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Comparing skew Schur functions:
a quasisymmetric perspective

Peter R.W. McNamara
∗

Reiner, Shaw, and van Willigenburg showed that if two skew Schur
functions sA and sB are equal, then the skew shapes A and B must
have the same “row overlap partitions.” Here we show that these
row overlap equalities are also implied by a much weaker condition
than skew Schur equality: that sA and sB have the same support
when expanded in the fundamental quasisymmetric basis F . Sur-
prisingly, there is significant evidence supporting a conjecture that
the converse is also true.

In fact, we work in terms of inequalities, showing that if the
F -support of sA contains that of sB , then the row overlap parti-
tions of A are dominated by those of B, and again conjecture that
the converse also holds. Our evidence in favor of these conjectures
includes their consistency with a complete determination of all F -
support containment relations for F -multiplicity-free skew Schur
functions. We conclude with a consideration of how some other
quasisymmetric bases fit into our framework.
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1. Introduction

For well-documented reasons (see, for example, [10, 11, 31, 34]), the Schur
functions sλ are often considered to be the most important basis for sym-
metric functions. Furthermore, skew Schur functions sλ/μ are both a natu-
ral generalization of Schur functions and a fundamental example of Schur-
positive functions, meaning that when expanded in the basis of Schur func-
tions, all the coefficients are nonnegative. The coefficients that result are
the Littlewood–Richardson coefficients, which also arise in the representa-
tion theory of the symmetric and general linear groups, in the study of the
cohomology ring of the Grassmannian, and in certain problems about eigen-
values of Hermitian matrices. More information on these connections can be
found in the aforementioned references.

For skew shapes A and B, determining conditions for the expression

(1.1) sA − sB

to be Schur-positive is a problem that has received much attention in recent
years. See, for example, [2, 9, 16, 17, 20, 22, 25, 26, 27, 29]. It is well known
that this question is currently intractable when stated in anything close to
full generality. A weaker condition than sA−sB being Schur-positive is that
the Schur support of sB is contained in the Schur support of sA. The Schur
support of sA, also called the Schur support of A and denoted supps(A),
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is defined to be the set of those λ for which sλ appears with nonzero co-

efficient when we expand sA as a linear combination of Schur functions.

Support containment for skew Schur functions is directly relevant to the

results of [7, 9, 25, 26, 27]; let us give the flavor of just one beautiful result

about the support of skew Schur functions. There exist Hermitian matrices

A, B and C = A+B, with eigenvalue sets μ, ν and λ respectively, if and only

if ν is in the Schur support of sλ/μ. (See the survey [11] and the references

therein.)

Of the aforementioned papers, the most relevant to the present work is

[25], which gives necessary conditions on A and B for sA − sB to be Schur-

positive or, more generally, for the Schur support of A to contain that of B.

These conditions are in terms of dominance order on rowsk(A), which are

partitions first defined in [30] and which count certain overlaps among the

rows of A. We will put our new results in context below by comparing them

with the results of [25].

Our goal is to further our understanding of the expression (1.1) and the

rowsk(A) conditions by moving to the setting of quasisymmetric functions.

One starting point for information on the importance and many applications

of quasisymmetric functions is [37] and the references therein. We will place

particular emphasis on the expansion of skew Schur functions in terms of

Gessel’s basis of fundamental quasisymmetric functions [12], whose elements

we denote by Fα for a composition α. Gessel’s original applications of the

F -basis were in studying P -partitions of posets and in enumerating certain

permutations. Like Schur functions, the Fα have a representation-theoretic

significance, arising as the characteristics of the irreducible characters of the

(type A) 0-Hecke algebra [8, 19].

By working in terms of the F -basis, we are able to make the advances

listed in (a)–(e) below. The concepts of F -positivity and F -support are de-

fined, as one would expect, by considering expansions of skew Schur func-

tions in terms of the F -basis instead of the Schur basis. As shown by [34,

Theorem 7.19.7] which appears as Theorem 2.4 below, Schur functions are

examples of F -positive functions. The diagram shown in Figure 1.1 sum-

marizes implications that are central to this paper. The first two horizontal

arrows are by definition of support, while the diagonal arrows are due to

Schur functions being F -positive. The rightmost arrow is our main result,

Theorem 4.1. That this arrow could be replaced by the symbol ⇐⇒ is Con-

jecture 5.1. Before giving more details, let us give examples which will be

relevant to the discussion that follows.
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Figure 1.1: A summary of the implications most pertinent to this paper.
Here and elsewhere, A and B are skew shapes, and supps(A) (respectively
suppF (A)) denotes the Schur support (resp. F -support) of A.

Example 1.1. The three skew shapes shown here tend to be useful for
providing counterexamples.

Schur s31 + s211 s31 + s22 + s211 s22
expansion

F -expansion F31 + F13 + F22 + F31 + F13 + 2F22 + F22 + F121

F211 + F121 + F112 F211 + 2F121 + F112

As promised, here are the full details of our advances.

a. It is shown in [30] that if sA = sB for skew shapes A and B, then
A and B have equal sets of row overlap partitions. This result was
strengthened in [25] by showing that the same conclusion holds un-
der the weaker assumption that the Schur supports of A and B are
equal. We show in Corollary 4.3 that the F -supports of A and B being
equal is enough to imply A and B have equal sets of row overlap par-
titions. This is a strengthening of the result from [25] for the following
reasons: if the Schur supports of A and B are equal, then it follows
from [34, Theorem 7.19.7] that their F -supports are equal. However,
the converse is not true, as shown by A1 and A2 of Example 1.1.

b. In a similar vein, it is shown in [25] that if sA − sB is Schur-positive,
then the row overlap partitions of A are dominated by those of B. We
show in Corollary 4.2 that the same conclusion can be drawn under
the weaker assumption that sA− sB is F -positive. Referring to Exam-
ple 1.1, consider sA1

− sA3
for an expression that is F -positive but not

Schur-positive.
c. The two previous advances both follow from the following stronger

new result in terms of supports. It is shown in [25] that if the Schur
support of A contains that of B, then the row overlap partitions of
A are dominated by those of B. We prove in Theorem 4.1 that the
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same conclusion can be drawn under the weaker assumption that the
F -support of A contains that of B. Again, A1 and A3 serve as an
example.
As an application, the contrapositive of Theorem 4.1 gives a very sim-
ple way to show that the F -support of A does not contain the F -
support of B, which implies, among other things, that sA − sB is not
Schur-positive.

d. As shown by A1 and A3 of Example 1.1, it is certainly not the case that
if the row overlaps of A are dominated by those of B, then the Schur
support of A contains that of B. However, we offer Conjecture 5.1: if
A and B have the same number of boxes, then the row overlaps of A
are dominated by those of B if and only if the F -support of A contains
that of B. As a result, examining the row overlaps would give a quick
way to determine containment of F -supports. In terminology we will
define, the conjecture implies that the F -support poset is isomorphic
to the overlaps poset. Therefore, the conjecture asserts that F -support
containment somehow encapsulates exactly the relationship implied by
dominance of row overlap partitions. Cases for which Conjecture 5.1
holds include ribbons whose rows all have length at least 2, and all
skew shapes with at most 12 boxes.

e. Bessenrodt and van Willigenburg [4] have classified all those skew
shapes A that are F -multiplicity-free, i.e., when sA is expanded in
the F -basis, all coefficients are 0 or 1. In Theorem 6.2, we determine
completely the F -positivity and F -support comparabilities among F -
multiplicity-free skew shapes. The analogous relationships for the Schur
multiplicity-free skew shapes are only known in special cases (for ex-
ample, see [26] for Schur multiplicity-free ribbons). We then show that
these F -support comparabilities are exactly as predicted by Conjec-
ture 5.1.

We conclude with a consideration of other quasisymmetric function bases,
specifically the monomial quasisymmetric functions, the quasisymmetric
Schur functions of Haglund et al. [15], and the dual immaculate basis of
Berg et al. [1]. We augment Figure 1.1 by determining the positivity and
support-containment implications involving these bases (see Figure 7.1).

The rest of the paper is organized as follows. We give the preliminaries
and relevant prior results in Sections 2 and 3, respectively. Result (c) above
and its consequences (a) and (b) are the topic of Section 4. In Section 5,
we present the converse conjecture (Conjecture 5.1) and offer evidence in
its favor. Section 6 contains the results from (e) about F -multiplicity-free
skew shapes. We conclude in Section 7 with a consideration of how other
quasisymmetric function bases fit into our framework.
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2. Preliminaries

2.1. Compositions, partitions and skew shapes

Given a nonnegative integer n, a composition of n is a sequence α of positive
integers whose sum is n. We call n the size of α and denote it |α|. If α is
weakly decreasing, then it is said to be a partition of n. Let ∅ denote the
unique partition of 0.

We will follow the custom of letting [n] denote the set {1, . . . , n}. For
fixed n, there is a well-known bijection from compositions α = (α1, . . . , αk)
of n to subsets of [n− 1] that sends α to the set S(α) defined by

S(α) = {α1, α1 + α2, . . . , α1 + α2 + · · ·+ αk−1}.

If S(α) = T , then we say α is the composition corresponding to the set T ,
and write comp(T ) = α for the inverse map.

Given a partition λ, we define its Young diagram to be a left-justified
array of boxes with λi boxes in the ith row from the top. If the Young
diagram of another partition μ is contained in that of μ, then the skew shape
λ/μ is obtained by removing the boxes corresponding to μ from the top-left
of the Young diagram of λ. For example, the skew shapes from Example 1.1
can be expressed as 311/1, 321/11 and 22/∅ = 22, respectively. We will
typically refer to skew shapes using uppercase Roman letters. The size of a
skew shape A is its number of boxes and is denoted |A|.

A horizontal strip is a skew shape that has at most one box in each
column, with vertical strips defined similarly. The transpose λt of a partition
λ is the partition obtained by reading the column lengths of the Young
diagram of λ from left to right. For example (443)t = 3332. The transpose
of a skew shape A = λ/μ is At = λt/μt.

For a skew shape A, let rows(A) (resp. cols(A)) denote the partition con-
sisting of the row (resp. column) lengths of A sorted into weakly decreasing
order. A ribbon is a skew shape in which every pair of adjacent rows overlap
in exactly one column. In particular, note that a ribbon is completely deter-
mined by its row lengths from top to bottom. This allows us to define the
notion of rows(α) and cols(α) for a composition α as rows(R) and cols(R)
respectively, where R is the ribbon whose row lengths from top to bottom
are given by α. For example, rows(1311) = 3111 and cols(1311) = 321; in
general, rows(α) simply means the weakly decreasing reordering of the parts
of α. Observe that, for example, cols(22) = 22 when we consider 22 to be a
skew shape whereas cols(22) = 211 when we consider 22 to be a composition;
we will ensure the meaning of our notation is clear from the context.
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We place a partial order on the set of all partitions according to the

following definition.

Definition 2.1. For partitions λ = (λ1, λ2, . . . , λr) and μ = (μ1, μ2, . . . , μs),

we define dominance order � by λ � μ if

λ1 + λ2 + · · ·λk ≤ μ1 + μ2 + · · ·μk

for all k = 1, 2, . . . , r, where we set μi = 0 if i > s. In this case, we will say

that μ dominates λ, or is more dominant than λ.

Note that the above definition makes sense even if λ and μ are partitions

of different size, as can be the case later when we compare rowsk(A) and

rowsk(B) for k ≥ 2.

As in [25], we will need the following result about this extended definition

of dominance order. Since it is straightforward to check, we leave the proof

as an exercise.

Lemma 2.2. Consider two sequences a = (a1, . . . , ar) and b = (b1, . . . , bs)

of nonnegative integers such that r ≤ s and ai ≤ bi for i = 1, 2, . . . , r.

Let α and β denote the partitions obtained by sorting the parts of a and b

respectively into weakly decreasing order. Then α � β.

2.2. Quasisymmetric functions

For a formal power series f in the variables x1, x2, . . ., let [xa1

i1
xa2

i2
· · ·xak

ik
]f

denote the coefficient of xa1

i1
xa2

i2
· · ·xak

ik
in the expansion of f into monomials.

Definition 2.3. A quasisymmetric function in the variables x1, x2, . . ., say

with rational coefficients, is a formal power series f ∈ Q[[x1, x2, . . .]] of

bounded degree such that for every sequence a1, a2, . . . ak of positive integers,

we have
[
xa1

i1
xa2

i2
· · ·xak

ik

]
f =

[
xa1

j1
xa2

j2
· · ·xak

jk

]
f

whenever i1 < i2 < · · · < ik and j1 < j2 < · · · < jk.

As an example, the formal power series

∑

1≤i<j

x2ixj

is quasisymmetric but not symmetric.
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For a composition α = (α1, . . . , αk), we define the monomial quasisym-

metric function Mα by

(2.1) Mα =
∑

i1<···<ik

xα1

i1
· · ·xαk

ik
.

It is clear that the set {Mα}, where α ranges over all compositions of size n, is

a basis for the vector space of quasisymmetric functions of degree n. A more

important basis for our purposes is the basis of fundamental quasisymmetric

functions Fα defined by

(2.2) Fα =
∑

S(α)⊆T⊆[n−1]

Mcomp(T )

when α has size n. For example, F22 = M22 +M211 +M112 +M1111.

For a skew shape A with n boxes, a standard Young tableau (SYT) of

shape A is a filling of the boxes of A with the numbers 1, 2, . . . , n, each used

exactly once, so that the numbers increase down the columns and from left

to right along the rows. For example,

is an SYT of shape 332/11. The descent set S of an SYT T of shape A is

the set of numbers i for which i + 1 appears in a lower row than i. The

descent composition of T , denoted comp(T ), is then the composition of |A|
corresponding to S. For example, the SYT above has descent set {2, 3, 5}
and descent composition 2121.

Since the following result, which appears as [34, Theorem 7.19.7], ex-

presses skew Schur functions in the F -basis, it is crucial to this paper and

is the reason why the F -basis is a natural choice of quasisymmetric basis

when comparing skew Schur functions. Although skew Schur functions are

typically defined as a sum of monomials, Theorem 2.4 can also serve as a

definition of skew Schur functions for our purposes.

Theorem 2.4 ([12, 32, 33]). For a skew shape A, we have

sA =
∑

T

Fcomp(T )

where the sum is over all standard Young tableau T of shape A.
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For example, the SYT above contributes F2121 to s332/11.
Theorem 2.4 tells us that sA is an example of an F -positive symmetric

function, meaning that it has all nonnegative coefficients when expanded
in the F -basis. Analogously to Schur support, we define the F -support of
A, denoted suppF (A), to be the set of compositions α such that Fα ap-
pears with positive coefficient when sA is expanded in the F -basis. For any
other quasisymmetric basis {Bα}, analogous definitions of B-positive and
B-support are obtained by replacing F with B.

3. Prior results

In [30], Reiner, Shaw and van Willigenburg gave sufficient conditions for
two skew shapes to yield the same skew Schur function. More relevant for
the purposes of the current discussion is that they also wrote one section
(Section 8) on necessary conditions for two skew shapes A and B to sat-
isfy sA = sB. Their necessary conditions are dependent on certain overlaps
among the rows of a skew shape. Before discussing their work, let us first
state a relevant classical result along the same lines; it can be considered
a starting point for necessary conditions for skew Schur equality. A proof
in our terminology can be found in [25], and earlier proofs can be found
in [21, 38].

Proposition 3.1. Let A and B be skew shapes. If λ ∈ supps(A), then

rows(A) � λ � cols(A)t,

and both srows(A) and scols(A)t appear with coefficient 1 in the Schur expan-
sion of sA. Consequently, if supps(A) ⊇ supps(B), then

rows(A) � rows(B) and cols(A) � cols(B).

Reiner, Shaw and van Willigenburg generalized rows(A) and cols(A)
using the following key definition.

Definition 3.2. Let A be a skew shape with r rows. For i = 1, . . . , r−k+1,
define overlapk(i) to be the number of columns occupied in common by rows
i, i+ 1, . . . , i+ k − 1. Then rowsk(A) is defined to be the weakly decreasing
rearrangement of

(
overlapk(1), overlapk(2), . . . , overlapk(r − k + 1)

)
.

Similarly, we define colsk(A) by looking at the overlap among the columns
of A.
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In particular, note that rows1(A) = rows(A) and cols1(A) = cols(A).

Example 3.3. Let A = 553111/31 as shown here.

We have that rows1(A) = 432111, rows2(A) = 22111, rows3(A) = 11,
rows4(A) = 1, and rowsi(A) = ∅ otherwise. In addition, cols1(A) = 42222,
cols2(A) = 2211, cols3(A) = 111, cols4(A) = 1, and colsi(A) = ∅ otherwise.

It turns out that knowledge of rowsk(A) for all k is equivalent to knowl-
edge of cols�(A) for all �. To show this, the natural concept of rectsk,�(A)
was introduced in [30]. Here is their result.

Proposition 3.4 ([30]). Given a skew shape A, consider the doubly-indexed
array (

rectsk,�(A)
)
k,�≥1

where rectsk,�(A) is defined to be the number of k×� rectangular subdiagrams
contained inside A. Any one of the three forms of data

(
rowsk(A)

)
k≥1

,
(
cols�(A)

)
�≥1

,
(
rectsk,�(A)

)
k,�≥1

on A determines the other two uniquely.

The main necessary condition from [30] for skew Schur equality is the
following.

Theorem 3.5 ([30]). Let A and B be skew shapes. If sA = sB, then the
following three equivalent conditions are true:

◦ rowsk(A) = rowsk(B) for all k;
◦ cols�(A) = cols�(B) for all �;
◦ rectsk,�(A) = rectsk,�(B) for all k, �.

There are two results from [25] relevant to this section. The first extends
Proposition 3.4 to the setting of inequalities.

Proposition 3.6. Let A and B be skew shapes. Then the following condi-
tions are equivalent:

◦ rowsk(A) � rowsk(B) for all k;
◦ cols�(A) � cols�(B) for all �;
◦ rectsk,�(A) ≤ rectsk,�(B) for all k, �.
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The second result from [25] is the corresponding analogue of Theo-
rem 3.5.

Theorem 3.7. Let A and B be skew shapes. If sA − sB is Schur-positive,
or if A and B satisfy the weaker condition that supps(A) ⊇ supps(B), then
the following three equivalent conditions are true:

◦ rowsk(A) � rowsk(B) for all k;
◦ cols�(A) � cols�(B) for all �;
◦ rectsk,�(A) ≤ rectsk,�(B) for all k, �.

A motivation behind [25] was to determine easily testable conditions
that would show that sA − sB is not Schur-positive for certain skew shapes
A and B. Theorem 3.7 provides such conditions, as demonstrated by the
following example.

Example 3.8. Let

We see that rows2(A) = 111 and rows2(B) = 21. Thus we know that sB−sA
is not Schur-positive. On the other hand, rows3(A) = 1 while rows3(B) = ∅,
implying that sA−sB is not Schur-positive. Moreover, we can conclude that
supps(A) and supps(B) are incomparable under containment order.

4. Main result

Our goal for this section is to state and prove our main result, and deduce
relevant corollaries. We begin immediately with the statement of our main
result.

Theorem 4.1. Let A and B be skew shapes. If suppF (A) ⊇ suppF (B), then
the following three equivalent conditions are true:

◦ rowsk(A) � rowsk(B) for all k;
◦ cols�(A) � cols�(B) for all �;
◦ rectsk,�(A) ≤ rectsk,�(B) for all k, �.

For example, applying this theorem in Example 3.8 shows that suppF (A)
and suppF (B) are incomparable with respect to containment. This is a
strictly stronger deduction than being incomparable with respect to Schur
support containment (cf. A1 and A3 from Example 1.1.) Moreover, The-
orem 4.1 is more than just an incremental improvement of Theorem 3.7
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since suppF (A) ⊇ suppF (B) seems to be “much closer” to the overlap con-

ditions than supps(A) ⊇ supps(B). We will make this assertion precise in

Section 5 by giving evidence in favor of our conjecture that the converse of

Theorem 4.1 is also true.

4.1. Consequences of the main result

We postpone the proof until after we have given some consequences of

Theorem 4.1. If sA − sB is F -positive, then it is clearly the case that

suppF (A) ⊇ suppF (B), so we get the following corollary.

Corollary 4.2. Let A and B be skew shapes. If sA − sB is F -positive then

the following three equivalent conditions are true:

◦ rowsk(A) � rowsk(B) for all k;

◦ cols�(A) � cols�(B) for all �;

◦ rectsk,�(A) ≤ rectsk,�(B) for all k, �.

To see that Corollary 4.2 is not equivalent to Theorem 4.1, let A = A1

and B = A2 from Example 1.1. Then the hypothesis of Theorem 4.1 holds

but that of Corollary 4.2 does not.

Next, by Theorem 2.4, we get that Theorem 3.7 is simply a consequence

of Theorem 4.1 and Corollary 4.2.

The consequence involving equalities can be captured by the following

statement, which includes the content of Theorem 3.5.

Corollary 4.3. Let A and B be skew shapes. If sA = sB or supps(A) =

supps(B) or suppF (A) = suppF (B), then the following three equivalent con-

ditions are true:

◦ rowsk(A) = rowsk(B) for all k;

◦ cols�(A) = cols�(B) for all �;

◦ rectsk,�(A) = rectsk,�(B) for all k, �.

Proof. If sA = sB then we have supps(A) = supps(B) which, by Theo-

rem 2.4, implies suppF (A) = suppF (B). By Theorem 4.1, suppF (A) ⊇
suppF (B) implies that rowsk(A) � rowsk(B) for all k. Similarly, rowsk(B) �
rowsk(A) for all k, and so rowsk(A) = rowsk(B) for all k. The remainder of

the result now follows from Proposition 3.4.
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4.2. Proving the main result

We now work towards a proof of Theorem 4.1. The overall approach will be
much like that for the proof of [25, Corollary 3.10], which is our Theorem 3.7,
but the details change because we are now working in the F -basis. For ex-
ample, the easiest inequality for us to show will be that cols�(A) � cols�(B),
whereas the rows inequality was the one proved in [25].

While we can determine cols(α) for a composition α by constructing the
relevant ribbon, it will be helpful for Proposition 4.5(b) below to have an
equivalent way to obtain cols(α).

Lemma 4.4. For a ribbon R with |R| = n, let ur(R) (resp. uc(R)) denote
the (unsorted) composition of n given by the row (resp. column) lengths of
R read from top to bottom (resp. right to left). Then the subsets of [n − 1]
corresponding to ur(R) and uc(R) are complements of each other.

Consequently, for a composition α of n, to obtain cols(α) from α follow
this 4-step process: obtain the subset S(α) of [n − 1], take the complement
S(α)c, then construct the corresponding composition comp(S(α)c) of n, and
sort the result into weakly decreasing order.

Proof. Write the numbers 1, 2, . . . , n in sequence from the top right box
of R down to the bottom left. Every box numbered i for i < n is either
the highest-numbered box of its row or of its column, and not both. It is
the highest-numbered box of its row (resp. column) if and only if i is an
element of the subset of [n − 1] corresponding to ur(R) (resp. uc(R)). The
first assertion of the lemma follows.

The second assertion follows from the definition of cols(α).

Our Proposition 3.1 played a key role in the proofs of [25]. To prove
Theorem 4.1, we will need the following quasisymmetric analogue of Propo-
sition 3.1. Although we only need part (a) in this section, it makes sense to
prove parts (a) and (b) together; we need (b) because we will use (4.1) in
the proof of Theorem 6.2.

Proposition 4.5. Let A and B be skew shapes. If α ∈ suppF (A) then

a. rows(α) � cols(A)t,
b. cols(α) � rows(A)t,

and both inequalities are sharp. Consequently, if suppF (A) ⊇ suppF (B),
then

(4.1) rows(A) � rows(B) and cols(A) � cols(B).
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Figure 4.1: For this skew shape A, we have rows(A) = 433221, rows(A)t =
6531, cols(A) = 4422111 and cols(A)t = 7422. The descents of the SYTx
are shown in bold. Observe that the SYT in (a) has descent composi-
tion cols(A)t. The descent composition in (b) is α = 111112111212, giving
cols(α) = 6531 = rows(A)t.

See Figure 4.1 for examples of SYTx giving equality in (a) and (b).

Proof. By Theorem 2.4, we know that α ∈ suppF (A) if and only if there
exists an SYT T of shape A and descent composition α. First consider
(a). By definition, rows(α)1 will be the length of the the longest sequence
i, i + 1, . . . , i + j such that none of i, i + 1, . . . , i + j − 1 is a descent in
T . Therefore the entries i, i + 1, . . . , i + j appear from left to right in T
with no two in the same column. Equivalently, the boxes filled by entries
i, i+1, . . . , i+ j form a horizontal strip in T , implying that j +1 is at most
the number of columns of T . In other words, rows(α)1 ≤ (cols(A)t)1. By the
same logic, the elements of the sum rows(α)1+ · · ·+rows(α)k correspond to
a set of k disjoint horizontal strips in T . The number of boxes of any given
column of A contained in these k horizontal strips combined is bounded
by the minimum of k and the height of the column. Compare this with
(cols(A)t)1+· · ·+(cols(A)t)k. Since (cols(A)t)i counts the number of columns
of A of height at least i, this sum counts the total number of boxes in columns
of height less than k, plus a contribution of k from each column of height at
least k. It follows that

rows(α)1 + · · ·+ rows(α)k ≤
(
cols(A)t

)
1
+ · · ·+

(
cols(A)t

)
k
,

as required.
To see that the inequality in (a) is sharp, consider the SYT T of shape

A constructed in the following manner. First, consider the top entry of each
nonempty column of A, and fill these top entries with 1, 2, . . . , (cols(A)t)1
from left to right. Now consider the skew shape A− consisting of the boxes
that have not yet been filled. Since (cols(A)t)k counts the number of columns
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of A of height at least k, we know that A− has (cols(A)t)2 columns. Take the
top entry of each such column and fill these top entries with (cols(A)t)1 +
1, (cols(A)t)1+2, . . . , (cols(A)t)1+(cols(A)t)2 from left to right. Continue in
this manner until all boxes have been filled. Because at each stage we filled
from left to right and we filled a box in every nonempty column, the descent
set of T is

{(
cols(A)t

)
1
,
(
cols(A)t

)
1
+

(
cols(A)t

)
2
, . . . ,

(
cols(A)t

)
1
+· · ·+

(
cols(A)t

)
k−1

}
,

where the longest column of A has k boxes. In other words, the descent
composition α satisfies α = rows(α) = cols(A)t, as required.

The proof of (b) is somewhat similar, except that now we work with
vertical strips instead of horizontal strips and fill these vertical strips from
top to bottom. By definition, cols(α)1 will be the longest sequence i, i +
1, . . . , i+j such that each of i, i+1, . . . , i+j−1 is a descent in T . Therefore,
the entries i, i + 1, . . . , i + j fill a vertical strip in A from top to bottom,
implying that cols(α)1 ≤ (rows(A)t)1. The rest of the proof is similar to (a).

To show that the inequality in (b) is sharp, work as in (a) except consider
the leftmost entry of each nonempty row instead of the top entry of each
column, and fill these leftmost entries from top to bottom. After completing
the filling, the complement of the descent set of T in {1, 2, . . . , |A| − 1} is

{(
rows(A)t

)
1
,
(
rows(A)t

)
1
+

(
rows(A)t

)
2
, . . . ,(4.2)

(
rows(A)t

)
1
+ · · ·+

(
rows(A)t

)
k−1

}
,

where the longest row of A has k boxes. The composition of |A| correspond-
ing to the set in (4.2) is rows(A)t, which has weakly decreasing parts. By
Lemma 4.4, the descent composition α of T thus satisfies cols(α) = rows(A)t,
as required. See Figure 4.1(b) for an example, where the complement of the
descent set is {6, 11, 14}.

The last assertion follows from (a) and (b) and from the fact that the
transpose operation reverses dominance order when applied to partitions of
equal size.

We need one more concept before giving the proof proper of Theorem 4.1.
For any skew shape A, let trim(A) denote the skew shape obtained by delet-
ing the leftmost entry of each nonempty row of A. We will consider trim to
be an operation on skew shapes, meaning that trim�(A) = trim(trim�−1(A))
and trim1(A) is just trim(A). This trim operation was introduced in [25],
except there it was defined as deleting the top entry of each nonempty col-
umn.
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Lemma 4.6. For any skew shape A and � ≥ 2, we have

a. cols�−1(trim(A)) = cols�(A);
b. cols(trim�−1(A)) = cols�(A).

Proof. Suppose column i of A contributes c to cols�(A), in the sense that
column i of A overlaps with column i + � − 1 in exactly c rows. We see
that this is equivalent to column i+ 1 of trim(A) overlapping with column
i+ �− 1 in exactly c rows, thus contributing c to cols�−1(trim(A)), implying
the result.

Repeatedly applying (a) gives (b).

Proof of Theorem 4.1. We assume that suppF (A) ⊇ suppF (B) and show
that

cols�(A) � cols�(B) for all �.

By Proposition 3.6, the rows and rects conditions will follow.
With � fixed, we will construct a particular SYT T of shape B and de-

scent composition α. Our choice of T will help us isolate cols(trim�−1(B))
which, by Lemma 4.6(b), means we will isolate cols�(B). Roughly speak-
ing, we will start our construction of T so that α is as least dominant as
possible, and construct the remainder of T so that α is as dominant as pos-
sible. More precisely, follow the construction of T from Proposition 4.5(b)
by considering the leftmost box of each row and then filling these boxes by
1, . . . , (rows(B)t)1 from top to bottom. Repeat this process with the left-
most unfilled box of each row, and continue until the �− 1 leftmost boxes of
each row have been filled, or a row has been completely filled if it has less
than � − 1 boxes. Suppose a total of m boxes has been filled to this point.
The shape that remains unfilled is exactly trim�−1(B). For an example, see
Figure 4.2.

We now fill this remaining shape trim�−1(B) in the most dominant
way possible. Following Proposition 4.5(a), the descent composition of this
remaining filling will be cols(trim�−1(B))t. By Lemma 4.6(b), this equals
cols�(B)t. This might suggest, at first glance, that the descent composition
α of T consists of the concatenation of some composition ofm with cols�(B)t.
This is not the case since m is not a descent in T , but this will not affect
our argument.

Since suppF (A) ⊇ suppF (B), there exists an SYT T ′ of shape A with
descent composition α. Remove the boxes filled with 1, 2, . . . ,m in T ′ to get
a filling of some shape C, and subtract m from all the entries of C. This
yields an SYT of shape C with descent composition cols�(B)t. By Propo-
sition 4.5(a) and since cols�(B)t is weakly decreasing, we have cols�(B)t �
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Figure 4.2: An example of the fillings of B, A and C from the proof of
Theorem 4.1. Here, � = 3, m = 11, and the boxes of trim2(B) and trim2(A)
are colored/shaded.

cols(C)t. Since cols�(B)t and cols(C)t are both partitions of |B| − m, we
deduce that cols�(B) 
 cols(C).

Now consider trim�−1(A). Since T ′ has descent composition α, the num-
bers 1, 2, . . . ,m must have formed � − 1 vertical strips that filled the left
ends of any rows they occupied. Therefore, trim�−1(A) ⊆ C, by definition
of C. By Lemma 2.2 applied to column lengths, cols(trim�−1(A)) � cols(C).
Putting everything together, we get

cols
(
trim�−1(A)

)
� cols(C) � cols�(B).

Applying Lemma 4.6(b) yields the desired result.

5. Conjecture for the converse

In Theorem 4.1 and its corollaries, our hypotheses on A and B have implied
that we only consider cases where A and B have equal size. Along the same
lines, when comparing rowsk(A) and colsk(B) in this section, we will restrict
to the case of A and B having the same size; we can do so without our work
losing any substance.

5.1. The converse statements

The converse of Corollary 4.2 would state that if rowsk(A) � rowsk(B) for
all k then sA − sB is F -positive, but this is certainly not true. To obtain
a counterexample, one only needs to consider skew shapes of size 4: take
A = 311/1 and B = 32/1; there are two SYT of shape B with descent
composition 22, but only one such SYT of shape A. The same example
shows that both possibilities for the converse of Theorem 3.7 also fail to
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hold. As for the equality questions, A1 and A2 from Example 1.1 show that

rowsk(A) = rowsk(B) for all k does not imply that sA = sB or even that

Schur supports are equal.

Given these counterexamples, one might expect the converse of Theo-

rem 4.1 to fail for a similarly low value of |A|, such as 4, 5 or 6. However,

we have computationally checked that the following conjecture holds for all

A and B with |A| ≤ 12.

Conjecture 5.1. Skew shapes A and B of the same size satisfy suppF (A) ⊇
suppF (B) if and only if rowsk(A) � rowsk(B) for all k.

By Proposition 3.6, we could equivalently replace the rows condition by

the appropriate cols or rects condition. A proof of Conjecture 5.1 would

also imply that rowsk(A) = rowsk(B) for all k if and only if suppF (A) =

suppF (B), and perhaps this latter statement would be an easier one to prove

or disprove.

Obviously, the “only if” direction of Conjecture 5.1 is Theorem 4.1.

Despite evidence in favor of the “if” direction, this author still remains

somewhat skeptical for the following reason. Close examination of the proof

of Theorem 4.1 suggests that suppF (B) encodes more information than

rowsk(B) for all k or equivalently cols�(B) for all �, since only certain ele-

ments of the support were used in the proof of Theorem 4.1. Roughly speak-

ing, we focused on those compositions α in the support that were obtained

by starting our filling in the least dominant way possible, and then filling

the remainder trim�−1(B) in the most dominant way possible; for each �, we

only used one element of suppF (B) to isolate cols�(B).

It can be helpful to view Conjecture 5.1 in terms of two partially or-

dered sets. For the first poset Fsupp(n), the elements will be equivalence

classes of skew shapes of size n, where the equivalence relation is A ∼ B

if suppF (A) = suppF (B); the order relation will be [A] ≥Fsupp(n) [B] if

suppF (A) ⊇ suppF (B), where [A] denotes the equivalence class of A. For

the second poset, Overlaps(n), the elements will be equivalence classes of

skew shapes of size n, where the equivalence relation is A ∼ B if rowsk(A) =

rowsk(B) for all k. The order relation for the second poset is [A] ≥Overlaps(n)

[B] if rowsk(A) � rowsk(B) for all k, where [A] now denotes the equivalence

class of A under this second equivalence relation. It is straightforward to

check that Conjecture 5.1 is equivalent to the statement that the posets

Fsupp(n) and Overlaps(n) are isomorphic under the map that sends the

equivalence class [A] in Fsupp(n) to the equivalence class [A] in Overlaps(n).

The poset for the case n = 6 is shown in Figure 5.1.
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Figure 5.1: Fsupp(6) = Overlaps(6). One representative of each equivalence
class is drawn.

5.2. Special cases of the conjecture

It is simple to show that Conjecture 5.1 holds for horizontal strips. Indeed,

sA for a horizontal strip A is completely determined by rows1(A) = rows(A).

In fact, we see that sA in this case is the complete homogeneous symmetric

function hrows(A). It is well known (see, for example, [24, Example I.7.9(b)])

that hrows(A) − hrows(B) is Schur-positive if and only if rows(A) � rows(B).

Thus, if rows(A) � rows(B), then sA − sB is Schur-positive, which implies

that suppF (A) ⊇ suppF (B).
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In Section 6, we will completely determine the poset Fsupp(n) restricted
to F -multiplicity free skew shapes (in which case suppF (A) ⊇ suppF (B)
is equivalent to sA − sB being F -positive), from which it will follow that
Conjecture 5.1 holds in that case.

The remainder of this section is devoted to a proof of Conjecture 5.1 for
a special class of ribbons, which we now define.

Definition 5.2. A ribbon is said to be elongated if all its rows have length
at least two.

Theorem 5.3. Let A and B be elongated ribbons of the same size. Then
suppF (A) ⊇ suppF (B) if and only if rowsk(A) � rowsk(B) for all k.

Proof. By Theorem 4.1, we need only prove the “if” direction. A key sim-
plification for elongated ribbons is that rowsk(A) � rowsk(B) for all k is
equivalent to rowsk(A) � rowsk(B) for k = 1, 2.

So first suppose rows1(A) = rows(A) � rows(B) for elongated ribbons A
and B. This implies that A has at least as many (nonempty) rows as B. On
the other hand, rows2(A) is just a sequence of ones of length equal to one
less than the number of rows of A. Thus rows2(A) � rows2(B) implies that
B has at least as many rows as A. So our rows condition is equivalent to
the fact that rows(A) � rows(B) and that A and B have an equal number
of rows.

Our proof is facilitated by [16, Theorem 3.3], which considers ribbons
whose row lengths from top to bottom are weakly decreasing. In this case,
their theorem says that sA − sB is Schur-positive if and only if rows(A) �
rows(B) and A and B have equal numbers of rows. For our purposes, we get
that if A and B are elongated ribbons with weakly decreasing rows lengths
and rowsk(A) � rowsk(B) for all k, then suppF (A) ⊇ suppF (B). There-
fore, it suffices to show that for elongated ribbons A, we have suppF (A) =
suppF (A

≥), where A≥ denotes the ribbon obtained from A by sorting its
row lengths into weakly decreasing order from top to bottom. Moreover, it
suffices to show that the F -support of an elongated ribbon A is preserved
when we switch two adjacent rows of A where the lower row is longer than
the upper row; this is the result for which we will now give a combinatorial
proof.

Consider the setup shown in Figure 5.2. This shows two adjacent rows of
an SYT T with descent composition α and shape A, where A is an elongated
ribbon. We assume that row i+1 is strictly longer than row i, i.e, that � > k.
Starting with T , we wish to form an SYT with descent composition α and
shape A′, where A′ is obtained from A by switching the lengths of the rows
i and i+1. Our plan is to move �−k entries of T from row i+1 up to row i
so as to preserve the descent set. After moving entries, we will sort our rows
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Figure 5.2: The setup for the proof of Theorem 5.3.

into weakly decreasing order. We will need to check that the result still has
descent composition α and that the columns are strictly increasing at each
of the places marked with the thick lines in columns j1, j2 and j3.

To begin, if br in row i is a descent and br + 1 appears in row i + 1 as
cs, then we consider br and cs as being paired. Paired elements will always
remain in their current rows except as described below. There are two cases
to consider according to whether or not there exist paired elements.

Suppose that there is at least one pair. We know there are at least �− k
non-paired entries in row i+ 1, so move the largest �− k non-paired entries
of row i+1 up to row i. Since paired elements remain in their current rows,
the descent set is preserved. Since row i only gains elements, there will still
be a strict increase in column j3. Since there is at least one pair, there will
still be a strict increase in column j2. In most cases, we will keep a strict
increase in column j1 since we moved the largest non-paired elements out
of row i + 1. However, consider the remaining case when there is a full set
of k pairs and c1 gets moved, resulting in the loss of the strict increase in
column j1. Suppose that, after this moving takes place, cs is the entry in the
leftmost box of row i+1. Since cs > d, our technique will be to switch cs and
d. The result will clearly be an SYT. We know that cs is paired, with cs − 1
appearing in row i. Therefore, cs − 1 will remain a descent. Since cs > d,
whether or not cs, d, or d− 1 are descents will be unaffected by the switch
of cs and d. We conclude that the descent set is preserved, and we have the
desired SYT of shape A′ and descent set α.

Now suppose there are no pairs. In this case, read along row i+ 1 from
right to left. Taking the elements cs of row i + 1 one at a time, move cs
up to the appropriate spot along row i. However, if doing so would violate
the strict increase in column j2, then leave cs in row i + 1 and move on to
consider cs−1, stopping once we have moved up �−k elements. If cs remains
in the bottom row, all subsequent elements ct will be able to move up to row
i, since ct < cs. As before, there will still be a strict increase in column j3.
By design, there will be a strict increase in column j2. Since k ≥ 2, c1 will
remain in position, thus preserving the strict increase in column j1. Since
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there are no paired elements, the only way we could change the descent set
would be if cs stayed in row i + 1 while cs − 1 moved from row i + 1 to
row i. This would imply that cs − 1 = cs−1, which is impossible for the
following reason: when we attempted to move cs up to row i and failed, it
must have been because the entry b in the leftmost box of row i at that time
was strictly between the values cs−1 and cs. We conclude that the descent
set is preserved, as required.

One might wonder if the row overlap condition might imply something
stronger than F -support containment in the special case of elongated rib-
bons. More precisely, does Theorem 5.3 still hold if we replace the condition
“suppF (A) ⊇ suppF (B)” with “supps(A) ⊇ supps(B)” or with “sA − sB
is F -positive”? The answer is “no” for both possibilities, as can be seen by
letting A = 632/21 and B = 652/41.

One obvious next step would be to try to prove Conjecture 5.1 for general
ribbons. In that regard, we note that the method of proof above has some
freedom that we did not use. First, observe that the moving of elements
described above also works if we want to move less than � − k elements.
Perhaps more importantly, we started with any given T of shape A and
descent composition α. However, since we are only proving a result about
supports, it is sufficient to choose a “special” or particular T of shape A and
descent set α, and there might be a helpful way to make this choice.

5.3. A saturation-type consequence of the conjecture

If Conjecture 5.1 were true, we would get a version of the Saturation Theo-
rem for skew shapes, as we now explain.

For a partition λ and a positive integer n, let nλ denote the partition
obtained by multiplying all the parts of λ by n. The Saturation Theorem [18]
(see also [6] and the survey [11]) can be stated in the following way: for
partitions λ, μ, ν and any positive integer n, we have

supps(λ/μ) ⊇ supps(ν) if and only if supps(nλ/nμ) ⊇ supps(nν).

This statement is written here in an overly complicated form since supps(ν)
is obviously just {ν} and similarly for nν, but the statement is in the form
we need for the following analogue. For a skew shape A = λ/μ, we define
nA = nλ/nμ. Then, David Speyer asked the author if the following skew
analogue of the Saturation Theorem could possibly be true: for skew shapes
A and B and any positive integer n,

supps(A) ⊇ supps(B) if and only if supps(nA) ⊇ supps(nB).
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This is false in the “only if” direction (which is the easy direction for the
Saturation Theorem) since

supps(4311/21) ⊇ supps(4421/311)

but 633 is contained in

supps(8842/622) \ supps(8622/42).

We do not know of a counterexample for the “if” direction.
Alejandro Morales asked about connections between the present paper

and the Saturation Theorem, and there does appear to be hope of a skew
analogue of the Saturation Theorem if we move to F -supports.

Question 5.4. For skew shapes A and B and any positive integer n, is it
the case that

suppF (A) ⊇ suppF (B) if and only if suppF (nA) ⊇ suppF (nB) ?

Since dominance order is preserved under the map that sends λ to nλ
and the inverse map, a proof of Conjecture 5.1 would imply an affirmative
answer to Question 5.4.

6. F -multiplicity-free skew shapes

In [4, Theorem 3.4], Bessenrodt and van Willigenburg give a complete clas-
sification of those skew shapes A that are F -multiplicity-free, meaning that
when sA is expanded in the F -basis, all the coefficients are 0 or 1. In other
words, A is F -multiplicity-free if and only if all SYTx of shape A have dis-
tinct descent sets. Our first goal for this section is to completely classify those
F -multiplicity-free A and B such that sA − sB is F -positive. By the defi-
nition of F -multiplicity-free, this is equivalent to classifying those A and B
such that suppF (A) ⊇ suppF (B). Our second goal is to show that this classi-
fication implies the truth of Conjecture 5.1 in the case of F -multiplicity-free
shapes.

Let us begin with the aforementioned result from [4]. Let A◦ denote A
rotated 180◦, also known as the antipodal rotation of A. As is well known [34,
Exercise 7.56(a)], sA = sA◦ . Let us use 1� to denote a sequence of � copies of
1, andA⊕B to denote the skew shape obtained by positioningA immediately
below and to the left of B in such a way that A and B have no rows or
columns in common. For example, (12)⊕ (2) can also be written as 311/1.
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Figure 6.1: The subposet of Fsupp(5) consisting of F -multiplicity-free skew
shapes. For each A drawn, A◦ is also a member of the equivalence class.

Theorem 6.1 ([4]). A skew shape A of size n is F -multiplicity-free if and
only if, up to transpose, A or A◦ is one of

i. (3, 3) if n = 6,
ii. (4, 4) if n = 8,
iii. (n− 2, 2) if n ≥ 4,
iv. (n− �, 1�) for 0 ≤ � ≤ n− 1,
v. (1�)⊕ (n− �) for 1 ≤ � ≤ n− 1.

Notice that the first four types in the list above are straight shapes,
meaning that they take the form λ/∅ for some partition λ. We now state
the main result of this section.

Theorem 6.2. Let A and B be F -multiplicity-free skew shapes of size n.
Then sA = sB if and only if B ∈ {A,A◦}. Otherwise, sA − sB is F -positive
(equivalently suppF (A) ⊇ suppF (B)) if and only if one of the following
conditions holds up to antipodal rotation of A and/or B:

a. A = (1�)⊕(n−�) and B ∈ {(n−�, 1�), (n−�+1, 1�−1)} for 1 ≤ � ≤ n−1;
b. A = (12)⊕ (n− 2) and B = (n− 2, 2) with n ≥ 4;
c. A = (1n−2)⊕ (2) and B = (2, 2, 1n−4) with n ≥ 4.

Observe that the skew shapes A and B in (c) are just the transposes of
those in (b), while the transposes of A and B from (a) will be another pair
from (a). The subposet of Fsupp(5) consisting of F -multiplicity-free skew
shapes is depicted in Figure 6.1.

Proof of Theorem 6.2. Since sA = sA◦ , we know that if B ∈ {A,A◦} then
sA = sB. The converse is a consequence of the analysis below that proves
the bulk of the statement of the theorem.

If suppF (A) ⊇ suppF (B), then Proposition 4.5 tells us that rows(A) �
rows(B) and cols(A) � cols(B). If A and B are straight shapes, then the
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latter inequality is equivalent to rows(A)t � rows(B)t and hence rows(A) 

rows(B). Thus rows(A) = rows(B) and so A = B. Therefore, the straight
shapes given in (i)–(iv) of Theorem 6.1 are all incomparable according to

F -support containment.

It remains to consider comparabilities involving the skew shapes A =

(1�) ⊕ (n − �) for 1 ≤ � ≤ n − 1. Note that this class is mapped to itself
under the transpose operation. The rest of the proof is a relatively routine

checking of cases involving some explicit expansions of skew Schur functions.

Taking one of our skew shapes to be of type (v) of Theorem 6.1, we will work
backwards through the five possibilities for the type of the other skew shape.

(v) Let us first consider the case when A = (1�) ⊕ (n − �) and B =
(1m)⊕(n−m) for � < m. We have rows(A) � rows(B) but cols(A) ≺
cols(B). Proposition 4.5 then tells us that suppF (A) and suppF (B)

are incomparable.
(iv) By the Pieri rule [34, Theorem 7.15.7],

(6.1) s(1�)⊕(n−�) = s(n−�,1�) + s(n−�+1,1�−1).

Therefore sA − sB is Schur-positive and hence F -positive for A and

B from (a) of the current theorem.

We next consider other comparabilities among those skew shapes of
types (iv) and (v) of Theorem 6.1. Note that the class (iv) is also

mapped to itself under the transpose operation. From [4, Lemma 3.2],

we know that for n ≥ 1 and 0 ≤ � ≤ n− 1, we have

(6.2) s(n−�,1�) =
∑

α

Fα,

where the sum is over all compositions α of size n with �+ 1 parts.

Using this and (6.1), we deduce that the only comparabilities that
exist between skew shapes of types (iv) and (v) are those already

given in (a) of the current theorem.

(iii) Consider (n−2, 2) for n ≥ 4. Again we refer to [4, Lemma 3.2] which
gives

s(n−2,2) =

n−2∑

i=2

F(i,n−i) +

n−1∑

j=3

j−2∑

i=1

F(i,j−i,n−j).

Comparing with (6.1) and (6.2), comparabilities of (n − 2, 2) with

skew shapes of type (1�)⊕ (n− �) can only occur when � = 2. In this
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case, we have

s(12)⊕(n−2) =

n−1∑

i=1

F(i,n−i) +

n−1∑

j=2

j−1∑

i=1

F(i,j−i,n−j),

and so

s(12)⊕(n−2) − s(n−2,2) = F(1,n−1) + F(n−1,1) +

n−1∑

j=2

F(j−1,1,n−j).

In particular, sA − sB is F -positive for A and B from (b) of the
current theorem.
The usual ω involution [34, §7.6 and Theorem 7.15.6] can be ex-
tended to quasisymmetric functions in a way that preserves F -posi-
tivity; see [34, Exercise 7.94(a)] for one such extension, and [28] for
further details and references. Since applying this extended ω pre-
serves F -positivity, we draw the desired analogous conclusion for
comparabilities involving (n− 2, 2)t = (2, 2, 1n−4) of (c).

(ii), (i) Finally, by direct computation with n = 6 and n = 8, we get that
there are no comparabilities involving (3, 3), (4, 4), or their trans-
poses.

Remark 6.3. If A is F -multiplicity-free, then Theorem 2.4 implies that A is
Schur-multiplicity-free, defined in the natural way. Thus when A and B are
F -multiplicity-free, sA−sB being Schur-positive is equivalent to supps(A) ⊇
supps(B). It is relatively easy to determine exactly when sA − sB is Schur-
positive in the case that A and B are F -multiplicity-free, as we now describe.
The straight shapes from (i)–(iv) of Theorem 6.1 are obviously incomparable.
Then it follows from (6.1) that the conditions for sA−sB to be Schur-positive
are exactly as in Theorem 6.2 but with conditions (b) and (c) deleted.

Determining conditions for sA − sB to be Schur-positive when A and
B are Schur -multiplicity-free seems to be a significantly harder problem.
See [26] for the case of ribbons and [13] for the solution to sA = sB in the
Schur-multiplicity-free situation. Both of these papers rely on a classification
of skew shapes that are Schur multiplicity-free, which was given in [14, 36].

With Theorem 6.2 in place, we can now give our last piece of evidence
in favor of Conjecture 5.1.

Corollary 6.4. Conjecture 5.1 holds when A and B are F -multiplicity-free
skew shapes.
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Proof. We wish to find all pairs of F -multiplicity-free skew shapes A and

B of the same size satisfying rowsk(A) � rowsk(B) for all k, and show that

such A and B satisfy one of the conditions of Theorem 6.2. Since antipodal
rotation preserves F -supports and row overlaps, if Conjecture 5.1 holds for

A and B, it will automatically hold with A◦ in place of A and/or with

B◦ in place of B. Therefore, we only need to consider the five classes of

F -multiplicity-free shapes listed in Theorem 6.1 and not their antipodal
rotations.

First suppose that A and B are straight shapes and that rowsk(A) �
rowsk(B) for all k. By Proposition 3.6, we then also know that colsk(A) �
colsk(B) for all k. We have rows1(A) = cols1(A)t 
 cols1(B)t = rows1(B).

Thus rows1(A) = rows1(B) and so A = B up to antipodal rotation.

It remains to consider the case when A and/or B takes the form (1�)⊕
(n− �) for 1 ≤ � ≤ n− 1. If A takes this form, then

(6.3)
(
rows1(A), . . . , rows�(A)

)
=

((
n− �, 1�

)
, 1�−1, 1�−2, . . . , 1

))
.

Let us work in the reverse order through the five possibilities from Theo-
rem 6.1 for the type of B.

(v) If B = (1m) ⊕ (n − m) for m �= � then it will be neither true that

rowsk(A) � rowsk(B) for all k, nor that rowsk(B) � rowsk(A) for
all k. In this case we will say that the row overlap sequences are

incomparable, and there is nothing to prove.

(vi) If B is of type (iv) from Theorem 6.1, then B = (n − m, 1m) for

some 0 ≤ m ≤ n− 1 and we have
(6.4)(

rows1(B), . . . , rowsm+1(B)
)
=

((
n−m, 1m

)
, 1m, 1m−1, . . . , 1

))
,

Comparing (6.3) and (6.4), we see that the relevant row overlap

sequence comparabilities are that rowsk(A) � rowsk(B) for all k

when m = � or m = �− 1. These two possibilities for m give exactly

the conditions of (a) of Theorem 6.2.

(iii) Let B = (n − 2, 2). For � > 2, we have rows1(A) ≺ rows1(B), but
rows3(A) � rows3(B) = ∅, so the row overlap sequences of A and

B are incomparable. If � = 2, we get that rowsk(A) � rowsk(B)

for all k. In this case, (b) of Theorem 6.2 is satisfied. If � = 1, the

row overlap sequences are again incomparable. If B = (n− 2, 2)t =
(2, 2, 1n−4), then the analogous conclusions can be drawn by using

cols in place of rows and (c) of Theorem 6.2.
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Table 7.1: The expansion of two skew Schur functions from Example 1.1 in
the bases of Section 7

Schur expansion s31 + s211 s22

F -expansion F31 + F13 + F22 + F22 + F121

F211 + F121 + F112

M -expansion M31 +M13 +M22 + 3M211 + M22 +M211 +M121 +
3M121 + 3M112 + 6M1111 M112 + 2M1111

S-expansion S31 + S13 + S211 + S121 + S112 S22

D-expansion D31 +D211 D22 −D13

(ii), (i) When B equals (3, 3), (4, 4) or one of their transposes, it is routine to
check that the row overlap sequences of A and B are incomparable.

We conclude that in all cases where rowsk(A) � rowsk(B) for all k, one of
the conditions of Theorem 6.2 is satisfied, so we have suppF (A) ⊇ suppF (B),
as required.

7. Other quasisymmetric bases

It is natural to ask if other quasisymmetric function bases have a role to
play in comparing skew Schur functions. In this section, we look at three
other bases, namely

◦ the monomial quasisymmetric functions of Equation (2.1);
◦ the quasisymmetric Schur basis of Haglund et al. [15], whose elements
we denote by Sα;

◦ the dual immaculate basis of Berg et al. [1], whose elements we denote
by Dα.

Examples of expansions in these bases appear in Table 7.1. The latter two
bases are both new (introduced in 2008 and 2012 respectively) and are the
subject of considerable current interest.

Our goals for this section are to show all the implications appearing
in Figure 7.1 that did not already appear in Figure 1.1, to show that all
the implications except the rightmost one are strict in the sense that the
converse implications are false, and to show that the set of implications in
Figure 7.1 is complete in a certain sense.



Comparing skew Schur functions: a quasisymmetric perspective 79

Figure 7.1: A summary of the implications of Section 7 for skew shapes A
and B. With the exception of the rightmost implication, all the implications
shown are known to be strict in the sense that the converse is false.

There are, of course, other known bases for quasisymmetric functions,
such as those in [5, 23, 35]. One possible first step to incorporating one of
these other bases into our framework would be to determine the expansions
of skew Schur functions in that new basis.

We now begin the derivation of the implications of Figure 7.1. The im-
plications at the bottom of the figure involving the M -basis are easy to see.
Indeed, the horizontal implication is by definition of support, and is strict
since suppM (3) ⊇ suppM (21) but s3 − s21 is not M -positive. The vertical
implications involving the M -basis are a consequence of any Fα being M -
positive, as in (2.2), and either implication can seen to be strict by comparing
s31/1 and s211/1.

The Schur functions have a very simple expansion in the S-basis:

sλ =
∑

α

Sα,

where the sum is over all compositions α that yield λ when sorted into weakly
decreasing order. It follows that a symmetric function is Schur-positive if and
only if it is S-positive and, similarly, Schur support containment for skew
Schur functions is equivalent to S-support containment.

The derivation of the implications involving the D-basis requires a little
more work. One interesting feature is that the Schur functions are not D-
positive in general. This means that there are two possible definitions of
suppD(A) for a skew shape A: we can either say that α is in the support ifDα

appears with nonzero coefficient in the D-expansion of sA, or we can insist
that the coefficient be positive. It turns out that it doesn’t matter which
convention we use in Figure 7.1 or in any of the discussion that follows.
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The expansion of sλ in the D-basis appears as [1, Theorem 3.38]: if λ
has k parts, then

sλ =
∑

σ

(−1)σDλσ1+1−σ1, λσ2+2−σ2, ..., λσk
+k−σk

,

where the sum is over all permutations σ of [k] such that λσi
+ i − σi > 0

for all i ∈ [k]. Here (−1)σ denotes the sign of the permutation σ. Let us
deduce some pertinent facts about this expansion. Letting σ be the identity
permutation, we see that Dλ appears with coefficient +1 in the D-expansion
of sλ. Moreover, for any α, it follows from [1, Proposition 2.2] that Dα

appears with nonzero coefficient in the D-expansion of at most one sλ. In
particular, Dλ is the only term indexed by a partition that appears with
nonzero coefficient in the D-expansion of sλ.

If sA − sB is D-positive then, in particular, the terms in sA − sB of
the form Dλ with λ a partition must all have nonnegative coefficients. It
then follows from the discussion of the previous paragraph that sA − sB is
Schur-positive. An example that shows that this implication is strict is

s32/1 − s31 = s22 = D22 −D13.

Since each α appears in the D-support of at most one sλ and since λ is in
the D-support of sλ, we deduce for skew shapes A and B that suppD(A) ⊇
suppD(B) if and only if supps(A) ⊇ supps(B).

We can also quickly check that the implications in Figure 7.1 inher-
ited from Figure 1.1 are strict, with the possible exception of the rightmost
arrow. Skew shapes A1 and A3 from Table 7.1 show that F -positivity of
sA − sB does not imply Schur-positivity, and similarly for support contain-
ment. Next, A1 and A2 from Example 1.1 satisfy suppF (A1) ⊇ suppF (A2)
but sA1

−sA2
is not F -positive. Finally, s421/2−s431/21 = −s32 is not Schur-

positive, even though supps(421/2) ⊇ supps(431/21). This concludes our
demonstration of all the implications of Figure 7.1 and the desired strict-
ness conditions.

But are there more implications that should be shown? Let us impose
the condition that |A| = |B| in Figure 7.1, which does not change the figure
or the substance of the implications. Then one implication not shown in
Figure 7.1 that could be true is the implication of Conjecture 5.1. Even
if Conjecture 5.1 is false, it could conceivably be the case that the row
overlaps condition would imply containment of M -supports. Apart from
these exceptions, we can show that Figure 7.1 is “complete” in the sense that
all implications involving the various classes are implied by the implications
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shown. For example, we will show that it is neither the case that sA − sB
being M -positive implies that suppF (A) ⊇ suppF (B) nor vice versa. To
show completeness, there are four implications that we need to show are
false; one can check that the absence of these four implications will imply
the absence of any other conceivable implications within Figure 7.1.

◦ To see that supps(A) ⊇ supps(B) does not imply that sA − sB is M -
positive, take A = 421/2 and B = 431/21 as at the end of the previous
paragraph. Then sA − sB = −s32, which is not M -positive.

◦ To see that sA − sB being F -positive does not imply that supps(A) ⊇
supps(B), take A = 311/1 and B = 22 as in Table 7.1.

◦ To see that sA− sB being M -positive does not imply that rowsk(A) �
rowsk(B) for all k, take A = 3 and B = 111.

◦ To see that rowsk(A) � rowsk(B) for all k does not imply that sA−sB
is M -positive, take A = 311/1 and B = 32/1, in which case sA− sB =
m1111 −m22

As a final remark, we have focused on skew Schur functions because of the
recent interest on relationships among them, as we described in the introduc-
tion, and because of their connection with the overlap partitions. Of course,
there may be other symmetric or quasisymmetric functions that would be
worth comparing in the quasisymmetric setting. Two natural prospects are
the skew quasisymmetric Schur functions [3], which generalize the S-basis,
and the skew dual immaculate functions [1].
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