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Cyclic permutations realized by signed shifts

Kassie Archer and Sergi Elizalde
∗

The periodic (ordinal) patterns of a map are the permutations
realized by the relative order of the points in its periodic orbits. We
give a combinatorial characterization of the periodic patterns of an
arbitrary signed shift, in terms of the structure of the descent set of
a certain cyclic permutation associated to the pattern. Signed shifts
are an important family of one-dimensional dynamical systems that
includes shift maps and the tent map as particular cases. Defined as
a function on the set of infinite words on a finite alphabet, a signed
shift deletes the first letter and, depending on its value, possibly
applies the complementation operation on the remaining word. For
shift maps, reverse shift maps, and the tent map, we give exact
formulas for their number of periodic patterns. As a byproduct
of our work, we recover results of Gessel–Reutenauer and Weiss–
Rogers and obtain new enumeration formulas for pattern-avoiding
cycles.
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1. Introduction

1.1. Background and motivation

Permutations realized by the orbits of a map on a one-dimensional inter-
val have received a significant amount of attention in the last few years [2].
These are the permutations given by the relative order of the elements of
the sequence obtained by successively iterating the map, starting from any
point in the interval. On the one hand, understanding these permutations
provides a powerful tool to distinguish random from deterministic time se-
ries, based on the remarkable fact [9] that every piecewise monotone map
has forbidden patterns, i.e., permutations that are not realized by any orbit.
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Permutation-based tests for this purpose have been developed in [4, 5]. On
the other hand, the set of permutations realized by a map (also called allowed
patterns) is closed under consecutive pattern containment. This gives rise to
enumerative questions about pattern-avoiding permutations whose answers
provide information about the associated dynamical systems. For example,
determining the asymptotic growth of the number of allowed patterns of a
map reveals its so-called topological entropy, an important measure of the
complexity of the system.

Among the dynamical systems most commonly studied from the perspec-
tive of forbidden patterns are shifts, and, more generally, signed shifts [1].
Signed shifts form a large family of maps that includes the tent map, which is
equivalent to the logistic map in terms of forbidden patterns. As we will see,
signed shifts have a simple discrete structure which makes them amenable
to a combinatorial approach, yet they include many important chaotic dy-
namical systems.

Permutations realized by shifts were first considered in [3] and later
characterized and enumerated in [15]. More recently, permutations realized
by the more general β-shifts have been studied in [16]. For the logistic map,
some properties of their set of forbidden patterns were given in [17].

If, instead of considering an arbitrary initial point in the domain of the
map, we restrict our attention to periodic points, the permutations realized
by the relative order of the entries in the corresponding orbits (up until the
first repetition) are called periodic patterns. In the case of continuous maps,
Sharkovskii’s theorem [23] gives a beautiful characterization of the possible
periods of these orbits. More refined results that consider which periodic
patterns are forced by others are known for continuous maps [10–12, 20, 22].
In an equivalent form, periodic orbits of the tent map were studied in [28]
in connection to bifurcations of stable periodic orbits in a certain family of
quadratic maps. However, little is known when the maps are not continuous,
as is the case for shifts and for most signed shifts.

This paper’s subject of study is periodic patterns of signed shifts. Our
main result is a characterization of the periodic patterns of an (almost)
arbitrary signed shift, given in Theorem 2.1. For some particular cases of
signed shifts we obtain exact enumeration formulas: the number of periodic
patterns of the tent map is given in Theorem 3.4, recovering a formula of
Weiss and Rogers [28], and the number of periodic patterns of the (unsigned)
shift map is given in Theorem 3.8. For the reverse shift, which is not cov-
ered in our main theorem, formulas for the number of periodic patterns,
which depend on the residue class of n mod 4, are given in Sections 3.3
and 3.4.
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An interesting consequence of our study of periodic patterns is that we
obtain new results (and some old ones) regarding the enumeration of cyclic
permutations that avoid certain patterns. These are described in Section 4.

1.2. Periodic patterns

Given a linearly ordered set X and a map f : X → X, consider the sequence
{f i(x)}i≥0 obtained by iterating the function starting at a point x ∈ X. If
there are no repetitions among the first n elements of this sequence, called
the orbit of x, then we define the pattern of length n of f at x to be

Pat(x, f, n) = st(x, f(x), f2(x), . . . , fn−1(x)),

where st is the reduction operation that outputs the permutation of [n] =
{1, 2, . . . , n} whose entries are in the same relative order as n entries in the
input. For example, st(3.3, 3.7, 9, 6, 0.2) = 23541. If f i(x) = f j(x) for some
0 ≤ i < j < n, then Pat(x, f, n) is not defined. The set of allowed patterns
of f is

A(f) = {Pat(x, f, n) : n ≥ 0, x ∈ X}.

We say that x ∈ X is an n-periodic point of f if fn(x) = x but f i(x) �= x
for 1 ≤ i < n, and in this case the set {f i(x) : 0 ≤ i < n} is called an
n-periodic orbit. If x is an n-periodic point, the permutation Pat(x, f, n) is
denoted Π(x, f), and is called the periodic pattern of f at x. Let

Pn(f) = {Π(x, f) : x ∈ X is an n-periodic point of f},

and let P(f) =
⋃

n≥0 Pn(f) be the set of periodic patterns of f . For a permu-
tation π = π1π2 . . . πn ∈ Sn, let [π] = {πiπi+1 . . . πnπ1 . . . πi−1 : 1 ≤ i ≤ n}
denote the set of cyclic rotations of π, which we call the equivalence class of
π. It is clear that if π ∈ P(f), then [π] ⊂ P(f). Indeed, if π is the periodic
pattern at a point x, then the other permutations in [π] are realized at the
other points in the periodic orbit of x. Thus it is convenient to define the set
Pn(f) = {[π] : π ∈ Pn(f)}, consisting of the equivalence classes of periodic
patterns of f of length n. We will be interested in finding the cardinality of
this for certain maps f , which we denote pn(f) = |Pn(f)| = |Pn(f)|/n.

Given linearly ordered sets X and Y , two maps f : X → X and g : Y →
Y are said to be order-isomorphic if there is an order-preserving bijection
φ : X → Y such that φ◦f = g◦φ. In this case, Pat(x, f, n) = Pat(φ(x), g, n)
for every x ∈ X and n ≥ 1. In particular, A(f) = A(g) and P(f) = P(g).
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Figure 1: The graphs of Mσ for σ = +−, σ = + + +, σ = − − −− and
σ = ++−−+, respectively.

1.3. Signed shifts

Let k ≥ 2 be fixed, and let Wk be the set of infinite words s = s1s2 . . . over
the alphabet {0, 1, . . . , k − 1}. Let <lex denote the lexicographic order on
these words. We use the notation s[i,∞) = sisi+1 . . ., and s̄i = k− 1− si. If q
is a finite word, qm denotes concatenation of q with itself m times, and q∞

is an infinite periodic word.
Fix σ = σ0σ1 . . . σk−1 ∈ {+,−}k. Let T+

σ = {t : σt = +} and T−
σ = {t :

σt = −}, and note that these sets form a partition of {0, 1, . . . , k − 1}. We
give two definitions of the signed shift with signature σ, and show that they
are order-isomorphic to each other.

The first definition, which we denote by Σ′
σ, is the map Σ′

σ : (Wk, <lex) →
(Wk, <lex) defined by

Σ′
σ(s1s2s3s4 . . .) =

{
s2s3s4 . . . if s1 ∈ T+

σ ,

s̄2s̄3s̄4 . . . if s1 ∈ T−
σ .

The order-preserving transformation

φk : (Wk, <lex) → ([0, 1], <)

s1s2s3s4 . . . 	→
∑

i≥0 sik
−i−1

can be used to show (see [1]) that Σ′
σ is order-isomorphic to the piecewise

linear function Mσ : [0, 1] → [0, 1] defined for x ∈ [ tk ,
t+1
k ), for each 0 ≤ t ≤

k − 1, as

Mσ(x) =

{
kx− t if t ∈ T+

σ ,

t+ 1− kx if t ∈ T−
σ .

As a consequence, the allowed patterns and the periodic patterns of Σ′
σ are

the same as those of Mσ, respectively. A few examples of the function Mσ

are pictured in Figure 1.
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We next give another definition of the signed shift that will be more
convenient when studying its periodic patterns. Let ≺σ be the linear order
on Wk defined by s = s1s2s3 . . . ≺σ t1t2t3 . . . = t if one of the following
holds:

1. s1 < t1,
2. s1 = t1 ∈ T+

σ and s2s3 . . . ≺σ t2t3 . . ., or
3. s1 = t1 ∈ T−

σ and t2t3 . . . ≺σ s2s3 . . . .

Equivalently, s ≺σ t if, letting j ≥ 1 be the smallest such that sj �= tj , either
c := |{1 ≤ i < j : si ∈ T−

σ }| is even and sj < tj , or c is odd and sj > tj .
The signed shift is the map Σσ : (Wk,≺σ) → (Wk,≺σ) defined simply by
Σσ(s1s2s3s4 . . .) = s2s3s4 . . . .

To show that the two definitions of the signed shift as Σσ and Σ′
σ are

order-isomorphic, consider the order-preserving bijection ψσ : (Wk,≺σ) →
(Wk, <lex) that maps a word s = s1s2s3 . . . to the word a = a1a2a3 . . . where

ai =

{
si if |{j < i : sj ∈ T−

σ }| is even,
s̄i if |{j < i : sj ∈ T−

σ }| is odd.

It is easy to check that ψσ ◦ Σσ = Σ′
σ ◦ ψσ, and so P(Σσ) = P(Σ′

σ). Using
the definition of the signed shift as Σσ, it is clear that its n-periodic points
are the periodic words in Wk with period n, that is, words of the form s =
(s1s2s3 . . . sn)

∞ where s1s2 . . . sn is primitive (sometimes called aperiodic),
that is, not a concatenation of copies of a strictly shorter word. We denote
by Wk,n the set of periodic words in Wk with period n, and by Wk,n the
set of n-periodic orbits, where each orbit consists of the n shifts of an n-
periodic word. For example, if σ = +−−, then s = (00110221)∞ ∈ W3,8 is
an 8-periodic point of Σσ, and Π(s,Σσ) = 12453786.

If σ = +k, then ≺σ is the lexicographic order <lex, and Σσ is called
the k-shift. When σ = −k, the map Σσ is called the reverse k-shift. When
σ = +−, the map Σσ is the well-known tent map.

1.4. Pattern avoidance and the σ-class

Let Sn denote the set of permutations of [n]. We write permutations in
one line notation as π = π1π2 . . . πn ∈ Sn. We say that τ ∈ Sn contains
ρ ∈ Sm if there exist indices i1 < i2 < · · · < im such that st(τi1τi2 . . . τim) =
ρ1ρ2 . . . ρm. Otherwise, we say that τ avoids ρ. We denote by Av(ρ) the
set of permutations avoiding ρ, and we define Av(ρ(1), ρ(2), . . . ) analogously
as the set of permutations avoiding all the patterns ρ(1), ρ(2), . . . . A set of
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permutations A is called a (permutation) class if it is closed under pattern
containment, that is, if a τ ∈ A and τ contains ρ, then ρ ∈ A . Sets of the
form Av(ρ(1), ρ(2), . . . ) are permutation classes. For example, Av(12) is the
class of decreasing permutations.

Given classes A0,A1, . . . ,Ak−1, their juxtaposition, denoted [A0 A1 . . .
Ak−1], is the set of permutations that can be expressed as concatenations
α0α1 . . . αk−1 where st(αt) ∈ At for all 0 ≤ t < k. For example, [Av(21)
Av(12)] is the set of unimodal permutations, i.e., those π ∈ Sn satisfying
π1 < π2 < · · · < πj > πj+1 > · · · > πn for some 1 ≤ j ≤ n. The juxtaposition
of permutation classes is again a class, and as such, it can be characterized
in terms of pattern avoidance. For example, [Av(21) Av(12)] = Av(213, 312)
(see [24]). Atkinson [7] showed that if At can be characterized by avoidance of
a finite set of patterns for each t, then the same is true for [A0 A1 . . . Ak−1].

Let σ = σ0σ1 . . . σk−1 ∈ {+,−}k as before. In order to characterize
the periodic patterns of Σσ, we define a class Sσ of permutations, called
the σ-class, which also appeared in [6, 8]. Let Sσ be the juxtaposition
[A0 A1 . . . Ak−1] where, for 0 ≤ t < k,

At =

{
Av(21) if σt = +,

Av(12) if σt = −.

For example, S+− is the class of unimodal permutations, and S++ is the
class ofGrassmannian permutations, i.e., those with at most one descent. Let
Sσ
n = Sσ∩Sn. Some examples of elements in S+−− = [Av(21)Av(12)Av(12)]

are the permutations 3 5 8 9 11 7 6 1 12 10 4 2 and 2 5 9 10 11 8 4 3 1 12 7 6, drawn
in Figure 2. Note that the empty permutation belongs to Av(21) and to
Av(12), so one trivially has S+−− ⊂ S+−+−, for example.

If τ ∈ Sσ
n , a σ-segmentation of τ is a sequence 0 = e0 ≤ e1 ≤ · · · ≤

ek = n satisfying that each segment τet+1 . . . τet+1
is increasing if t ∈ T+

σ and
decreasing if t ∈ T−

σ . By definition, permutations in Sσ are precisely those
that admit a σ-segmentation.

We denote by Cn (respectively, Cσ, Cσ
n) the set of cyclic permutations in

Sn (respectively, Sσ, Sσ
n ). In Figure 2, the permutation on the right is in Cσ

while the permutation on the left is not. It will be useful to define the map

Sn → Cn
π 	→ π̂,

where if π = π1π2 . . . πn in one-line notation, then π̂ = (π1, π2, . . . , πn) in
cycle notation, that is, π̂ is the cyclic permutation that sends π1 to π2, π2
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Figure 2: Two permutations in Sσ, where σ = +−−, and their cycle struc-
ture. The permutation on the left has σ-segmentations 0 ≤ 4 ≤ 8 ≤ 12 and
0 ≤ 5 ≤ 8 ≤ 12.

to π3, and so on. Writing π̂ = π̂1π̂2 . . . π̂n in one-line notation, we have that

π̂πi
= πi+1 for 1 ≤ i ≤ n, with the convention that πn+1 := π1. For example,

if π = 17234856, then π̂ = 73486125.

The map π 	→ π̂ also plays an important role in [15]. Note that all

the elements in the set [π] of cyclic rotations of π are mapped to the same

element π̂ ∈ Cn. Thus, letting Sn = {[π] : π ∈ Sn}, this map induces a

bijection θ between Sn and Cn, defined by θ([π]) = π̂.

2. Description of periodic patterns of the signed shift

The main theorem of this paper is the following characterization of the

periodic patterns of the signed shift Σσ, except in the case of the reverse

shift. Throughout the paper we assume that k ≥ 2.

Theorem 2.1. Let σ ∈ {+,−}k, σ �= −k. Then π ∈ P(Σσ) if and only if

π̂ ∈ Cσ.

An equivalent restatement of this theorem, whose proof will require a

few lemmas, is that θ restricts to a bijection between Pn(Σσ) and Cσ
n . The

following lemma describes some conditions satisfied by the periodic patterns

of Σσ, proving the forward direction of Theorem 2.1. For convenience, we will

use the notation ΠΣσ
(s) or Πσ(s) instead of Π(s,Σσ). Thus, for σ ∈ {+,−}k,

Πσ is a surjective map from Wk,n to P(Σσ). If π ∈ Sn, we will say that a

word s1s2 . . . sn is π-monotone if sa ≤ sb whenever πa < πb.
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Lemma 2.2. Let σ ∈ {+,−}k be arbitrary, let π ∈ Pn(Σσ), and let s =
(s1 . . . sn)

∞ ∈ Wk,n be such that π = Πσ(s). For 1 ≤ t ≤ k, let dt = |{i ∈
[n] : si < t}|, and let d0 = 0. The following statements hold:

1. The word s1s2 . . . sn is π-monotone, that is, si = t if and only if dt <
πi ≤ dt+1.

2. If dt < πi < πj ≤ dt+1, then πi+1 < πj+1 if t ∈ T+
σ , and πi+1 > πj+1

if t ∈ T−
σ , where we let πn+1 := π1.

3. The sequence d0, d1, . . . , dk is a σ-segmentation of π̂. In particular,
π̂ ∈ Cσ.

Proof. Since Πσ(s) = π, it is clear for all a, b ∈ [n], πa < πb implies sa ≤ sb,
from where part 1 follows. To prove part 2, suppose that dt < πi < πj ≤
dt+1, and so s[i,∞) ≺σ s[j,∞). By part 1, we have si = sj = t. If t ∈ T+

σ ,
then s[i+1,∞) ≺σ s[j+1,∞), and so πi+1 < πj+1. Similarly, if t ∈ T−

σ , then
s[j+1,∞) ≺σ s[i+1,∞), and so πi+1 > πj+1.

Now let 0 ≤ t < k, and suppose that the indices j such that sj = t
are j1, . . . , jm, ordered in such a way that πj1 < πj2 < · · · < πjm , where
m = dt+1−dt. Then part 1 implies that πj� = dt−1+� for 1 ≤ � ≤ m, and part
2 implies that πj1+1 < πj2+1 < · · · < πjm+1 if t ∈ T+

σ , and πj1+1 > πj2+1 >
· · · > πjm+1 if t ∈ T−

σ . Using that πj�+1 = π̂πj�
= π̂dt+�, this is equivalent to

π̂dt+1 < π̂dt+2 < · · · < π̂dt+m if t ∈ T+
σ , and π̂dt+1 > π̂dt+2 > · · · > π̂dt+m if

t ∈ T−
σ . Note that dt +m = dt+1, so this condition states that d0, d1, . . . , dk

is a σ-segmentation of π̂. Since π̂ is a cyclic permutation, this proves that
π̂ ∈ Cσ.

The next three lemmas will be used in the proof of the backward direc-
tion of Theorem 2.1.

Lemma 2.3. Let σ ∈ {+,−}k be arbitrary, let π ∈ Sn, and suppose that
0 = e0 ≤ e1 ≤ · · · ≤ ek = n is a σ-segmentation of π̂. Suppose that et <
πi < πj ≤ et+1 for some 1 ≤ i, j ≤ n. Then πi+1 < πj+1 if t ∈ T+

σ , and
πi+1 > πj+1 if t ∈ T−

σ , where we let πn+1 := π1.

Proof. Since et < πi < πj ≤ et+1, both π̂πi
and π̂πj

lie in the segment
π̂et+1 . . . π̂et+1

. If t ∈ T+
σ , this segment is increasing, so πi+1 = π̂πi

< π̂πj
=

πj+1. The argument is analogous if t ∈ T−
σ .

It is important to note that for any π ∈ Sn and any sequence 0 = e0 ≤
e1 ≤ · · · ≤ ek = n, there is a unique π-monotone word s1s2 . . . sn such that
|{i ∈ [n] : si < t}| = et for every t. This word is defined by letting si = t
whenever et < πi ≤ et+1. We say that s1s2 . . . sn is the π-monotone word
induced by e0, e1, . . . , ek.
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Lemma 2.4. Let σ ∈ {+,−}k be arbitrary, and let π ∈ Sn be such that
π̂ ∈ Cσ. Take any σ-segmentation of π̂, and let s1 . . . sn be the π-monotone
word induced by it. Let s = (s1s2 . . . sn)

∞. If 1 ≤ i, j ≤ n are such that
πi < πj, then either s[i,∞) = s[j,∞) or s[i,∞) ≺σ s[j,∞). In particular, if
s1 . . . sn is primitive, then Πσ(s) = π.

Proof. Suppose that πi < πj . If s[i,∞) �= s[j,∞), let a ≥ 0 be the smallest
such that si+a �= sj+a, and let h = |{0 ≤ � ≤ a− 1 : s� ∈ T−

σ }|. If h is even,
then Lemma 2.3 applied a times shows that πi+a < πj+a. Since si+a �= sj+a,
we must then have si+a < sj+a, because of π-monotonicity. Thus, s[i,∞) ≺σ

s[j,∞) by definition of ≺σ, since the word sisi+1 . . . si+a−1 = sjsj+1 . . . sj+a−1

has an even number of letters in T−
σ . Similarly, if h is odd, then Lemma 2.3

shows that πi+a > πj+a. Since si+a �= sj+a, we must have si+a > sj+a, and
thus s[i,∞) ≺σ s[j,∞) by definition of ≺σ.

If s1 . . . sn is primitive, the case s[i,∞) = s[j,∞) can never occur when i �=
j, and so πi < πj if and only if s[i,∞) ≺σ s[j,∞). It follows that Πσ(s) = π.

Lemma 2.5. Let σ ∈ {+,−}k be arbitrary. If σ = −k, additionally assume
that n �= 2 mod 4. Let π ∈ Sn be such that π̂ ∈ Cσ. Then there exists a
σ-segmentation of π̂ such that the π-monotone word s1 . . . sn induced by it is
primitive, and the word s = (s1 . . . sn)

∞ satisfies Πσ(s) = π. Furthermore,
if σ = +k or σ = −k, then every σ-segmentation of π̂ has this property.

Proof. Since π̂ ∈ Cσ, it admits some σ-segmentation. Pick one, say 0 = e0 ≤
e1 ≤ · · · ≤ ek = n, and let s1 . . . sn be the π-monotone word induced by it.
In this proof we take the indices of π mod n, that is, we define πi+jn = πi
for i ∈ [n].

Suppose that s1 . . . sn is not primitive, so it can be written as qm for
some m ≥ 2 and some primitive word q with |q| = r = n/m. Then, si = si+r

for all i. Let g = |{i ∈ [r] : si ∈ T−
σ }|. Fix i, and let t = si = si+r. Because

of the way that s1 . . . sn is defined, we must have et < πi, πi+r ≤ et+1, so we
can apply Lemma 2.3 to this pair.

Suppose first that g is even. If πi < πi+r, then applying Lemma 2.3 r
times we get πi+r < πi+2r, since the inequality involving πi+� and πi+r+�

switches exactly g times as � increases from 0 to r. Starting with i = 1
and applying this argument repeatedly, we see that if π1 < π1+r, then π1 <
π1+r < π1+2r < · · · < π1+(m−1)r < π1+mr = π1, which is a contradiction. A
symmetric argument shows that if π1 > π1+r, then π1 > π1+r > π1+2r >
· · · > π1+(m−1)r > π1+mr = π1.

It remains to consider the case that g is odd. If m is even and m ≥ 4,
then letting q′ = qq we have s1s2 . . . sn = (q′)

m

2 . Letting r′ = |q′| = 2r and
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g′ = |{i ∈ [2r] : si ∈ T−
σ }| = 2g, the same argument as above using r′ and g′

yields a contradiction. If m is odd, suppose without loss of generality that
π1 < π1+r. Note that applying Lemma 2.3 r times to the inequality πi < πi+r

(respectively πi > πi+r) yields πi+r > πi+2r (respectively πi+r < πi+2r) in
this case, since the inequality involving πi+� and πi+r+� switches an odd
number of times. Consider two cases:

• If π1 < π1+2r, then Lemma 2.3 applied repeatedly in blocks of 2r
times yields π1 < π1+2r < π1+4r < · · · < π1+(m−1)r. Applying now
Lemma 2.3 r times starting with π1 < π1+(m−1)r gives π1+r > π1+mr =
π1, which contradicts the assumption π1 < π1+r.

• If π1 > π1+2r, applying Lemma 2.3 r times we get π1+r < π1+3r, and by
repeated application of the lemma in blocks of 2r times it follows that
π1+r < π1+3r < π1+5r < · · · < π1+(m−2)r < π1+mr = π1, contradicting
again the assumption π1 < π1+r.

The only case left is when g is odd and m = 2, that is, when s1s2 . . . sn =
q2 and q has an odd number of letters in T−

σ . Note that this situation does
not happen when σ = +k (since in this case g = 0) and, although it can
happen when σ = −k, in this case we would have that T−

σ = {0, 1, . . . , k−1},
and so n = 2r = 2g = 2 mod 4, which we are excluding in the statement of
the theorem.

Thus, we can assume that there exists some 1 ≤ � < k such that σ�−1σ�
is either +− or −+. We will show that there is a σ-segmentation 0 = e′0 ≤
e′1 ≤ · · · ≤ e′k = n of π̂ such that the π-monotone word s′1s

′
2 . . . s

′
n induced

by it is primitive.
Suppose that σ�−1σ� = +− (the case σ�−1σ� = −+ is very similar). Then

π̂e�−1+1 < · · · < π̂e� and π̂e�+1 > · · · > π̂e�+1
. If π̂e� < π̂e�+1 (respectively,

π̂e� > π̂e�+1), let e
′
� := e� + 1 (respectively, e′� := e� − 1), and e′t := et for all

t �= �. Clearly e′0, e
′
1, . . . , e

′
k is a σ-segmentation of π̂. Its induced π-monotone

word s′1 . . . s
′
n differs from the original word s1s2 . . . sn = q2 by one entry,

making the number of �s that appear in s′1 . . . s
′
n be odd instead of even.

Thus, s′1 . . . s
′
n can no longer be written as (q′)2 for any q′, so it is primitive

by the above argument.
We have shown that there is always a σ-segmentation of π̂ such that the

π-monotone word induced by it is primitive. Denote this word by s1 . . . sn,
and let s = (s1 . . . sn)

∞. Now Lemma 2.4 shows that Πσ(s) = π.

We can now combine the above lemmas to prove our main theorem.

Proof of Theorem 2.1. If π ∈ P(Σσ), then π̂ ∈ Cσ by part 3 of Lemma 2.2.
Conversely, π ∈ Sn is such that π̂ ∈ Cσ, then the word s constructed in
Lemma 2.5 satisfies Πσ(s) = π, and so π ∈ P(Σσ).
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For σ = −k, the same proof yields the following weaker result.

Proposition 2.6. Let σ = −k. If π ∈ Pn(Σσ), then π̂ ∈ Cσ
n . Additionally,

the converse holds if n �= 2 mod 4.

In Section 3.4, when we enumerate the periodic patterns of the reverse
shift, we will see exactly how many patterns the converse fails for when
n �= 2 mod 4.

We end this section describing the effect (also mentioned in [1]) of revers-
ing σ on the allowed patterns of Σσ. Define the reversal of σ = σ0σ1 . . . σk−1

to be σR = σk−1 . . . σ1σ0. If π ∈ Sn, then the complement of π is the per-
mutation πc where πc

i = n+ 1− πi for 1 ≤ i ≤ n.

Proposition 2.7. For every σ ∈ {+,−}k, π ∈ A(Σσ) if and only if πc ∈
A(ΣσR), and π ∈ P(Σσ) if and only if πc ∈ P(ΣσR).

Proof. Given s ∈ Wk, let s̃ ∈ Wk be the word whose ith letter is s̃i = k−1−si
for all i. For the first statement, it is enough to show that Pat(s,Σσ, n) = π
if and only if Pat(s̃,ΣσR) = πc. This will follow if we show that for words s
and t, s ≺σ t if and only if t̃ ≺σR s̃. To prove this claim, let j be the first
position where s and t differ. Then j is also the first position where s̃ and t̃
differ, and sj < tj if and only if s̃j > t̃j . By definition, si ∈ T−

σ if and only
if s̃i ∈ T−

σR , from where the claim follows.
Since s is periodic of period n if and only if s̃ is as well, the result for

periodic patterns holds as well.

Proposition 2.7 can be stated more generally for any function f : [0, 1] →
[0, 1] as follows. If we define g : [0, 1] → [0, 1] by g(x) = 1 − f(1 − x), we
see by induction on i that gi(x) = 1 − f i(1 − x) for i ≥ 1. It follows that
Pat(x, g, n) = Pat(1 − x, f, n)c for all x ∈ [0, 1], and so f and g have the
same number of allowed and periodic patterns.

3. Enumeration for special cases

For particular values of σ, we can give a formula for the number of periodic
patterns of Σσ. This is the case when σ = +− (equivalently, when σ = −+),
σ = +k, and σ = −k, for any k ≥ 2. Recall that pn(Σσ) = |Pn(Σσ)| is the
number of equivalence classes [π] of periodic patterns of Σσ.

Lemma 3.1. For any σ ∈ {+,−}k with k ≥ 2, the number of n-periodic
orbits of Σσ is

(1) |Wk,n| = Lk(n) =
1

n

∑
d|n

μ(d)k
n

d ,

where μ denotes the Möbius function.
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Wk,n Pn(Σσ)

Wk,n Pn(Σσ) Cσ
n

Πσ

π 	→ π̂

Πσ θ

Figure 3: Some maps used in Section 3. The map from Wk,n to Wk,n maps
each periodic point to its corresponding periodic orbit, and the map from
Pn(Σσ) to Pn(Σσ) maps each permutation π to its equivalence class [π].
The map Πσ (equivalently, Πσ) is surjective by definition, but in general
not injective. By Theorem 2.1 and Proposition 2.6, the map θ restricts to a
bijection between Pn(Σσ) and Cσ

n , unless σ = −k and n = 2 mod 4.

Proof. Recall that Wk,n is the set of n-periodic orbits of Σσ, and that each
such orbit consists of the n shifts of an n-periodic point s = (s1s2 . . . sn)

∞ ∈
Wk,n, where s1s2 . . . sn is primitive. Thus, |Wk,n| is the number of primitive
words of length n over a k-letter alphabet up to cyclic rotation, which is
well-known (see [13]) to equal the formula in the statement.

In some of the proofs in this section, it will be useful to refer to the
diagram in Figure 3, which summarizes some of the maps involved. If σ ∈
{+,−}k, we denote by Πσ (or ΠΣσ

) the map fromWk,n to Pn(Σσ) that sends
the periodic orbit of s ∈ Wk,n to the equivalence class [π], where π = Πσ(s).
This map is clearly well defined.

The following lemmas will also be needed when counting periodic pat-
terns of shifts and reverse shifts.

Lemma 3.2. Suppose that σ = +k, or that σ = −k and n �= 2 mod 4. Let
π ∈ Pn(Σσ) (equivalently, by Theorem 2.1 and Proposition 2.6, π̂ ∈ Cσ

n),
and let s = (s1 . . . sn)

∞ ∈ Wk,n. Then s satisfies Πσ(s) = π if and only if
s1 . . . sn is the π-monotone word induced by some σ-segmentation of π̂.

Proof. If Πσ(s) = π, then by Lemma 2.2, s1 . . . sn is the π-monotone word
induced by the σ-segmentation d0, d1, . . . , dk, where dt = |{i ∈ [n] : si <
t}|. Conversely, given any σ-segmentation e0, e1, . . . , ek of π̂, then the last
statement in Lemma 2.5 implies that the π-monotone word s1 . . . sn induced
by it satisfies Πσ((s1 . . . sn)

∞) = π.

3.1. The tent map

We denote the tent map by Λ = Σ+−. Recall that Λ is order-isomorphic to
the map on the unit interval whose graph appears on the left of Figure 3.
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The characterization of the periodic patterns of Λ follows from Theorem 2.1,

noticing that permutations in the class [Av(21) Av(12)] are precisely uni-

modal permutations.

Corollary 3.3. π ∈ P(Λ) if and only if π̂ is unimodal.

The proof of the next theorem, which gives a formula for the number

of periodic patterns of the tent map, is closely related to a construction

of Weiss and Rogers [28] aimed at counting unimodal cyclic permutations,

even though the notion of periodic patterns of a map had not yet been

developed.

Theorem 3.4. For n ≥ 1,

pn(Λ) =
1

2n

∑
d|n

d odd

μ(d)2
n

d .

Proof. Let On be the set of binary words s = (s1 . . . sn)
∞ ∈ W2,n where

the primitive word s1 . . . sn has an odd number of ones. We will show that

the map ΠΛ : W2,n → Pn(Λ) restricts a bijection between On and Pn(Λ).

We will prove that for each π ∈ Pn(Λ) there are either one or two elements

s ∈ W2,n such that ΠΛ(s) = π, and that exactly one of them is in On.

Fix π ∈ Pn(Λ), and recall from Corollary 3.3 that π̂1 < π̂2 < · · · < π̂m >

π̂m+1 > · · · > π̂n for some m. Let s = (s1 . . . sn)
∞ ∈ W2,n be such that

ΠΛ(s) = π, and let d = |{1 ≤ i ≤ n : si = 0}|. By part 3 of Lemma 2.2,

we have π̂1 < π̂2 < · · · < π̂d and π̂d+1 > π̂d+2 > · · · > π̂n. It follows that

d = m or d = m−1, corresponding to the two +−-segmentations of π̂. Since

s1 . . . sn is π-monotone by part 1 of Lemma 2.2, the words corresponding

to these two possibilities for d differ only in one position (specifically, in sj ,

where j is such that πj = m). In general, as shown in the proof of Lemma 2.5,

the word s1 . . . sn induced by a +−-segmentation of π̂ may not be primitive.

However, this can only happen when n is even and s1 . . . sn = q2, in which

case s1 . . . sn would have an even number of ones. Thus, among the two

possibilities for d, the one in which s1 . . . sn has an odd number of ones

guarantees that this word is primitive, and so s ∈ On and ΠΛ(s) = π.

To find |On| we use the Möbius inversion formula. Let a(n) be the num-

ber of primitive binary words of length n with an odd number of ones, and

note that a(n) = |On| = |Pn(Λ)|. Let b(n) be the number of binary words

(not necessarily primitive) of length n with an odd number of ones. It is well

known that b(n) = 2n−1. Every such word can be written as s = qd, where
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q is primitive and has an odd number of ones, and d is an odd number that

divides n. It follows that

b(n) =
∑
d|n

d odd

a(n/d) =
∑
d|n

n/d odd

a(d).

Writing n = 2rm, where m is odd, and letting br(m) = b(2rm) and ar(m) =

a(2rm), the above formula becomes

br(m) = b(2rm) =
∑
d|m

a(2rd) =
∑
d|m

ar(d).

Thus, by Möbius inversion,

ar(m) =
∑
d|m

μ(d)br(m/d),

which is equivalent to

a(n) =
∑
d|m

μ(d)b(n/d) =
∑
d|n

d odd

μ(d)b(n/d) =
∑
d|n

d odd

μ(d)2n/d−1.

It follows that

pn(Λ) =
1

n
a(n) =

1

2n

∑
d|n

d odd

μ(d)2n/d.

The proof of Theorem 3.4, in combination with Corollary 3.3, shows

that the map θ ◦ ΠΛ : W2,n → C+−
n is a bijection between primitive binary

necklaces (words up to cyclic rotation) with an odd number of ones and

unimodal cyclic permutations.

Corollary 3.5. For n ≥ 1,

pn(Σ−+) =
1

2n

∑
d|n

d odd

μ(d)2
n

d .

Proof. This follows immediately from Proposition 2.7 and Theorem 3.4.
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3.2. The k-shift

Recall that the k-shift is the map Σσ where σ = +k. Let us denote this

map by Σk for convenience. The second picture in Figure 3 shows the graph

of a map on the unit interval that is order-isomorphic to Σ3. The allowed

patterns of the k-shift were characterized and enumerated by Elizalde [15],

building up on work by Amigó et al. [3].

In this section, we describe and enumerate the periodic patterns of the

k-shift. Denote the descent set of π ∈ Sn by Des(π) = {i ∈ [n − 1] : πi >

πi+1}, and by des(π) = |Des(π)| the number of descents of π. In the case

of the k-shift, Theorem 2.1 states that π ∈ P(Σk) if and only if π̂ is a

cyclic permutation that can be written as a concatenation of k increasing

sequences. The following corollary follows from this description.

Corollary 3.6. π ∈ P(Σk) if and only if des(π̂) ≤ k − 1.

In other words, θ gives a bijection between Pn(Σk) and permutations in

Cn with at most k−1 descents. It will be convenient to define, for 1 ≤ i ≤ n,

C(n, i) = |{τ ∈ Cn : des(τ) = i− 1}|.

We start by giving a formula for the number of periodic patterns of the

binary shift. Recall the formula for Lk(n) given in Eq. (1).

Theorem 3.7. For n ≥ 2,

pn(Σ2) = C(n, 2) = L2(n).

Proof. When n ≥ 2, there are no permutations in Cn with no descents. By

Proposition 2.6, the map θ gives a bijection between P(Σ2) and C++
n = {τ ∈

Cn : des(τ) = 1}, so pn(Σ2) = C(n, 2).

Next we show that the map ΠΣ2
: W2,n → Pn(Σ2) is a bijection, and

therefore so is the map ΠΣ2
: W2,n → Pn(Σ2) (see Figure 3), which im-

plies that pn(Σ2) = L2(n) by Lemma 3.1. By definition, the map ΠΣ2
:

W2,n → Pn(Σ2) is surjective, so we just need to show that it is injective

as well. Let π ∈ Pn(Σ2), and let s = (s1 . . . sn)
∞ ∈ W2,n be such that

ΠΣ2
(s) = π. By Lemma 3.2, s1 . . . sn is the π-monotone word induced by

some ++-segmentation of π̂. Since π̂ has one descent, there is only one such

segmentation, so s is uniquely determined.

For k ≥ 3, we have the following result.
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Theorem 3.8. For k ≥ 3 and n ≥ 2,

pn(Σk)− pn(Σk−1) = C(n, k) = Lk(n)−
k−1∑
i=2

(
n+ k − i

k − i

)
C(n, i).

Proof. By Corollary 3.6, π ∈ Pn(Σk)\Pn(Σk−1) if and only if des(π̂) = k−1,
and so θ is a bijection between Pn(Σk) \ Pn(Σk−1) and n-cycles with k − 1
descents, from where C(n, k) = pn(Σk)− pn(Σk−1).

To prove the recursive formula for C(n, k), we find the cardinality of
Wk,n in two ways. On one hand, this number equals Lk(n) by Lemma 3.1.
On the other hand, consider the map ΠΣk

: Wk,n → Pn(Σk), which is
surjective, but in general not injective. We can obtain |Wk,n| by adding the
cardinalities of the preimages of the elements of Pn(Σk) under this map.

For fixed π ∈ Pn(Σk), let us count how many words s ∈ Wk,n sat-
isfy ΠΣk

(s) = π (equivalently, how many orbits in Wk,n are mapped to
[π] by ΠΣk

). By Lemma 3.2, this number is equal to the number of +k-
segmentations of π̂. If des(π̂) = i − 1, it is a simple exercise to show that
there are

(
n+k−i
k−i

)
such segmentations 0 = e0 ≤ e1 ≤ · · · ≤ ek = n, since

Des(π̂) has to be a subset of {e1, . . . , ek−1}.
By Corollary 3.6, for each 2 ≤ i ≤ k, the number of equivalence classes

[π] ∈ Pn(Σk) where des(π̂) = i− 1 is C(n, i). It follows that

Lk(n) =

k∑
i=2

(
n+ k − i

k − i

)
C(n, i),

which is equivalent to the stated formula.

It is clear from Theorem 3.8 that for n ≥ 2,

pn(Σk) =

k∑
i=2

C(n, i).

Let us show an example that illustrates how, in the above proof, the words
s ∈ Wk,n with ΠΣk

(s) = π are constructed for given π. Let k = 5, and
let π = 165398427 ∈ P9(Σ5). Then π̂ = 679235148, which has descent set
Des(π̂) = {3, 6}. The +5-segmentation with e1 = 3, e2 = 6, e3 = e4 = 9
induces the π-monotone word s1 . . . s9 = 011022102. The +5-segmentation
with e1 = 2, e2 = 3, e3 = 6, e4 = 7 induces s1 . . . s9 = 022144203.

We conclude by mentioning that the second equality in Theorem 3.8 also
follows from a result of Gessel and Reutenauer [19, Theorem 6.1], which is
proved using quasi-symmetric functions.
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3.3. The reverse k-shift, when n �= 2 mod 4

The reverse k-shift is the map Σσ where σ = −k. We denote this map by
Σ−
k in this section. The third picture in Figure 3 shows the graph of a map

on the unit interval that is order-isomorphic to Σ−
4 . Denote the ascent set

of π ∈ Sn by Asc(π) = {i ∈ [n− 1] : πi < πi+1}, and by asc(π) = |Asc(π)| =
n− 1− des(π) the number of ascents of π.

Proposition 2.6 gives a partial characterization of the periodic patterns
of Σ−

k . For patterns of length n �= 2 mod 4, it states that π ∈ Pn(Σ
−
k ) if and

only if π̂ can be written as a concatenation of k decreasing sequences. The
next corollary follows from this description. The case n = 2 mod 4 will be
discussed in Section 3.4.

Corollary 3.9. Let π ∈ Sn, where n �= 2 mod 4. Then π ∈ P(Σ−
k ) if and

only if asc(π̂) ≤ k − 1.

To enumerate periodic patterns of Σ−
k of length n �= 2 mod 4, we use an

argument very similar to the one we used for Σk. For 1 ≤ i ≤ n, let

C ′(n, i) = |{τ ∈ Cn : asc(τ) = i− 1}|.

By definition, we have C ′(n, i) = C(n, n − i + 1). The following result is
analogous to Theorem 3.7 for the reverse binary shift.

Theorem 3.10. For n ≥ 3 with n �= 2 mod 4,

pn(Σ
−
2 ) = C ′(n, 2) = L2(n).

Proof. Since n ≥ 3, there are no permutations in Cn with no ascents. By
Theorem 2.1, the map θ gives a bijection between P(Σ−

2 ) and C−−
n = {τ ∈

Cn : asc(τ) = 1}, so pn(Σ
−
2 ) = C ′(n, 2).

Next we show that the map ΠΣ−
2
: W2,n → Pn(Σ

−
2 ) is a bijection, and

therefore so is the map ΠΣ−
2
: W2,n → Pn(Σ

−
2 ), which implies that pn(Σ

−
2 ) =

L2(n) by Lemma 3.1. As in the proof of Theorem 3.7, it is enough to show
that ΠΣ−

2
is injective. Let π ∈ Pn(Σ

−
2 ), and let s = (s1 . . . sn)

∞ ∈ W2,n

be such that ΠΣ−
2
(s) = π. By Lemma 3.2, s1 . . . sn is the π-monotone word

induced by some −−-segmentation of π̂. Since π̂ has one ascent, there is
only one such segmentation, so s is uniquely determined.

Theorem 3.11. For n ≥ 3 with n �= 2 mod 4 and k ≥ 3,

pn(Σ
−
k )− pn(Σ

−
k−1) = C ′(n, k) = Lk(n)−

k−1∑
i=2

(
n+ k − i

k − i

)
C ′(n, i).
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Proof. This proof is analogous to that of Theorem 3.8. By Corollary 3.9,
π ∈ Pn(Σ

−
k ) \ Pn(Σ

−
k−1) if and only if asc(π̂) = k− 1, and so θ is a bijection

between Pn(Σ
−
k ) \ Pn(Σ

−
k−1) and cyclic permutations with k − 1 ascents,

from where C ′(n, k) = pn(Σ
−
k )− pn(Σ

−
k−1).

For the second equality of the statement, we find the cardinality of Wk,n

in two ways. By Lemma 3.1, this number equals Lk(n). On the other hand,
since the map ΠΣ−

k
: Wk,n → Pn(Σ

−
k ) is surjective, but in general not

injective, we can obtain |Wk,n| by adding the cardinalities of the preimages
of the elements of Pn(Σ

−
k ) under this map.

For fixed π ∈ Pn(Σ
−
k ), we count how many words s ∈ Wk,n satisfy

ΠΣ−
k
(s) = π (equivalently, how many orbits in Wk,n are mapped to [π] by

ΠΣ−
k
). By Lemma 3.2, this number is equal to the number of −k-segmenta-

tions of π̂. If asc(π̂) = i− 1, there are
(
n+k−i
k−i

)
such segmentations 0 = e0 ≤

e1 ≤ · · · ≤ ek = n, since Asc(π̂) has to be a subset of {e1, . . . , ek−1}.
By Corollary 3.9, for each 2 ≤ i ≤ k, the number of equivalence classes

[π] ∈ Pn(Σ
−
k ) where asc(π̂) = i− 1 is C ′(n, i). It follows that

Lk(n) =

k∑
i=2

(
n+ k − i

k − i

)
C ′(n, i),

which is equivalent to the stated formula.

Combining Theorems 3.7, 3.8, 3.10, and 3.11, we obtain the following.

Corollary 3.12. For n �= 2 mod 4 and 2 ≤ k ≤ n,

C(n, k) = C ′(n, k).

This equality is equivalent to the symmetry C(n, k) = C(n, n − 1 − k),
which is not obvious from the recursive formula in Theorem 3.8. Corol-
lary 3.12 also follows from a more general result of Gessel and Reutenauer
[19, Theorem 4.1], which states that if n �= 2 mod 4, then for any D ⊆ [n−1],

(2) |{τ ∈ Cn : Des(τ) = D}| = |{τ ∈ Cn : Asc(τ) = D}|.

The proof in [19] involves quasisymmetric functions. Even though we do not
know of a direct bijection proving Eq. (2), a bijection between {τ ∈ Cn :
Des(τ) ⊆ D} and {τ ∈ Cn : Asc(τ) ⊆ D} appears in [26, Cor. 3.1]. Our
construction can be used to give another bijection δ between these two sets
as follows.
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Given τ ∈ Cn such that Des(τ) ⊆ D = {d1, d2, . . . , dk−1} (where d1 <

· · · < dk−1), let π ∈ Sn be such that π̂ = τ . Let s = (s1 . . . sn)
∞ ∈ Wk,n

be defined by si = t if dt < πi ≤ dt+1, for 1 ≤ i ≤ n, where we let d0 = 0

and dk = n (in our terminology, s1s2 . . . sn is the π-monotone word induced

by the +k-segmentation 0, d1, . . . , dk−1, n of π̂). Let π′ = ΠΣ−
k
(s), and define

δ(τ) = π̂′ = θ([π′]).

Proposition 3.13. When n �= 2 mod 4, the map δ defined above is a bijec-

tion between {τ ∈ Cn : Des(τ) ⊆ D} and {τ ∈ Cn : Asc(τ) ⊆ D}.

Proof. Let D = {d1, d2, . . . , dk−1}, where 0 < d1 < · · · < dk−1 < n, and let

WD
k,n be the set of words w = (w1 . . . wn)

∞ ∈ Wk,n satisfying |{i ∈ [n] : wi <

t}| = dt for all t.

First note that the map δ is well defined, in the sense that δ(τ) does not

depend on the choice of π ∈ Sn with π̂ = τ . This is because any other choice

of an element in [π] would produce a word in the same periodic orbit as s, and

so its image under ΠΣ−
k
would still be a permutation in [π′]. The map δ can

thus be viewed as a composition δ = θ◦δ′◦θ−1, where δ′ maps [π] to [π′], with
π′ as defined above. To conclude that δ is a bijection, we will show that the

map π 	→ π′ is a bijection between PD
n (Σk) := {π ∈ Pn(Σk) : Des(π̂) ⊆ D}

and PD
n (Σ−

k ) := {π′ ∈ Pn(Σ
−
k ) : Asc(π̂′) ⊆ D}.

Let us first show that the map ΠΣk
: Wk,n → Pn(Σk) restricts to a

bijection between WD
k,n and PD

n (Σk). Given w ∈ WD
k,n, it is clear that

ΠΣk
(w) ∈ PD

n (Σk) by part 3 of Lemma 2.2. To see that the map is surjective,

suppose that π ∈ PD
n (Σk), and let s be as defined above (that is, s1s2 . . . sn

is the π-monotone word induced by the +k-segmentation 0, d1, . . . , dk−1, n

of π̂). Then s ∈ WD
k,n and ΠΣk

(s) = π by Lemma 3.2. Besides, since this

is the only segmentation of π̂ whose induced π-monotone word is in WD
k,n,

Lemma 3.2 implies that s is unique, and so the map is injective.

Similarly, the map ΠΣ−
k

: Wk,n → Pn(Σ
−
k ) restricts to a bijection be-

tween WD
k,n and PD

n (Σ−
k ). Given w ∈ WD

k,n, part 3 of Lemma 2.2 shows

that ΠΣ−
k
(w) ∈ PD

n (Σ−
k ). To see that the map is surjective, suppose that

π′ ∈ PD
n (Σ−

k ), and let s = (s1s2 . . . sn)
∞, where s1s2 . . . sn is the π′-monotone

word induced by the −k-segmentation 0, d1, . . . , dk−1, n of π̂′. Then s ∈ WD
k,n

and Πrsk(s) = π′ by Lemma 3.2. Since this is the only segmentation of π̂′

whose induced π′-monotone word is in WD
k,n, the word s is unique, and so

the map is injective.
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Finally, the map π 	→ π′ is a bijection because it is the composition of
the above two bijections, as shown in this diagram:

PD
n (Σk)

ΠΣk←− WD
k,n

Π
Σ
−
k−→ PD

n (Σ−
k )

π 	→ s 	→ π′.

Let us see an example of the bijection δ for k = 3 and n = 9. Let
D = {3, 7}, and suppose that τ = 245378916. Then we get

π = 124357968 	→ s = (001011212)∞ 	→ π′ = 317265849

	→ δ(τ) = π̂′ = 761985243.

In this case Des(τ) = Asc(δ(τ)), but this is not the case in general.
Another consequence of Theorem 3.11 is that, when n �= 2 mod 4,

pn(Σ
−
k ) =

k∑
i=2

C ′(n, k) = pn(Σk).

3.4. The reverse k-shift, when n = 2 mod 4

Most of the results in Section 3.3 do not apply to the case n = 2 mod 4.
However, when k = 2, part of Theorem 3.10 can be adapted as follows.

Proposition 3.14. For n ≥ 3 with n = 2 mod 4,

pn(Σ
−
2 ) = L2(n).

Proof. We show that the map ΠΣ−
2

: W2,n → Pn(Σ
−
2 ) is a bijection, and

therefore so is the map ΠΣ−
2

: W2,n → Pn(Σ
−
2 ). As in the proof of The-

orem 3.7, it is enough to show that ΠΣ−
2

is injective. Let π ∈ Pn(Σ
−
2 ),

and note that asc(π̂) = 1 by Proposition 2.6, since there are no cycles
with no descents of length n ≥ 3. Suppose that s = (s1 . . . sn)

∞ ∈ W2,n

is such that ΠΣ−
2
(s) = π. If d is the number of zeros in s1 . . . sn, we have

by part 3 of Lemma 2.2 that 0 ≤ d ≤ n is a −−-segmentation of π̂, and
so Asc(π̂) = {d}. It follows by part 1 of Lemma 2.2 the word s1 . . . sn is
uniquely determined.

The other equality in Theorem 3.10 does not hold when n = 2 mod 4. In
this case, Corollary 3.9 fails in that there are certain permutations π ∈ Sn

with asc(π̂) ≤ k − 1 that are not periodic patterns of Σ−
k . In other words,
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{π ∈ Sn : asc(π̂) ≤ k−1} \ Pn(Σ
−
k ) {ρ ∈ Sr : asc(ρ̂) = k−1}

B={[π] ∈ Sn : asc(π̂) ≤ k−1} \ Pn(Σ
−
k ) {[ρ] ∈ Sr : asc(ρ̂) = k−1} {ρ̂ ∈ Cr : asc(ρ̂) = k−1}

C−k

n \ θ(Pn(Σ
−
k ))

ϕ

ρ �→ ρ̂

ϕ

∼
θ
∼

θ �

Figure 4: The maps used in the proof of Theorem 3.20. Dashed arrows denote
maps sending permutations to their equivalence classes of cyclic rotations.
The symbols ∼ indicate bijections.

the map θ : Pn(Σ
−
k ) → C−k

n is not surjective. To obtain a formula for pn(Σ
−
k )

for arbitrary k, which will be given in Theorem 3.20, we need to count the
elements that are not in the image of this map.

For the remainder of this section, we set r := n/2. We will first introduce
a map ϕ from {π ∈ Sn : asc(π̂) ≤ k−1}\Pn(Σ

−
k ) to {ρ ∈ Sr : asc(ρ̂) = k−1},

which will be used to give a bijection ϕ between the sets C−k
n \θ(Pn(Σ

−
k )) and

{[ρ] ∈ Sr : asc(ρ̂) = k− 1}. A diagram of the maps used in this construction
appears in Figure 4.

Lemma 3.15. Let π ∈ Sn be such that π �∈ Pn(Σ
−
k ) and asc(π̂) ≤ k − 1.

Then asc(π̂) = k − 1.

Proof. For every −k-segmentation 0 = e0 ≤ · · · ≤ ek = n of π̂, the π-
monotone word s1 . . . sn induced by it is not primitive, because otherwise,
by Lemma 2.4, it would satisfy ΠΣ−

k
((s1 . . . sn)

∞) = π, contradicting that

π /∈ Pn(Σ
−
k ). In fact, this word has to be of the form s1 . . . sn = q2, and so

all the ei are even, since each letter appears an even number of times. But if
asc(π̂) < k− 1, then π̂ would have −k-segmentations without this property,
since any sequence 0 = e0 ≤ · · · ≤ ek = n such that Asc(π̂) ⊆ {e1, . . . , ek−1}
would be a −k-segmentation of π̂.

Let us now define

ϕ : {π ∈ Sn : asc(π̂) ≤ k − 1} \ Pn(Σ
−
k ) → {ρ ∈ Sr : asc(ρ̂) = k − 1}.

Let π be a permutation in the domain. By Lemma 3.15, we have that
asc(π̂) = k− 1. Let s1 . . . sn be the π-monotone word induced by the unique
−k-segmentation of π̂. This word cannot be primitive, because if it were,
then Lemma 2.4 would imply that ΠΣ−

k
((s1 . . . sn)

∞) = π, contradicting

that π /∈ Pn(Σ
−
k ). In fact, the proof of Lemma 2.5 shows that the only way
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for this word not to be primitive is if s1 . . . sn = q2 for some primitive word q
of length r. Let ρ = ΠΣ−

k
(q∞), and define ϕ(π) = ρ. The next lemma verifies

that the image of ϕ is indeed contained in {ρ ∈ Sr : asc(ρ̂) = k − 1}.

Lemma 3.16. Let ρ = ϕ(π) as defined above. Then asc(ρ̂) = k − 1.

Proof. Let s = (s1 . . . sn)
∞ = q∞. Denote the k−1 ascents of π̂ by e1, e2, . . . ,

ek−1, in increasing order, so that 0 = e0 < e1 < · · · < ek = n is the
unique −k-segmentation of π̂. Note that et must be even for all t, since
each letter appears an even number of times in q2. Letting et = 2dt, we
will show that dt ∈ Asc(ρ̂) for 1 ≤ t ≤ k − 1. Since k − 1 is an upper
bound on asc(ρ̂) by Proposition 2.6, it will follow that asc(ρ̂) = k − 1. Let
i, j be such that πi = et and πj = et + 1. By construction of s1 . . . sn,
we have sj = si + 1, and so i �= j mod r. Taking indices modn, we have
πi+1 = π̂πi

= π̂et < π̂et+1 = π̂π̂j
= πj+1. Thus, s[i+1,∞) ≺σ s[j+1,∞), because

by Lemma 2.4, for any 1 ≤ a, b ≤ n such that a �= b mod r and πa < πb, we
must have s[a,∞) ≺σ s[b,∞). By construction, the word s1s2 . . . sn = q2 has
et = 2dt entries less than or equal to si, namely those entries s� for which
π� ≤ πi. By Lemma 2.4, these entries satisfy s[�,∞) �σ s[i,∞), with equality
only when � = i mod r. Thus, letting i′ = i mod r, the word s1s2 . . . sr = q
has dt entries s� such that s[�,∞) �σ s[i′,∞), and so ρi′ = dt. Similarly,
s1s2 . . . sn has n−2dt entries s� satisfying s[j,∞) �σ s[�,∞), with equality only
when � = j mod r. Thus, letting j′ = j mod r, the word q has r−dt entries s�
such that s[j′,∞) �σ s[�,∞), and so ρj′ = dt+1. Since s[i+1,∞) ≺σ s[j+1,∞), we
have ρi+1 < ρj+1, taking indices mod r. It follows that ρ̂dt

= ρ̂ρi
= ρi+1 <

ρj+1 = ρ̂ρj
= ρ̂dt+1, so dt ∈ Asc(ρ̂) as claimed.

In the next two lemmas we show that ϕ is a 2-to-1 map, that is, each
ρ ∈ Sr with asc(ρ̂) = k − 1 has precisely two preimages under ϕ.

Lemma 3.17. The map ϕ is surjective.

Proof. Let ρ ∈ Sr be such that asc(ρ̂) = k − 1. For convenience, define
ρi+r = ρi for 1 ≤ i ≤ r. Define a permutation π ∈ Sn by

(3) πi =

{
2ρi − 1 if i is odd,

2ρi if i is even.

Note that this construction produces a permutation because r is odd. We
will show that asc(π̂) = k − 1, π /∈ Pn(Σ

−
k ), and ϕ(π) = ρ.

We claim that for 1 ≤ i ≤ r, we have π̂2i−1 = 2ρ̂i and π̂2i = 2ρ̂i − 1.
Indeed, letting 1 ≤ j ≤ r be such that ρj = i, it follows from the definition
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of π that π̂2i−1 = π̂2ρj−1 = 2ρj+1 = 2ρ̂ρj
= 2ρ̂i, and similarly π̂2i = π̂2ρj

=
2ρj+1 − 1 = 2ρ̂ρj

− 1 = 2ρ̂i − 1. It is clear from this description of π̂ that
asc(π̂) = asc(ρ̂) = k − 1. Moreover, if Asc(ρ̂) = {d1, d2, . . . , dk−1}, then
Asc(π̂) = {2d1, 2d2, . . . , 2dk−1}, which determines the unique −k-segmenta-
tion of π̂.

Now suppose that there is some word w ∈ Wk,n such that π = ΠΣ−
k
(w).

By part 1 of Lemma 2.2, w1w2 . . . wn is a π-monotone word having 2dt+1−2dt
copies of the letter t for 0 ≤ t ≤ k − 1 (with the convention d0 = 0 and
dk = r). Since by construction {πi, πi+r} = {2ρi, 2ρi − 1} for all 1 ≤ i ≤ r,
a π-monotone word with an even number of copies of each letter satisfies
w1w2 . . . wn = (w1w2 . . . wr)

2, and so it is not primitive, which contradicts
that w ∈ Wk,n. It follows that π /∈ Pn(Σ

−
k ).

To show that ϕ(π) = ρ, let s1s2 . . . sn be the π-monotone word induced
by the unique −k-segmentation 0 ≤ 2d1 ≤ 2d2 ≤ · · · ≤ 2dk−1 ≤ n of π̂.
By definition, ϕ(π) = ΠΣ−

k
((s1 . . . sr)

∞). On the other hand, s1s2 . . . sr is a
ρ-monotone word having dt+1 − dt copies of t for each 0 ≤ t ≤ k − 1, and
thus induced by the −−-segmentation 0 ≤ d1 ≤ d2 ≤ · · · ≤ dk−1 ≤ r of ρ̂.
Lemma 3.2 implies that ΠΣ−

k
((s1 . . . sr)

∞) = ρ.

Here is an example to illustrate the proof of the above lemma. Suppose
that ρ = 14523 ∈ P5(Σ

−
2 ). Then Equation (3) yields π = 18 9 4 5 2 7 10 3 6. In

this case, ρ̂ = 43152 and π̂ = 87 6 5 2 1 10 9 4 3. It is easy to check that indeed
ϕ(π) = ρ, since the π-monotone word induced by the −−-segmentation
0 ≤ 6 ≤ 10 of π̂ is 0110001100, and ΠΣ−

2
((01100)∞) = 14523.

Lemma 3.18. Every ρ ∈ Sr with asc(ρ̂) = k − 1 has exactly two preimages
under ϕ.

Proof. Since ϕ is surjective by Lemma 3.17, we can take π such that ϕ(π) =
ρ. By construction of ϕ, we have ϕ(πr+1 . . . πnπ1 . . . πr) = ρ as well. We will
show that there are no other elements in {π ∈ Sn : asc(π̂) = k−1}\Pn(Σ

−
k )

whose image by ϕ is ρ.
Since r is odd and asc(ρ̂) = k − 1, Proposition 2.6 implies that ρ ∈

Pr(Σ
−
k ), so there is some s ∈ Wk,r such that ρ = ΠΣ−

k
(s). In fact, such

an s is unique by Lemma 3.2, because it is the ρ-monotone word induced
by the unique −k-segmentation of ρ̂, which we denote by 0 ≤ d1 ≤ · · · ≤
dk−1 ≤ n. Since ϕ(π) = ρ, we know that s1s2 . . . sn = (s1s2 . . . sr)

2 is the π-
monotone word induced by the unique −k-segmentation of π̂. It follows that
this segmentation must be 0 ≤ 2d1 ≤ · · · ≤ 2dk−1 ≤ n. If 1 ≤ i, j ≤ n are
such that s[i,∞) �= s[j,∞), then Lemma 2.4 implies that πi < πj if and only
if s[i,∞) ≺σ s[j,∞). It follows that ρ = st(π1 . . . πr) and ρ = st(πr+1 . . . πn).
In addition, since s[i,∞) = s[i+r,∞) and s[j,∞) = s[j+r,∞) for 1 ≤ i, j ≤ r,
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the four inequalities s[i,∞) ≺σ s[j,∞), s[i+r,∞) ≺σ s[j+r,∞), s[i+r,∞) ≺σ s[j,∞)

and s[i,∞) ≺σ s[j+r,∞) are equivalent, and so the four inequalities πi < πj ,
πi+r < πj+r, πi < πj+r, πi+r < πj must be either all true or all false. This
implies that {πi, πi+r} = {2ρi − 1, 2ρi} for 1 ≤ i ≤ r. We claim that once
the relative order of π1 and π1+r is chosen, the rest of the entries of π are
uniquely determined by induction. Indeed, having determined the relative
order of πi and πi+r, say 2ρi− 1 = πi < πi+r = 2ρi, then Lemma 2.3 implies
that πi+1 > πi+r+1, so these entries are forced to be πi+1 = 2ρi+1 and
πi+r+1 = 2ρi+1−1. Lemma 2.3 can be applied in this case because for every
1 ≤ i ≤ r, we have 2dt < πi, πi+r ≤ 2dt+1 for some 0 ≤ t ≤ k − 1, where
d0 = 0 and dk = r.

It is clear from the definition of ϕ that cyclic rotations of π lead to cyclic
rotations of s1 . . . sn, which in turn lead to cyclic rotations of ρ. If ϕ(π) = ρ,
then the n elements of [π] are mapped by ϕ to the r elements of [ρ], so
ϕ induces a map ϕ from B = {[π] ∈ Sn : asc(π̂) = k − 1} \ Pn(Σ

−
k ) to

{[ρ] ∈ Sr : asc(ρ̂) = k − 1}.
Lemma 3.19. The map ϕ : B → {[ρ] ∈ Sr : asc(ρ̂) = k − 1} is a bijection.

Proof. This follows from the construction of ϕ and the fact that ϕ is a 2-to-1
map, as proved in Lemmas 3.17 and 3.18.

We can now give a formula for the number of periodic patterns of the
reverse k-shift in terms of the number of cyclic permutations with a fixed
number of ascents.

Theorem 3.20. For n ≥ 3 with n = 2 mod 4 and k ≥ 2,

(4) pn(Σ
−
k ) =

k∑
i=2

C ′(n, i)− C ′
(
n

2
, k

)
.

Proof. By Proposition 2.6, the map θ restricts to an injection from Pn(Σ
−
k )

to C−k

n = {τ ∈ Cn : asc(τ) ≤ k − 1}. Noting that |C−k

n | =
∑k

i=2 C
′(n, i), it

follows that

pn(Σ
−
k ) =

k∑
i=2

C ′(n, i)− |C−k

n \ θ(Pn(Σ
−
k ))|.

Since θ−1(C−k

n ) = {[π] ∈ Sn : asc(π̂) ≤ k − 1}, the map θ−1 restricts to a
bijection between C−k

n \ θ(Pn(Σ
−
k )) and θ−1(C−k

n ) \ Pn(Σ
−
k ) = {[π] ∈ Sn :

asc(π̂) = k−1}\Pn(Σ
−
k ) = B. Lemma 3.19 gives a bijection between B and



Cyclic permutations realized by signed shifts 25

{[ρ] ∈ Sr : asc(ρ̂) = k − 1}, which in turn is in bijection, via θ, with the set
of cycles in Cr with k− 1 ascents. It follows that |C−k

n \ θ(Pn(Σ
−
k ))| = |B| =

C ′(r, k).

Theorem 3.20 alone does not give a practical way to compute pn(Σ
−
k )

when n = 2 mod 4, unlike Theorem 3.11 for the case n �= 2 mod 4. Note that
since n

2 �= 2 mod 4, the term C ′(n2 , k) on the right hand side of Equation (4)
can be easily computed by the recurrence in Theorem 3.11. Our next goal
is to give a recurrence to compute C ′(n, i) when n = 2 mod 4.

Theorem 3.21. For n ≥ 3 with n = 2 mod 4 and k ≥ 2,

Lk(n) =

k∑
i=2

[(
n+ k − i

k − i

)
C ′(n, i)−

(n
2 + k − i

k − i

)
C ′

(
n

2
, i

)]
.

Proof. Since Lk(n) = |Wk,n| by Lemma 3.1, it is enough to show that the
right hand side also counts n-periodic orbits of Σ−

k .

Consider the map ΠΣ−
k
: Wk,n → Pn(Σ

−
k ) ⊆ {[π] ∈ Sn : asc(π̂) ≤ k− 1}.

We can obtain |Wk,n| by adding the cardinalities of the preimages of the
elements of Pn(Σ

−
k ) under this map or, equivalently, the cardinalities of the

preimages of the elements of Pn(Σ
−
k ) under the map ΠΣ−

k
, as in the proof

of Theorems 3.8 and 3.11. However, the difference here is that not every
permutation π ∈ Sn with asc(π̂) ≤ k−1 is in the image of this map, because
when n = 2 mod 4, Corollary 3.9 does not apply.

Let π ∈ Sn be such that asc(π̂) = i − 1, where 2 ≤ i ≤ k. If s ∈ Wk,n

is such that ΠΣ−
k
(s) = π, then, by Lemma 2.2, s1s2 . . . sn is the π-monotone

word induced by some −k-segmentation 0 = e0 ≤ e1 ≤ · · · ≤ ek = n of
π̂. There are

(
n+k−i
k−i

)
such segmentations, since Asc(π̂) has to be a subset

of {e1, . . . , ek−1}. However, unlike in the proof of Theorem 3.11, it is not
the case that the π-monotone word induced by every such segmentation is
necessarily primitive. When this word is not primitive, the proof of Lemma
2.5 implies that it must be a square, i.e., a word of the form q2 for some
primitive word q of length r = n/2. We will count how many times this in-
duced word is a square. First, note that if the π-monotone word induced by
some −k-segmentation of π̂ is a square, then the π-monotone word induced
by the unique −i-segmentation of π̂ (which consists of the ascents of Asc(π̂),
and thus is a subset of any −k-segmentation) must be a square as well. It
follows that π /∈ Pn(Σ

−
i ) in this case. For each such π, any −k-segmentation

0 = e0 ≤ e1 ≤ · · · ≤ ek = n of π̂ whose induced π-monotone word is a square
must satisfy Asc(π̂) ⊆ {e1, . . . , ek−1} (by definition of −k-segmentation) and
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have all et even. Conversely, every segmentation satisfying these conditions

induces a square π-monotone word, because, as shown in the proof of The-

orem 3.20, for every 1 ≤ j ≤ r the entries πj and πj+r have consecutive

values, with the largest one being even. The number of −k-segmentations

satisfying the two conditions is
(
r+k−i
k−i

)
.

For each 2 ≤ i ≤ k, there are C ′(n, i) equivalence classes [π] ∈ Sn with

asc(π̂) = i − 1. We showed in the proof of Theorem 3.20 that C ′(r, i) of

them satisfy that π /∈ Pn(Σ
−
i ); in other words, that |{[π] ∈ Sn : asc(π̂) =

i − 1} \ Pn(Σ
−
i )| = C ′(r, i). It follows that the number of preimages under

ΠΣ−
k
of the set {[π] ∈ Sn : asc(π̂) = i− 1} is

(
n+ k − i

k − i

)
C ′(n, i)−

(
r + k − i

k − i

)
C ′(r, i).

Corollary 3.22. For n ≥ 3 with n = 2 mod 4 and k ≥ 2,

C ′(n, k) = Lk(n)−
k−1∑
i=2

[(
n+ k − i

k − i

)
C ′(n, i)−

(n
2 + k − i

k − i

)
C ′

(
n

2
, i

)]
+ C ′

(
n

2
, k

)
.

The equality C ′(n, k) = C(n, k), which holds for n �= 2 mod 4 (see Corol-

lary 3.12), is no longer valid when n = 2 mod 4. For k = 2, we get the

following relationship between cycles with one ascent and cycles with one

descent.

Corollary 3.23. For n ≥ 3,

C ′(n, 2) =

{
C(n, 2) + C(n2 , 2) if n = 2 mod 4,

C(n, 2) otherwise.

Proof. The equality C(n, 2) = C ′(n, 2) when n �= 2 mod 4 follows from

Corollary 3.12. When n = 2 mod 4, Theorems 3.7 and 3.21 imply that

C(n, 2) = L2(n) = C ′(n, 2)− C ′(n2 , 2) = C ′(n, 2)− C(n2 , 2).

For general k and n �= 2 mod 4, an intricate formula expressing C ′(n, k)
in terms of C(n, k) and C(n2 , i) for i ≤ k can be derived from Corollary 3.22.
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4. Pattern-avoiding cyclic permutations

Using Theorem 2.1, the formulas that we have found for the number of
periodic patterns of the tent map, the k-shift and the reverse k-shift have
implications to the enumeration of cyclic permutations that avoid certain
patterns.

We denote by Cn(ρ(1), ρ(2), . . . ) = Cn∩Av(ρ(1), ρ(k), . . . ) the set of cycles
of length n avoiding the patterns ρ(1), ρ(2), . . . . The enumeration of pattern-
avoiding cycles is a wide-open problem, part of its difficulty stemming from
the fact that it combines two different ways to look at permutations: in
terms of their cycle structure and in terms of their one-line notation. The
question of finding a formula for |Cn(σ)| where σ is a pattern of length 3
was proposed by Richard Stanley [25] and is still open. However, we are able
to answer some related questions in Theorem 4.1. The first formula below,
which counts unimodal cycles, was first obtained by Weiss and Rogers [28]
using methods from [21]. More generally, the cycle structure of unimodal
permutations has been studied by Gannon [18] and Thibon [27]. The other
formulas in Theorem 4.1 are new to the extent of our knowledge.

Theorem 4.1. For n ≥ 2,

|Cn(213, 312)| = |Cn(132, 231)| =
1

2n

∑
d|n

d odd

μ(d)2n/d,

|Cn(321, 2143, 3142)| = L2(n) =
1

n

∑
d|n

μ(d)2n/d,

|Cn(123, 2413, 3412)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L2(n) =
1

n

∑
d|n

μ(d)2n/d if n �= 2 mod 4,

L2(n) + L2(n/2)

=
1

n

∑
d|n

μ(d)2n/d

+
2

n

∑
d|n

2

μ(d)2n/2d if n = 2 mod 4.

Proof. The formula for |Cn(213, 312)| is a consequence of Theorem 3.4 and
Corollary 3.3, together with the fact that a permutation is unimodal if and
only if it avoids the patterns 213 and 312. The equality with |Cn(132, 231)|
follows from Corollary 3.5. The second formula follows from Theorem 3.7, us-
ing that the set of permutations with at most one descent is [Av(21)Av(21)]=
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Av(321, 2143, 3142) (see [7]). Finally, the third formula is a consequence
of Corollary 3.23 and Theorem 3.7, noting that the class of permutations
with at most one ascent is [Av(12) Av(12)] = Av(123, 2413, 3412) (see [14,
Prop. 5]).
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