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A refinement of the Shuffle Conjecture
with cars of two sizes and t = 1/q
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∗
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The original Shuffle Conjecture of [12] has a symmetric function
side and a combinatorial side. The symmetric function side may be
simply expressed as 〈∇en , hμ〉 where ∇ is the Macdonald polyno-
mial eigen-operator of [3] and hμ is the homogeneous basis indexed
by μ = (μ1, μ2, . . . , μk) � n. The combinatorial side q, t-enumerates
a family of Parking Functions whose reading word is a shuffle of k
successive segments of 123 . . . n of respective lengths μ1, μ2, . . . , μk.
It can be shown that for t = 1/q the symmetric function side
reduces to a product of q-binomial coefficients and powers of q.
This reduction suggests a surprising combinatorial refinement of
the general Shuffle Conjecture. Here we prove this refinement for
k = 2 and t = 1/q. The resulting formula gives a q-analogue of the
well-studied Narayana numbers.
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1. Introduction

A Dyck path in the n × n lattice square starts at the southwest corner of
the square and proceeds to the northeast corner with n north edges and n
east edges, always remaining weakly above the diagonal joining these the
same two corners. Here and after, we will refer to the cells crossed by this
diagonal as in the main diagonal of the square.

Here we visualize a Parking Function as a Dyck path in the n×n lattice
square whose north steps are labeled in a column increasing way by the
integers {1, 2, . . . , n}. For convenience, we place the label of a north edge in
the cell immediately to the east of that edge. This visual representation has
its origins in [7], where it is used as a geometric way of depicting preference
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functions that park the cars on a one way street (see [13]). We will also
borrow the term cars for the labels of the north edges.

For computational convenience, Parking Functions may also be repre-
sented as two-line arrays:

PF =

[
v1 v2 . . . vn
u1 u2 . . . un

]

with u1, u2, . . . , un integers satisfying

u1 = 0 and 0 ≤ ui ≤ ui−1 + 1

and V = (v1, v2, . . . , vn) a permutation in Sn satisfying ui = ui−1+1 ⇒ vi >
vi−1. The component ui represents the number of full cells in the ith row of
the diagram that are east of the path and strictly west of the main diagonal.
The component vi gives the car that resides in the ith row. An example of
these two corresponding representations is given below.

[
4 6 8 1 3 2 7 5
0 1 2 2 3 0 1 1

]
⇐⇒

We will denote by σ(PF) the permutation obtained by successive right
to left readings of the components of the permutation V = (v1, v2, . . . , vn)
according to decreasing values of u1, u2, . . . , un. We will call σ(PF) the diag-
onal word of PF. This given, each Parking Function is assigned two statistics

(1.1) area(PF) =

n∑
i=1

ui,

and

dinv(PF) =
∑

1≤i<j≤n

χ(ui = uj & vi < vj)

+
∑

1≤i<j≤n

χ(ui = uj + 1& vi > vj).(1.2)
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It is easily seen that area(PF) gives the total number of cells between
the supporting Dyck path and the main diagonal. The notation dinv(PF)
is an abbreviation of the term “diagonal inversions.” Note that two cars in
the same diagonal with the car on the left smaller than the car on the right
will contribute a unit to dinv(PF) called a primary dinv. Likewise, a car on
the left that is bigger than a car on the right with the latter in the adjacent
lower diagonal contributes a unit to dinv(PF) called a secondary dinv. In the
example above, σ(PF) = 3 1 8 5 7 6 2 4, area(PF) = 10 and dinv(PF) = 4.

For two integers a + b = n, let us refer to 1, 2, . . . , a as the small cars

and a+1, a+2, . . . , n as the big cars and let PF (r,s)
a,b denote the collection of

Parking Functions whose reading word is a shuffle of the two words 1 2 . . . a
and a + 1 a + 2 . . . n and which have r small cars and s big cars in the

main diagonal. Similarly, let PF (s)
a,b = ∪a

r=0PF (r,s)
a,b denote the collection of

Parking Functions whose reading word is a shuffle of the two words 1 2 . . . a
and a + 1 a + 2 . . . n and which have s big cars in the main diagonal, and

let PFa,b = ∪a
r=0 ∪b

s=0 PF (r,s)
a,b .

Our main result here can be stated as follows

Theorem 1.1. Let 0 ≤ s ≤ b and 0 ≤ r ≤ a. If s < b, then

∑
PF∈PF(r,s)

a,b

qcoarea(PF)+dinv(PF)

= q(
a+b

2 )−(a−r+1)(b−s)

[
a+ b− s− 1

a

]
q

[
a− r + b− s

a− r

]
q

×
[
r + s

s

]
q

[r]q
[a− r + b− s]q

,

and if s = b, then

∑
PF∈PF(r,b)

a,b

qcoarea(PF)+dinv(PF) = χ(a = r) q(
a+b

2 )
[
a+ b

a

]
q

where coarea(PF) =
(
n
2

)
− area(PF).

To see why this constitutes a refinement of the t = 1/q and k = 2
case of the Shuffle Conjecture we need to review some background. A more
thorough introduction to the relevant tools in symmetric function theory
can be found in section 2. To begin, the Shuffle Conjecture of [12] can be
stated as follows.
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Conjecture 1.1. For μ = (μ1, μ2, . . . , μk) � n we have

(1.3) 〈∇en , hμ〉 =
∑

PF∈PFn

tarea(PF)qdinv(PF)χ
(
σ(PF) ∈ E1 E2 · · · Ek

)

where “PFn” denotes the collection of Parking Functions in the n × n lat-

tice square, E1, E2, . . . , Ek are successive segments of the word 123 . . . n of

respective lengths μ1, μ2, . . . , μk and “ ” denotes shuffling.

Now it was already noticed by [7] that

(1.4) q(
n

2)∇en
∣∣
t=1/q

=
1

[n+ 1]q
en
[
X[n+ 1]q

]
.

Using this identity, it is not difficult to derive that Conjecture 1.1 implies

the following, also open, conjecture. For an explicit computation of this in

the two shuffle case, see [1].

Conjecture 1.2.

∑
PF∈PFn

qcoarea(PF)+dinv(PF) χ
(
σ(PF) ∈ E1 E2 · · · Ek

)

=
1

[n+ 1]q

k∏
i=1

q(
μi
2 )
[
n+ 1

μi

]
q

.(1.5)

The two parameters s and r in Theorem 1.1 induce a partition of studied

parkings functions. One can sum the generating functions of each part of

this partition to obtain a proof for the case k=2 of Conjecture 1.2. More

precisely,

Theorem 1.2. For a ≥ 0 and b ≥ 0,

∑
PF∈PFa,b

qcoarea(PF)+dinv(PF) =
q(

a

2)+(
b

2)

[a+ b+ 1]q

[
a+ b+ 1

a

]
q

[
a+ b+ 1

b

]
q

.

Our proofs of Theorems 1.1 and 1.2 are based on two key recursions

which may be stated as follows. For parameters a, b, r, s, let us set

(1.6) Parkq
(r,s)
a,b (q) =

∑
PF∈PF(r,s)

a,b

qcoarea(PF)+dinv(PF)
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and

(1.7) Parkq
(s)
a,b(q) =

∑
PF∈PF(s)

a,b

qcoarea(PF)+dinv(PF).

Similarly, let

(1.8) Parkqt
(r,s)
a,b (q, t) =

∑
PF∈PF(r,s)

a,b

tarea(PF)qdinv(PF)

and

(1.9) Parkqt
(s)
a,b(q, t) =

∑
PF∈PF(s)

a,b

tarea(PF)qdinv(PF).

This given, we have the following recursions.

Proposition 1.1. If 0 ≤ r ≤ a and 0 ≤ s < b, then

Parkq
(r,s)
a,b (q) = q(s+r)(a+b)−(s+r+1

2 )−1

[
s+ r

s

]
q

×
b−s∑
h=1

[
r + h− 1

h

]
q

a−r∑
k=0

Parkq
(k,h−1)
a−r,b−s−1(q)

= q(s+r)(a+b)−(s+r+1

2 )−1

[
s+ r

s

]
q

×
b−s∑
h=1

[
r + h− 1

h

]
q

Parkq
(h−1)
a−r,b−s−1(q).(1.10)

Proposition 1.2. If 1 ≤ a and 0 ≤ s ≤ b, then

(1.11) Parkq
(s)
a,b(q) = q(

a+b

2 )−(b−s)−(a+b−s−1

2 )
a∑

r=1

[
s+ r

r

]
q

Parkq
(r−1)
b−s,a−1(q).

The identity in Proposition 1.1 is the t = 1/q specialization of an identity

for Parkqt
(r,s)
a,b proved by the first author in [2] and Proposition 1.2 is a

specialization of a recursion for Parkqt
(s)
a,b originally discovered by [11]. Below

we reproduce a simple surjective proof of the latter which was given by the
first author and Stout in [9].
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In point of fact, [11] proved, by a highly non-trivial sequence of manip-
ulations, that

(1.12) Parkqt
(s)
a,b+1(q, t) = 〈Δha

Eb+1,s , ea+b+1〉

where Δha
is one of a family of Macdonald polynomial eigen-operators con-

structed in [4] and the En,k are the symmetric polynomials introduced by [6].

The simple form given here for Parkq
(r,s)
a,b (q) suggests that Parkqt

(r,s)
a,b (q, t),

may also be expressible in terms of symmetric functions in a manner that
refines (1.12). If this can be carried out for general multicar sizes it should
yield a significant refinement of the classical Shuffle Conjecture. This task
is certainly worth pursuing in future work.

2. The symmetric function side

For the sake of completion, we provide a brief survey of the symmetric
function tools necessary to understand Conjectures 1.1 and 1.2. For a more
thorough introduction see [14] and [8]. The space of symmetric polynomials
will be denoted by Λ. The space of homogeneous symmetric polynomials of
degree n will be denotes by Λ=n. We will express symmetric functions in
terms of the following classic bases for Λ=n indexed by partitions of n:

• the power basis {pμ}μ�n
• the homogeneous basis {hμ}μ�n
• the elementary basis {eμ}μ�n
• the Schur basis {sμ}μ�n

Below 〈·, ·〉 denotes the usual scalar product on symmetric functions defined
by

(2.1) 〈sλ, sμ〉 = χ(λ = μ).

For each partition λ, let λ′ denote the conjugate partition. We will also
make use of the involution ω defined by ωsλ = sλ′ . Note that since ek = s(1k)

and hk = s(k), we have that ωhk = ek and, in general, ωhλ = eλ.
If E = E(t1, t2, . . . ) is a formal Laurent series in the variables t1, t2, . . . ,

we define

pk[E] = E
(
tk1, t

k
2, . . .

)
.

More generally, if F is any symmetric function, it can be expressed as a
polynomial F = Q(p1, p2, . . . ) in the power basis. This given, we define

F [E] = Q
(
p1[E], p2[E], . . .

)
.
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Figure 1: The Ferrers diagram of a partition.

This process is referred to as plethystic substitution.

It will be convenient to denote a partition by its (French) Ferrers diagram
as in Figure 1. Given a partition μ and a cell c ∈ μ, the parameters a = aμ(c)
and l = lμ(c), called the arm and leg, give the number of cells north and
east of c, respectively. Also define

n(μ) =
∑
c∈μ

lμ(c) =

l(μ)∑
i=1

(i− 1)μi.

Let

wμ(q, t) =
∏
c∈μ

(
qaμ(c) − tlμ(c)+1

)(
tlμ(c) − qaμ(c)+1

)

and

Tμ = tn(μ)qn(μ
′).

For any partition μ, let zμ be the order of the stabilizer of a permutation
with cycle structure μ. We have that

〈 pλ, pμ 〉 = zμ χ(λ = μ).

A related scalar product, called the star scalar product, is given by

〈 pλ, pμ 〉∗ = (−1)|μ|−l(μ)zμ χ(λ = μ)
∏
i

(
1− tμi

)(
1− qμi

)
.

This given, the modified Macdonald polynomials {H̃μ(X; q, t)}μ are the
unique symmetric function basis which is upper-triangularly related to the
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Schur basis {sμ(x)}μ with respect to 〈·, ·〉∗ and satisfies the orthogonality
condition 〈

H̃λ(X; q, t), H̃μ(X; q, t)
〉
∗ = wμ(q, t)χ(λ = μ).

Following [3], we let ∇ denote the eigen-operator for the Macdonald poly-
nomials with eigenvalue Tμ.

Now we have the tools to sketch a proof of the following lemma.

Lemma 2.1. Conjecture 1.1 implies Conjecture 1.2.

Proof. By (1.4), it is sufficient to show that

〈
en
[
X[n+ 1]q

]
, hμ1

hμ2
. . . hμk

〉
=

k∏
i=1

q(
μi
2 )
[
n+ 1

μi

]
q

.

It is well known that for any X and Y we have

hn[XY ] =
∑
μ�n

sμ[X]sμ[Y ].

This expression is known as the Cauchy identity. When Y = [n+1]q, applying
ω with respect to X gives

en
[
X[n+ 1]q

]
=

∑
μ�n

sμ′ [X]sμ
[
[n+ 1]q

]
=

∑
μ�n

sμ[X]sμ′
[
[n+ 1]q

]
.

Hence by (2.1), for any partition λ we have that

〈
en
[
X[n+ 1]q

]
, sλ[X]

〉
= sλ′

[
[n+ 1]q

]
= ωsλ

[
[n+ 1]q

]
.

Since {sμ}μ�n is a basis for Λ=n, it follows that for any P ∈ Λ=n we have
that 〈

en
[
X[n+ 1]q

]
, P [X]

〉
= ωP

[
[n+ 1]q

]
.

In particular,

〈
en
[
X[n+ 1]q

]
, hμ1

hμ2
. . . hμk

〉
=

k∏
i=1

eμi

[
[n+ 1]q

]
.

Then noticing that

ea
[
1 + q + · · ·+ qn

]
= q(

a

2)
[
n+ 1

a

]
q

completes the proof.



A refinement of the Shuffle Conjecture with k = 2 and t = 1/q 39

3. Key identities

Surprisingly, our results depend only on Propositions 1.1 and 1.2 and the

following simple q-binomial identity. This identity can be derived from the
well-known q-Chu-Vandermonde identity. However, the proof that follows is

more illuminating.

Lemma 3.1. If 1 ≤ m ≤ n and k ≥ 0, then

[
n+ k

n

]
q

=

k∑
j=0

qm(k−j)

[
m+ j − 1

m− 1

]
q

[
n−m+ k − j

n−m

]
q

.

Proof. Let R(n, k) be the set of paths in the n×k rectangle from the south-
west corner (0, 0) to the northeast corner (n, k) with k north edges and n

east edges. For such a path Π let area(P ) denote the area above Π. Recall
that [

n+ k

k

]
q

=
∑

Π∈R(n,k)

qarea(Π).

For a fixed m and for a given path Π ∈ R(n, k), let j be the height of the
mth east step of Π. Note that Π consists of a path from (0, 0) to (m− 1, j),

an east step, and a path from (m, j) to (n, k).

Consider the example below.

Any path of R(m−1, j) and any path of R(n−m, k−j) can be combined
in this way to give a path Π ∈ R(n, k). Conversely, any path Π ∈ R(n, k)

has a unique j which splits the path at the mth east step. Hence the desired
identity follows from the fact that the area of Π is equal to m(k − j) plus
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the area of the path from (0, 0) to (m− 1, j) and the area of the path from
(m, j) to (n, k) (the three gray sections above).

For the sake of completeness, we provide sketches of the proofs of Propo-
sitions 1.1 and 1.2 in the present notation. These proofs involve similar ma-
nipulations of Parking Functions and both rely on the following well-known
fact.

Let W (1a2b) be the set of words consisting of a 1’s and b 2’s. Let wi

denote the ith letter of w. For w ∈ W (1a2b), set inv(w) =
∑

i<j χ(wi > wj)
and coinv(w) =

∑
i<j χ(wi < wj). Then for any n,m ≥ 0, we have that

(3.1)

[
n+m

m

]
q

=
∑

w∈W (1n2m)

qinv(w) =
∑

w∈W (1m2n)

qcoinv(w).

To deal with Parking Functions whose reading words are shuffles of a
small cars and b big cars it is convenient to depict these functions as tableaux
obtained by replacing each small car by a “1” and each big car by a “2”. This

certainly does not affect the area statistic. To show that this replacement
does not affect the dinv formula, we only need to point out that the shuffle
condition assures that pairs of cars of the same size will never contribute
a diagonal inversion. To pass from a 1, 2-tableau to the original Parking
Function we simply replace all the 1’s successively from right to left and
according to decreasing area numbers with the letters 1, 2, . . . , a and likewise
all 2′s in the same succession with the letters a+ 1, a+ 2, . . . , a+ b.

Let us recall that we defined

Parkqt
(r,s)
a,b (q, t) =

∑
PF∈PF(r,s)

a,b

tarea(PF)qdinv(PF)

and

Parkqt
(s)
a,b(q, t) =

∑
PF∈PF(s)

a,b

tarea(PF)qdinv(PF)
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so that

q(
a+b

2 ) Parkqt
(r,s)
a,b (q, 1/q) = Parkq

(r,s)
a,b (q)

and

q(
a+b

2 ) Parkqt
(s)
a,b(q, 1/q) = Parkq

(s)
a,b(q).

Propositions 1.1 and 1.2 can be obtained from the following two results by

setting t = 1/q and multiplying by q(
a+b

2 ).

Proposition 3.1. If 0 ≤ r ≤ a and 0 ≤ s < b, then

Parkqt
(r,s)
a,b (q, t) =

= ta+b−r−s

[
s+ r

s

]
q

b−s∑
h=1

[
r + h− 1

h

]
q

a−r∑
k=0

Parkqt
(k,h−1)
a−r,b−s−1(q, t).(3.2)

Proof. Let 0 ≤ r ≤ a, 0 ≤ s < b, 1 ≤ h ≤ b − s and 0 ≤ k ≤ a − r.

Let PF ∈ PF (k,h−1)
a−r,b−s−1. We begin by adding a car of size 2 to the main

diagonal to obtain PF′ ∈ PF (k,h)
a−r,b−s. We have area(PF) = area(PF′) and

dinv(PF) = dinv(PF′).

Now split up PF′ into h blocks beginning with each car of size 2 on

the main diagonal. Next we will construct an element of PF (r,0)
a,b−s for each

word w consisting of r 1’s and h 2’s which begins with a 1. We do this by

placing each 1 we encounter within w in the next available spot on the main

diagonal. When we encounter a 2 in w, we insert the next available block of

PF′ along the first diagonal directly on top of the 1 preceding this 2 in w if

there is one. Let this diagonal be known as the 1-diagonal. If there is not a

1 preceding this 2 in w, place the corresponding block along the 1-diagonal

directly after the previous block.
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Since each of the a + b − r − s cars of PF′ have been shifted up one

diagonal and all new cars have been added to the main diagonal, the area of

the resulting Parking Function is a+b−r−s+area(PF). Moreover, we have

created no new primary dinv and the additional secondary dinv is equal to

the number of inversions in w, inv(w).

Finally, we construct an element of PF (r,s)
a,b for each word v consisting of

r 1’s and s 2’s. This is done by inserting 1’s into the main diagonal of the

previous Parking Function so that reading the main diagonal from left to

right gives v.
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Each element of PF (r,s)
a,b is uniquely created in this way by taking k to

be the number of 1’s on the 1-diagonal, h− 1 to be the number of 2’s on the
1-diagonal, and by an appropriate choice of PF, w and v. Therefore (3.2)
follows from the observations we have made above regarding the change in
area and dinv combined with (3.1).

Proposition 3.2. If 1 ≤ a and 0 ≤ s ≤ b, then

(3.3) Parkqt
(s)
a,b(q, t) = tb−s

a∑
r=1

[
s+ r

r

]
q

Parkqt
(r−1)
b−s,a−1(q, t).

Proof. Let 1 ≤ r ≤ a and 0 ≤ s ≤ b. Consider any PF ∈ PF (r−1)
b−s,a−1 and any

w ∈ W (1r2s). Begin by inserting a 2 into the southwest corner of PF to get

PF′ ∈ PF (r)
b−s,a. As before this leaves the area and dinv unchanged.

Now shift each 1 into the cell immediately west of its current position.
Note that the result does not represent a Parking Function and that we
have changed the supporting Dyck path. Then replace every 1 with a 2
and vice versa (i.e. turn all small cars into big cars and big cars into small

cars). This gives a Parking Function PF′′ ∈ PF (0)
a,b−s. Note that area(PF′′) =

area(PF′)+ b−s since each 1 of PF′ that was shifted left increased the area.

Furthermore, dinv(PF′′) = dinv(PF′). This is because the pairs of 1’s
and 2’s which cause primary dinv in PF′ are precisely those which cause
secondary dinv in PF′′.
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Similarly, the pairs of 1’s and 2’s which cause secondary dinv in PF′ are
those which cause primary dinv in PF′′.

Now break PF′′ into a blocks starting with each 1 on the main diagonal.
Then insert 2’s into the main diagonal according to w as we did in the proof
of Proposition 3.1.

The result is a Parking Function PF∗ in PF (s)
a,b. Clearly area(PF∗) =

area(PF′′) = area(PF) + b − s. Note also that dinv(PF∗) = dinv(PF′′) +
coinv(w) = dinv(PF) + coinv(w).

Furthermore, we can see that this operation is reversible and surjective.
Hence summing over all possible choices of PF, r and w gives the desired
result.

4. q-binomial formulas

In order to arrive at the formula for Parkq
(r,s)
a,b given in Theorem 1.1, we

have the following intermediate step.

Theorem 4.1. For all a > 0, and 0 ≤ s ≤ b, we have

(4.1) Parkq
(s)
a,b(q) = q(

a+b

2 )−(b−s)a

[
a+ b

a

]
q

[
a+ b− s− 1

a− 1

]
q

[s+ 1]q
[b+ 1]q

.
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When a = 0, we have

(4.2) Parkq
(s)
0,b(q) = q(

b

2)χ(b = s).

Proof. When a = 0, the only Parking Function with a small cars and b large
cars is the one which has all large cars on the diagonal, i.e. when b = s. That
single Parking Function has dinv = 0 and coarea =

(
b
2

)
. Hence (4.2) holds

for all 0 ≤ s ≤ b.
Similarly, if b = s then all large cars, and consequently all small cars, are

on the main diagonal. Such a Parking Function P has coarea(P ) =
(
a+b
2

)
and dinv(P ) = inv(σ(P )), since all dinv occurs as primary dinv on the main
diagonal. Hence

(4.3) Parkq
(b)
a,b = q(

a+b

2 )
[
a+ b

a

]
q

which is the desired specialization of (4.1).
Given these two cases, we will induct on max{a, b}. Suppose a > 0,

b > s and that the claim holds for all smaller cases. Then by induction and
Proposition 1.2, we have

Parkq
(s)
a,b(q) = q(

a+b

2 )−(b−s)−(a+b−s−1

2 )
∑
r

[
s+ r

r

]
q

Parkq
(r−1)
b−s,a−1(q)

= q(
a+b

2 )−(b−s)−(a+b−s−1

2 )
∑
r

[
s+ r

r

]
q

q(
a+b−s−1

2 )−(a−r)(b−s)

×
[
a+ b− s− 1

b− s

]
q

[
a− r + b− s− 1

b− s− 1

]
q

[r]q
[a]q

= q(
a+b

2 )−(b−s)a

[
a+ b− s− 1

a− 1

]
q

[s+ 1]q
[a]q

×
∑
r

q(b−s)(r−1)

[
s+ r

s+ 1

]
q

[
a− r + b− s− 1

b− s− 1

]
q

.

Applying Lemma 3.1 to the sum above with n = b + 1, k = a − 1,
m = b− s and j = a− r gives

Parkq
(s)
a,b(q) = q(

a+b

2 )−(b−s)a

[
a+ b− s− 1

a− 1

]
q

[
a+ b

b+ 1

]
q

[s+ 1]q
[a]q

= q(
a+b

2 )−(b−s)a

[
a+ b− s− 1

a− 1

]
q

[
a+ b

a

]
q

[s+ 1]q
[b+ 1]q

.

By induction, the claim holds for all 0 ≤ a and 0 ≤ s ≤ b.
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Now we have the tools to prove our refinement of the Shuffle Conjecture
for k = 2, t = 1/q. Recall

Theorem 1.1. For all 0 ≤ s < b and 0 ≤ r ≤ a we have

Parkq
(r,s)
a,b (q) = q(

a+b

2 )−(a−r+1)(b−s)

[
a+ b− s− 1

a

]
q

[
a− r + b− s

a− r

]
q

×
[
r + s

s

]
q

[r]q
[a− r + b− s]q

and for all 0 ≤ b, 0 ≤ r ≤ a we have

Parkq
(r,b)
a,b (q) = χ(a = r) q(

a+b

2 )
[
a+ b

a

]
q

.

Proof. Note that when all large cars are on the main diagonal (i.e. when
s = b) all small cars must be on the diagonal as well. Hence if r < a,

Parkq
(r,b)
a,b = 0. When r = a, we have that

Parkq
(a,b)
a,b = q(

a+b

2 )
[
a+ b

a

]
q

by an observation similar to that of (4.3). Note that this is not a special
case of Theorem 1.1 as we assumed that s < b.

We will break the proof of Theorem 1.1 into two cases depending on
whether r = a or r < a.

When r = a, (4.2) and Proposition 1.1 give

Parkq
(a,s)
a,b (q) = q(s+a)(a+b)−(s+a+1

2 )−1

[
s+ r

s

]
q

×
b−s∑
h=1

[
a+ h− 1

h

]
q

Parkq
(h−1)
0,b−s−1(q)

= q(s+a)(a+b)−(s+a+1

2 )−1

[
s+ a

s

]
q

×
b−s∑
h=1

[
a+ h− 1

h

]
q

q(
b−s−1

2 )χ(b− s− 1 = h− 1)

= q(
a+b

2 )−(b−s)

[
s+ a

s

]
q

[
a+ b− s− 1

b− s

]
q

and this is the desired specialization of Theorem 1.1. Note that the last
equality is simply due to the fact that
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(s+ a)(a+ b)−
(
s+ a+ 1

2

)
− 1 +

(
b− s− 1

2

)
=

(
a+ b

2

)
− (b− s)

which can be directly verified by expanding both sides.

Now suppose that r < a. Then by (4.1) and Proposition 1.1

Parkq
(r,s)
a,b (q) = q(s+r)(a+b)−(s+r+1

2 )−1

[
s+ r

s

]
q

×
∑
h

[
r + h− 1

h

]
q

Parkq
(h−1)
a−r,b−s−1(q)

= q(s+r)(a+b)−(s+r+1

2 )−1

[
s+ r

s

]
q

∑
h

[
r + h− 1

h

]
q

× q(
a−r+b−s−1

2 )−(b−s−h)(a−r)

[
a− r + b− s− 1

a− r

]
q

×
[
a− r + b− s− h− 1

a− r − 1

]
q

[h]q
[b− s]q

= q(
a+b

2 )−(a−r+1)(b−s)

[
s+ r

s

]
q

[
a− r + b− s

a− r

]
q

× [r]q
[a− r + b− s]q

∑
h

q(h−1)(a−r)

[
r + h− 1

h− 1

]
q

×
[
a− r + b− s− h− 1

a− r − 1

]
q

.

Applying Lemma 3.1 with n = a, k = b− s− 1, m = r+1 and j = h− 1
gives

Parkq
(r,s)
a,b (q) = q(

a+b

2 )−(a−r+1)(b−s)

[
s+ r

s

]
q

[
a− r + b− s

a− r

]
q

× [r]q
[a− r + b− s]q

[
a+ b− s− 1

a

]
q

as desired, and our proof of Theorem 1.1 is now complete.

Note that the result of summing over r in the formulas of Theorem 1.1
agrees with the formulas of Theorem 4.1 by yet another application of
Lemma 3.1. This computation is left for the reader. However, we cannot

use these methods to find a nice closed form for
∑b

s=0 Parkq
(r,s)
a,b . Computer
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experimentation reveals that this polynomial is not even necessarily a ratio
of q-analogs and powers of q.

It remains to show that Theorem 1.1 is indeed a refinement of the Shuf-
fle Conjecture in the case k = 2 and t = 1/q. Conveniently, this can be
accomplished using Lemma 3.1 one last time.

Theorem 1.2. For a ≥ 0 and b ≥ 0,

(4.4)
∑
s

Parkq
(s)
a,b =

q(
a

2)+(
b

2)

[a+ b+ 1]q

[
a+ b+ 1

a

]
q

[
a+ b+ 1

b

]
q

.

Proof. When a = 0, we have already observed that the only possible Parking
Function occurs when b = s so that

∑
s

Parkq
(s)
0,b = q(

b

2)

which is the desired specialization of (4.4).
Suppose that a > 0 and b ≥ 0. Then by (4.1) we have

∑
s

Parkq
(s)
a,b =

∑
s

q(
a+b

2 )−(b−s)a

[
a+ b

a

]
q

[
a+ b− s− 1

a− 1

]
q

[s+ 1]q
[b+ 1]q

=
q(

a+b

2 )−ab

[a+ b+ 1]q

[
a+ b+ 1

a

]∑
s

qas
[
a+ b− s− 1

a− 1

]
q

[
s+ 1

1

]
q

.

Now applying Lemma 3.1 with n = a + 1, m = a, k = b and j = b − s
gives

∑
s

Parkq
(s)
a,b =

q(
a+b

2 )−ab

[a+ b+ 1]q

[
a+ b+ 1

a

][
a+ b+ 1

a+ 1

]
q

=
q(

a

2)+(
b

2)

[a+ b+ 1]q

[
a+ b+ 1

a

]
q

[
a+ b+ 1

b

]
q

.

which completes our proof.

In particular, this formula gives a q-analogue of the previously well-
studied Narayana numbers. As a special case, it gives an explicit formula
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for the specialization of a q, t-analogue of the Narayana numbers introduced

in [5] when t = 1/q. Thus this paper gives a refinement and a completely

combinatorial proof of a formula first calculated using symmetric symmetric

function theory in [11].

Open Question: As mentioned in Section 1, this result is a refinement of

an earlier algebraic formula,

Parkqt
(s)
a,b+1(q, t) = 〈Δha

Eb+1,s , ea+b+1〉

in [11] at t = 1/q. Different algebraic specializations of this formula, ex-

pressed using modified Hall-Littlewood polynomials, were established in [10].

It would be interesting to consider whether these new specializations had a

similarly nice refinement at t = 1/q.
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