high-degree vertices of G′ (case (e)),
then it forms an odd cycle or Θ2,2,2,2 (which lies in P) or a graph containing
Θ2r,2,2 with r > 1 (again in P).
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Finally, if the added path connects two low-degree vertices of G′, then
it forms an odd cycle with two edges of G′ or forms a theta-graph of the
form Θ2r+1,3,1 with r ≥ 1 having a high-degree vertex at an endpoint of the
added path.
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