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Requiring pairwise nonadjacent chords in cycles

Terry A. McKee

Let Gk be the class of graphs for which every cycle of length k or
more has at least k−3 pairwise nonadjacent chords. This makes G4

the class of chordal graphs and G5 the class of distance-hereditary
graphs. I show that k ≥ 8 implies that Gk is the class of graphs that
have circumference less than k. I also characterize G6 and G7; for
instance, a graph is in G7 if and only if every hamiltonian subgraph
of order 7 or more is 3-connected and bipartite.

Motivated by G4 ∩ G5 being the class of ptolemaic graphs, I
show that a graph is in G4 ∩ G5 ∩ G6 if and only if every order-k
hamiltonian subgraph has at least �k/2� universal vertices.
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1. Introduction

A chord of a cycle C of a graph G is an edge whose endpoints are noncon-
secutive vertices of C, and n chords are nonadjacent chords when they have
2n distinct endpoints (equivalently, when they form a matching in G). Let
V (C) denote the set of vertices of C, let |C| denote the length |V (C)| of C,
and let G[V (C)] denote the subgraph of G induced by V (C). A k-cycle is
a cycle of length k, and [v1, . . . , vk] will denote the k-cycle whose vertices
v1, . . . , vk come in that order around the cycle. An i-chord of C is an edge
whose endpoints are a distance i ≥ 2 apart along C; thus i ≤ |C|/2. An
odd chord (respectively, an even chord) is an i-chord where i is odd (even).
For an i-chord e of C, say that e and C form a cycle C ′ to mean that C ′

is one of the two cycles that have e ∈ E(C ′) ⊂ E(C) ∪ {e}; thus either
|C ′| = |C| − i + 1 or |C ′| = i + 1 (and |C| − i + 1 ≥ i + 1). Two chords ab
and cd are crossing chords of a cycle C if their endpoints a, c, b, d come in
that order around C; thus crossing chords are always nonadjacent chords.

Reference [4] has a very similar title to the present paper, as well as
a somewhat similar goal: it describes how the existence of chords in larger
cycles is related to writing cycles as sums of specific sizes of smaller cycles
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(thereby characterizing some of the same graph classes as in the present
paper). Similarly, [5] considers the number of chords that cycles have, relative
to the length of the cycles. The present paper goes in a different direction,
emphasizing pairwise nonadjacent chords instead of features such as crossing
chords that have been previously studied. Investigating such nontraditional
aspects of graphs can lead to new graph theoretic insights.

For each k ≥ 4, define Gk to be the class of all graphs in which every
cycle of length k or more has at least k − 3 pairwise nonadjacent chords.
The class G4 is precisely the class of chordal graphs, which are traditionally
defined by every cycle of length 4 or more having a chord. There are many
other characterizations in [1, 6], such as every minimal vertex separator
inducing a complete subgraph.

Theorem 1.1 and Corollary 1.1 will show that G5 is precisely the class of
distance-hereditary graphs, which are traditionally defined by the distance
between two vertices in a connected subgraph always equaling the distance
between those vertices in the entire graph. Another characterization, from [2]
(also see [1]), is that every cycle of length 5 or more has at least two crossing
chords.

Theorem 1.1 will give a characteristic property of the graphs in Gk for all
k ≥ 4, and then sections 2, 3, and 4 will characterize, respectively, G6, G7, and
all Gk with k ≥ 8. Investigating such a sequence of graph classes—especially
one whose first two classes are so well studied—emphasizes common features
of the classes as well suggesting insight into the role of pairwise nonadjacent
chords of cycles. The considerable disparity of the characterizations of the
classes Gk when k ≤ 7 stands in contrast to Theorem 4.1, which shows
that being in Gk with k ≥ 8 is equivalent to simply having circumference
less than k. This suggests that the sequence beginning with G4, G5, and G6

might be the wrong target for investigation. But the characterization of G6

will be used in section 5 to look at the alternative sequence beginning with G4

(the class of chordal graphs), G4 ∩ G5 (the class of ptolemaic graphs [1, 3]),
and G4∩G5∩G6. These increasingly stronger classes have more sophisticated
characterizations that are able to exploit the power of chordal graph theory.

Theorem 1.1. For each k ≥ 4, if every cycle of length k or more in a
graph has at least k − 3 pairwise nonadjacent chords, then each of those
chords must cross another of those chords.

Proof. Suppose k ≥ 4 and every cycle of length k or more in a graph G has
at least k−3 pairwise nonadjacent chords. Further assume C is a minimum-
length cycle of length |C| ≥ k in G that does not have k−3 pairwise nonadja-
cent chords such that each crosses another (arguing by contradiction). Thus
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Figure 1: The two ways that a k-cycle with k ≥ 6 could have three pairwise
nonadjacent chords with each one crossing another one.

k ≥ 6, since nonadjacent chords of a 4-cycle or a 5-cycle do cross. Therefore,
C has k − 3 ≥ 3 chords e1, . . . , ek−3 with 2(k − 3) distinct endpoints where
one of these chords (without loss of generality, say ek−3) does not cross any
of the other chords (e1, . . . , ek−4). Let C1 and C2 be the two cycles formed
by ek−3 and C; thus each |Ci| < |C| and each of e1, . . . , ek−4 is a chord of
C1 or of C2. Renumbering if necessary, suppose |C1| ≥ |C2| and C1 has the
chords e1, . . . , eh with 
k−4

2 � ≤ h ≤ k − 4 and C2 has any remaining edges
among eh+1, . . . , ek−4 as chords.

Suppose for the moment that h = k − 4, so that all of e1, . . . , ek−4 are
chords of C1. Their 2(k − 4) endpoints are then vertices of C1, as are also
the two endpoints of ek−3. Thus, 2k − 6 ≤ |C1| < |C| and so (since k ≥ 6)
k ≤ k + (k − 6) ≤ |C1| < |C|. Therefore, by the assumed minimality of
|C|, cycle C1 does have k − 3 pairwise nonadjacent chords such that each
crosses another. But these k − 3 chords of C1 would also be chords of C
(contradicting that C does not have k − 3 such chords).

Therefore, 
k−4
2 � ≤ h < k− 4 and the 2h ≥ k− 4 endpoints of e1, . . . , eh

are vertices of C1, as are also the two endpoints of ek−3. Thus, k−2 ≤ |C1| <
|C|. Moreover, C2 has k− 4− h ≥ 1 chords, one of which is eh+1. Let C

′ be
the cycle formed by eh+1 and C with V (C1) ⊂ V (C ′). The k − 2 (or more)
vertices of C1, together with the two endpoints of eh+1, are vertices of C ′,
and so k ≤ |C ′| < |C|. Therefore, by the assumed minimality of |C|, cycle C ′

does have k−3 pairwise nonadjacent chords such that each crosses another.
But these k−3 chords of C ′ would also be chords of C (contradicting that C
does not have k − 3 such chords).

Figure 1 illustrates the k = 6 instance of Theorem 1.1, with each of the
three pairwise nonadjacent chords a1b1, a2b2, and a3b3 of the cycle C crossing
another one of the three (C consists of the six ‘dotted’ paths between labeled
vertices, where those paths have arbitrary lengths at least 1, and there might
be additional chords of C that are not shown).
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Figure 2: Two views of the complete tripartite graph K2,2,2 �∈ G6.

Figure 3: On the left, the triangular prism; on the right, K3,3.

Crossing chords are always nonadjacent, but nonadjacent chords need

not cross. By Theorem 1.1, however, if every cycle of length 5 or more

has at least two nonadjacent chords, then these chords must cross. Using

this, Corollary 1.1 is a very simple, previously unnoticed characterization of

distance-hereditary graphs that only requires nonadjacent chords in cycles

of length 5 or more (as opposed to requiring crossing chords, as in [2]).

Corollary 1.1. A graph is distance-hereditary if and only if every cycle of

length 5 or more has two nonadjacent chords.

2. The graph class G6

Theorem 2.1 (and Theorem 3.1) will characterize Gk when k = 6 (respec-

tively, k = 7) in terms of the induced hamiltonian subgraphs of order k

or more. Figure 2 illustrates how one hamiltonian cycle can have three

pairwise-nonadjacent chords with each one crossing another one (the ‘out-

side hexagon’ on the left has the ‘horizontal’ chord crossing the two ‘vertical’

chords) while another 6-cycle (the ‘outside hexagon’ on the right) of the same

graph does not have three such chords; thus the graph shown is not in G6.

Figure 3 shows two graphs in G6 that will be important in this section.

The graph on the left is the triangular prism (isomorphic to the complement

of C6), and the graph on the right is the complete bipartite graph K3,3.
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Theorem 2.1. A graph is in G6 if and only if every induced hamiltonian
subgraph of order 6 or more either is a triangular prism or contains a K3,3

subgraph.

Proof. First suppose G ∈ G6 and assume H is a hamiltonian subgraph of
minimum order k ≥ 6 that is not a triangular prism and does not contain
a K3,3 subgraph (arguing by contradiction). Suppose C is any k-cycle of H
(so H = H[V (C)]). Let a1b1, a2b2, a3b3 be the three pairwise nonadjacent
chords of C guaranteed by G ∈ G6, say with a1b1 crossing a2b2 and with
a2b2 crossing a3b3 as in Theorem 1.1; in fact, say C is as illustrated in
Figure 1, with C partitioned into six subpaths C[a1, a2], C[a1, a3], C[a3, b2],
and C[b2, b3],C[b1, b3],C[a2, b1] in the left graph or C[b1, b2],C[b1, b3],C[a2, b3]
in the right graph (with the indicated endpoints, remembering that C might
have more than the three chords shown).

Suppose for the moment that k = |C| = 6. By assumption, H is not
a triangular prism and does not contain a K3,3 subgraph (so no 6-cycle of
H has three pairwise crossing chords). Thus H must be as shown on the
left in Figure 3 together with at least one additional edge (one additional
chord of C). Since each additional chord would have one endpoint in the
triangle a1a2b1 and the other in the triangle a3b2b3, suppose without loss
of generality that C has the chord a3b1. The 6-cycle C∗ = [a1, b1, a3, b3, b2,
a2] cannot also have the chord a1b3 (it would cross both the chords a2b2
and a3b1 in C); also C∗ cannot have both chords a1b2 and a2a3 (they would
cross each other and the chord b1b3 in the 6-cycle [a1, a3, b3, b2, a2, b1]), and
C∗ cannot have both chords a2b3 and b1b2 (they would cross each other and
the chord a1a3 in the 6-cycle [a1, a2, b2, a3, b3, b1]). These restrictions imply
that C∗ would be a 6-cycle of G without three pairwise nonadjacent chords
(contradicting G ∈ G6).

Therefore, k = |C| ≥ 7. The eight special cases below will show, without
loss of generality, that there is always a cycle C ′ that has V (C ′) ⊂ V (C) and
E(C ′) ⊂ E(C) ∪ {a1b1, a2b2, a3b3} with 6 ≤ |C ′| < |C| such that G[V (C ′)]
is not a triangular prism. Since every edge and every chord of C ′ is an edge
or chord of C as well, G[V (C ′)] would also not contain a K3,3 subgraph
(contradicting the minimality of k that was assumed in the first sentence of
this proof).

First suppose that k = |C| = 7 with {a1,b1,a2,b2,a3,b3,x} = V (C), and
consider where x might occur in the graphs H illustrated in Figure 1:

• In the graph on the left, if x is in, say, C[a1, a3], then let C ′ be the
6-cycle [a1, b1, b3, a3, b2, a2]; H[V (C ′)] is not a triangular prism since
a1 is not adjacent to a3 (otherwise, the hamiltonian subgraph H − b1
of H would contradict the assumed minimality of k).
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• In the graph on the left, if x is in, say, C[a1, a2], then let C ′ be the
6-cycle [a1,a3, b3, b2,a2, b1]; H[V (C ′)] is not a triangular prism since a1
is not adjacent to a2 (otherwise, H − b2 would contradict the assumed
minimality of k).

• In the graph on the right, if x is in, say, C[a1, a3], then let C ′ be the 6-
cycle [a1, b1, b2, a3, b3, a2]; H[V (C ′)] is not a triangular prism (whether
or not a1 is adjacent to a3).

Now suppose that k = |C| ≥ 8 with {a1,b1,a2,b2,a3,b3,x,y} ⊆ V (C), and
consider where x and y might occur in the graphs H illustrated in Figure 1:

• In the graph on the left, if x, y are on the same side of the chord a2b2
with, say, x and y both in the path π = C[a1, a2]∪C[a1, a3]∪C[a3, b2],
then let C ′ be the union of the edge a2b2 and the path π; H[V (C ′)]
is not a triangular prism, even if |C ′| = 6, since no three consecutive
vertices p, q, r of π can have a 2-chord pr (otherwise, H − q would
contradict the assumed minimality of k).

• In the graph on the left, if x, y are on different sides of the chord a2b2
with, say, x in C[a1, a2] ∪ C[a1, a3] and y in C[a2, b1] ∪ C[b1, b3], then
let C ′ be the union of the edge a3b3 and the path C[a1, a2]∪C[a1, a3]∪
C[a2, b1] ∪C[b1, b3]; H[V (C ′)] is not a triangular prism since |C ′| ≥ 7.

• In the graph on the left, if x, y are on different sides of the chord a2b2
with, say, x in C[a1, a2] and y in C[b2, b3], then let C ′ consist of the
edges a2b2 and a3b3 and the paths C[a1, a2] ∪ C[a1, a3] and C[b2, b3];
H[V (C ′)] is not a triangular prism since |C ′| ≥ 7.

• In the graph on the right, if x, y are on the same side of a chord,
say a2b2 with x and y both in in π = C[a1, a2] ∪ C[a1, a3] ∪ C[a3, b2],
then let C ′ consist of the edge a2b2 and the path π; H[V (C ′)] is not a
triangular prism, even if |C ′| = 6, since no three consecutive vertices
p, q, r of π can have a 2-chord pr (otherwise, H − q would contradict
the assumed minimality of k).

• In the graph on the right, if x, y are on different sides of each of the
chords a1b1, a2b2, a3b3 with, say, x in C[a1, a3] and y in C[b1, b3],
then let C ′ consist of the edges a1b1, a2b2 and a3b3 and the paths
C[a1, a3], C[b1, b2] and C[a2, b3]; H[V (C ′)] is not a triangular prism
since |C ′| ≥ 7.

Conversely, suppose every induced hamiltonian subgraph H of G with
order 6 or more either is a triangular prism or contains a K3,3 subgraph,
and suppose C is a hamiltonian cycle of H. If H is a triangular prism,
then the three chords of C are nonadjacent. Otherwise, assume H contains
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a subgraph H ′ ∼= K3,3 and let H◦ be the subgraph of H ′ that consists
of the chords of C that are in H ′. Since each vertex of the 3-connected
graph H ′ is on at least one edge of H◦, it takes at least three vertices of
H ′ ∼= K3,3 to cover all the edges of H◦. Therefore, the König Property of
bipartite graphs (Theorem 1.1.2 in [1]) implies that H◦ has at least three
pairwise nonadjacent edges, and these are three pairwise nonadjacent chords
of C. Therefore, G ∈ G6.

3. The graph class G7

Lemma 3.1. If k ≥ 7 and G ∈ Gk, then every cycle of G with length k or
more must in fact have length 2k − 6 or more.

Proof. If G ∈ Gk contains a cycle C with |C| ≥ k, then C must have at least
k − 3 pairwise nonadjacent chords, and so at least 2(k − 3) vertices.

Lemma 3.2. Every hamiltonian graph of order 8 in G7 is 3-connected and
bipartite.

Proof. Suppose a hamiltonian graph G ∈ G7 is spanned by an 8-cycle C =
[v1, . . . , v8]. By Lemma 3.1, G contains no 7-cycles. Let e1, e2, e3, e4 be four
pairwise nonadjacent chords of C. Cycle C cannot have a 2-chord e, since
e and C would form a 7-cycle. This leaves only three possibilities, up to
relabeling, for e1, e2, e3, e4: either two 3-chords v1v4, v5v8 and two 4-chords
v2v6, v3v7 or four 4-chords v1v5, v2v6, v3v7, v4v8 or four 3-chords v1v4, v2v7,
v3v6, v5v8. Only the third possibility can occur without a 7-cycle occurring
(namely, [v1, v2, v3, v7, v6, v5, v4] in the first possibility and [v1, v2, v3, v7, v8,
v4, v5] in the second). If C has even one additional chord that is a 4-chord
(say v1v5), then G would contain a 7-cycle (namely, [v1, v5, v4, v3, v2, v7, v8]).
Thus the only additional chords e that C can have are the four remaining 3-
chords: v1v6, v2v5, v3v8, v4v7. Therefore G[V (C)] is a 3-connected subgraph
of the complete bipartite graph K4,4 that is formed from C and all eight
3-chords of C.

Lemma 3.3. Every hamiltonian graph of order 7 or more in G7 is bipartite.

Proof. Suppose a hamiltonian graph G ∈ G7 and C is any cycle of G with
|C| ≥ 7. By Lemma 3.1, G contains no 7-cycles. Thus |C| ≥ 8, say with
pairwise nonadjacent chords e1, e2, e3, e4. If |C| = 8, then Lemma 3.2 implies
that G[V (C)] is bipartite. Therefore, assume C is a minimum length cycle
with |C| ≥ 9 such that G[V (C)] is not bipartite (arguing by contradiction).

Suppose for the moment that |C| ≥ 10 is even. Cycle C cannot have an
even i-chord e without e and C forming a cycle C ′ with |C ′| = |C| − i+1 ≥
|C|− 1

2 |C|+1 > 5 where |C ′| �= 7 is odd; thusG[V (C ′)] would not be bipartite
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and 9 ≤ |C ′| < |C| (contradicting the minimality of |C|). Therefore, every
chord of the even cycle C is an odd chord, and so all the cycles formed by a
chord e and C are even cycles. These would form a basis of even cycles for
the cycle space (contradicting that G[V (C)] is not bipartite).

Therefore, |C| ≥ 9 is odd, say with C = [v1, . . . , v|C|]. If C has an odd i-
chord e, then e and C would form a cycle C ′ with |C ′| = |C|−i+1. Therefore,
|C| > |C ′| > |C| − 1

2 |C|+ 1 ≥ 6 where |C ′| �= 7 is odd; thus G[V (C ′)] would
be nonbipartite with 9 ≤ |C ′| < |C| (contradicting the minimality of |C|).
Therefore, every chord of C is an even chord.

Suppose e′ is an even i-chord of C (so 2 ≤ i ≤ 1
2(|C| − 1)). Let C ′ and

C ′′ be the two cycles formed by e′ and C, where |C ′| = |C| − i + 1 is even
with |C| > |C ′| ≥ |C| − 1

2 |C|+ 1 ≥ 6 and where |C ′′| = i+ 1 < |C| is odd.
The only way to have |C ′| = 6, without contradicting |C ′′| �= 7 or i ≤

1
2(|C| − 1), would be to have |C| = 9 and i = 4. This would make every
chord of C be a 4-chord, and so two of e1, e2, e3, e4 would be 4-chords whose
endpoints are not consecutive around C; without loss of generality, say v1v5
and v3v7. But then those two edges together with v3v4, v4v5 and v7v8, v8v9,
v1v9 would form a 7-cycle (contradicting that C has no 7-cycles).

Therefore, the even number |C ′| satisfies 8 ≤ |C ′| < |C|. Moreover,
G[V (C ′)] is bipartite (by Lemma 3.2 if |C ′| = 8, and by the assumed mini-
mality of |C| if |C ′| > 8), and so C ′ cannot have any even chords. Since C
can only have even chords, the only chords that C ′ can possibly have are
odd chords of C ′ that are even chords of C. There are only three 3-chords
of C ′ that are even chords of C (for instance, if e = v3vj , these are v1vj and
v2vj+1 and v3vj+2). Thus, at least one of e1, e2, e3, e4 has to be a chord e′′

that is an h-chord of C ′ with odd h ≥ 5 such that e′′ and C form a cycle C∗

where |C∗| = h+ i �= 7 is odd. Therefore, G[V (C∗)] would not be bipartite
and 9 ≤ |C∗| < |C| (contradicting the minimality of |C|).
Theorem 3.1. A graph is in G7 if and only if every induced hamiltonian
subgraph of order 7 or more is 3-connected and bipartite.

Proof. First suppose G ∈ G7 and H is a hamiltonian subgraph of G of mini-
mum order h ≥ 7 such that H is not a 3-connected bipartite graph (arguing
by contradiction). Lemma 3.3 implies H ∈ G7 is bipartite. Therefore, h is
even and H is not 3-connected and so, by Lemma 3.2, h ≥ 10. Suppose C
is a cycle of H with minimum length |C| satisfying 8 ≤ |C| ≤ h.

Suppose for the moment that |C| = 8. Let C∗ be a hamiltonian h-cycle
of the 2-connected hamiltonian graph H. Since H is hamiltonian but not
3-connected, H has a separating set {a, b} ⊂ V (H) that partitions C∗ into
two a-to-b subpaths π1 and π2. Since no chord of C∗ can have one endpoint



Requiring pairwise nonadjacent chords in cycles 365

in the interior of each of π1 and π2, suppose V (C) ⊆ V (π1). Let a′ and b′

be, respectively, the neighbors of a and b along π1. By Lemma 3.2, H[V (C)]
is 3-connected and bipartite with at least twelve edges, at least one of which
is a chord e of C∗ that is not incident with any of a, b, a′, b′. The chord e and
C∗ form a cycle C∗

e that properly contains π2 where {a, b} is a separating
set of H[V (C∗

e )] and |C∗
e | ≥ 8. However, H[V (C∗

e )] would then be a bipartite
but not 3-connected graph of order |C∗

e | that satisfies 8 ≤ |C∗
e | < |C∗| = h

(contradicting the assumed minimality of h).

Next suppose that |C| = 10, say with C = [v1, . . . , v10]. Since H is
bipartite, every chord of C must be a 3-chord or a 5-chord. If C has a 3-
chord e, then e and C would form an 8-cycle (contradicting the minimality of
|C| = 10). Thus each chord of C is a 5-chord. Since G ∈ G7, cycle C

′ has four
pairwise nonadjacent 5-chords, two of which would be 5-chords whose end-
points are not consecutive around C; without loss of generality, say these are
v1v6 and v4v9. But then those two edges together with v1v2, v2v3, v3v4 and
v6v7, v7v8, v8v9 would form an 8-cycle (again contradicting the minimality
of |C| = 10).

Therefore, |C| ≥ 12. Since H ∈ G7 is bipartite, C has an odd i-chord e.
Chord e and cycle C would form a cycle C ′ that has |C ′| = |C| − i+ 1 ≥ 8
if i ∈ {3, 5} and that has |C ′| = i + 1 ≥ 8 if i ≥ 7. Either way, 8 ≤ |C ′| <
|C| = h (contradicting the minimality of |C|).

Conversely, suppose every induced hamiltonian subgraph of G with order
7 or more of G is 3-connected and bipartite. Suppose C is a cycle of G with
|C| ≥ 7 and H = G[V (C)]. Thus H is hamiltonian and bipartite, and so
|C| ≥ 8. Let H◦ be the subgraph of H that consists of just the chords of C.
Since each vertex of the 3-connected graph H is on at least one edge of H◦,
it takes at least four vertices of H to cover all the edges of H◦. Therefore,
the König Property of bipartite graphs (Theorem 1.1.2 in [1]) implies that
H◦ has at least four pairwise nonadjacent edges, and these are four pairwise
nonadjacent chords of C. Therefore, G ∈ G7.

4. The graph classes Gk for k ≥ 8

Theorem 4.1 will show how the disparity of the classes G4, G5, G6 and G7

ends at G8. Corollary 4.1 will show that their noncomparability also ends
at G8. The circumference of a graph is the length of a longest cycle in the
graph.

Theorem 4.1. If k ≥ 8, then a graph is in Gk if and only if its circumference
is less than k.
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Proof. Suppose G ∈ Gk where k ≥ 8 and assume C is a cycle of G with
minimum length |C| ≥ k (arguing by contradiction). Since G ∈ Gk, the
cycle C must have pairwise nonadjacent chords e1, . . . , ek−3. By Lemma 3.1,
|C| ≥ 2k − 6.

Suppose for the moment that |C| = 2k − 6. If e is an i-chord of C, then
e and C form a cycle of length |C| − i+ 1 = 2k − 5− i; thus k ≥ 8 and the
assumed minimality of |C| imply that i �∈ {2, . . . , k − 5}. Therefore, since
every i-chord of C must have 2 ≤ i ≤ �|C|/2� = k−3, every chord of C must
be a (k − 4)-chord or a (k − 3)-chord. If e1, . . . , ek−3 are all (k − 4)-chords,
then {e1, . . . , ek−3} contains crossing (k−4)-chords ab and cd that partition
C into subpaths C[a, c], C[b, c], C[b, d], C[a, d] with those endpoints such
that C[a, c] has length 1 and both C[a, d] and C[b, c] have length k − 5.
But then the paths C[a, d] and C[b, c] would combine with the edges ab
and cd to form a cycle C ′ with |C ′| = 2k − 8, and so with |C ′| ≥ k but
|C ′| �≥ 2k − 6 (contradicting Lemma 3.1). Therefore, e1, . . . , ek−3 cannot all
be (k−4)-chords. Similarly, e1, . . . , ek−3 cannot all be (k−3)-chords (by the
same argument, except now with C[a, c] having length 2 and both C[a, d]
and C[b, c] having length k − 5). Therefore, {e1, . . . , ek−3} contains at least
one (k − 4)-chord ab and at least (k − 3)-chord cd. Since |C| = 2(k − 3)
implies that every vertex of C is on a unique chord in {e1, . . . , ek−3}, there
are crossing chords ei = ab and ej = cd such that (using the notation above)
C[a, c] has length 1 and C[a, d] has length k− 4 and C[b, c] has length k− 5.
But then the paths C[a, d] and C[b, c] would combine with the edges ab
and cd to form a cycle C ′ with |C ′| = 2k − 7, and so with |C ′| ≥ k but
|C ′| �≥ 2k − 6 (contradicting Lemma 3.1). Therefore, |C| �= 2k − 6, and so
|C| ≥ 2k − 5.

Next suppose that |C| = 2k − 5. Note that |C| = 2(k − 3) + 1 implies
that all but one of the vertices of C are on unique chords in {e1, . . . , ek−3}.
Arguing as in the preceding paragraph, every i-chord of C must have i �∈
{2, . . . , k − 4} and must have i ≤ k − 3. Thus, every chord of C must be a
(k − 3)-chord, and so C has crossing (k − 3)-chords ab and cd where C[a, c]
has length 2 and both C[a, d] and C[b, c] have length k−5, leading to a cycle
of length 2k− 8 (contradicting Lemma 3.1). Therefore, |C| �= 2k− 5, and so
|C| ≥ 2k − 4.

Now suppose that |C| = 2k − 4. Note that |C| = 2(k − 3) + 2 implies
that all but two of the vertices of C are on unique chords in {e1, . . . , ek−3}.
Arguing as in the preceding paragraphs, every i-chord of C must have i �∈
{2, . . . , k − 3} and must have i ≤ k − 2. Thus, every chord of C must be a
(k − 2)-chord, and so C has crossing (k − 2)-chords ab and cd where C[a, c]
has length 3 and both C[a, d] and C[b, c] have length k−5, leading to a cycle
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of length 2k− 8 (contradicting Lemma 3.1). Therefore, |C| �= 2k− 4, and so
|C| ≥ 2k − 3.

Finally, suppose |C| ≥ 2k − 3 and let l = |C|. Every i-chord e of C
must have i �∈ {2, . . . , l − k + 1} (otherwise e and C would form a cycle C ′

where |C ′| = l − i + 1 with k ≤ |C ′| ≤ l − 1, contradicting the assumed
minimality of |C|). But this contradicts that every i-chord of C must have
2 ≤ i ≤ �|C|/2� ≤ l−1

2 ≤ l − k + 1 (the last inequality is equivalent to
l ≥ 2k − 3). Therefore, |C| �≥ 2k − 3.

The preceding paragraphs show that |C| �≥ 2k − 6 (contradicting
Lemma 3.1 and the assumption that |C| ≥ k).

Corollary 4.1. The inclusion Gk ⊆ Gl holds if and only if 8 ≤ k ≤ l.

Proof. If 8 ≤ k ≤ l, then then Gk ⊆ Gl by Theorem 4.1. If k > l ≥ 4, then
k ≥ 5 and the l-cycle Cl ∈ Gk (by the definition of Gk, since Cl contains
no cycle of length k or more) and Cl �∈ Gl (by the definition of Gl, since Cl

has no chords); thus Gk �⊂ Gl. The only things left to show are that Gk �⊂ Gl

when k ∈ {4, 5, 6, 7} and l > k.

• G4 �⊂ Gl when l > 4: If G is formed from the l-cycle Cl with a dis-
tinguished vertex v by inserting all the l − 3 possible chords that are
incident with v, then G ∈ G4, and yet G �∈ Gl by the definition of Gl.

• G5 �⊂ Gl when l > 5: If l = 6 and G = K2,2,2, then G ∈ G5, and yet
G /∈ Gl by the definition of Gl. If l ≥ 7 and G = Ks,s with s = 
l/2�,
then G ∈ G5, and yet G /∈ Gl by Lemma 3.1 applied to a (2s)-cycle.

• G6 �⊂ Gl when l > 6: If G = Kl, then G ∈ G6 by Theorem 2.1, and yet
G �∈ Gl by Theorem 3.1 if l = 7 and by Theorem 4.1 if l ≥ 8.

• G7 �⊂ Gl when l > 7: If G = Ks,s with s = 
l/2�, then G ∈ G7 by
Theorem 3.1, and yet G �∈ Gl by Lemma 3.1 applied to a (2s)-cycle.

5. The graph classes G4 ∩ G5 and G4 ∩ G5 ∩ G6

Since the chordal distance-hereditary graphs are precisely the ptolemaic
graphs (see [1, 3]), a graph is in G4 ∩ G5 if and only if every k-cycle has
at least �32(k − 3)� chords. Reference [5] contains examples showing that
�32(k− 3)� is optimum for G4 ∩G5 in that there exists a sequence G∗

4, G
∗
5, . . .

of graphs in G4 ∩G5 such that each G∗
k has a k-cycle with exactly �32(k− 3)�

chords. This compares with a graph being in G4 if and only if every k-cycle
has at least k − 3 chords, where k − 3 is optimum for G4.

Theorem 5.1 will similarly characterize G4∩G5∩G6 in terms of a function
f(k) that gives the number of required chords for k-cycles—and is optimum
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Figure 4: On the left, the graph K6 −K3 ∈ G4 ∩ G5 ∩ G6; on the right, the
graph K6 −K1,3 ∈ G4 ∩ G5 − G6.

for G4 ∩ G5 ∩ G6—along with a second, more elegant characterization. But
first, Corollary 5.1 will state the consequences of Theorem 2.1 for G4 ∩ G5,
and Lemma 5.1 will detail the structure of the graphs in G4 ∩ G5 ∩ G6 based
on their being chordal. The graphs shown in Figure 4 will be important in
this section.

Corollary 5.1. A graph in G4∩G5 is also in G6 if and only if every induced
hamiltonian subgraph of order 6 or more contains a K6 −K3 subgraph.

Proof. This follows from Theorem 2.1 and the observation that K6−K3 and
its order-6 supergraphs are precisely the order-6 graphs in G4 ∩ G5.

A vertex is simplicial if its neighborhood induces a complete subgraph,
and one common characterization of being chordal is that every induced
subgraph contains a simplicial vertex. In fact, a chordal graph G that is
not complete contains nonadjacent simplicial vertices; see [1, 6]. A vertex is
universal if it is adjacent to all the other vertices in the graph.

Lemma 5.1. Suppose G ∈ G4∩G5∩G6 is hamiltonian with order n ≥ 6. Let
Gn = G and, for each i ∈ {3, . . . , n − 1}, define Gi by deleting a simplicial
vertex from Gi+1.

Suppose n ≥ 6 is even and f(n) = (3n2−10n)/8. If 3 ≤ i ≤ n
2 , then Gi

∼=
Ki and Gi has i universal vertices, and every i-cycle of Gi has (i2 − 3i)/2
chords. If n

2 ≤ i ≤ n, then Gi has at least n
2 universal vertices, and every i-

cycle of Gi has at least f(n)− n−2
2 (n− i) chords. In particular, every n-cycle

of G has at least f(n) chords.
Suppose n ≥ 7 is odd and f(n) = (3n2 − 12n + 9)/8. If 3 ≤ i ≤ n−1

2 ,
then Gi

∼= Ki and Gi has i universal vertices, and every i-cycle of Gi has
(i2−3i)/2 chords. If n−1

2 ≤ i ≤ n, then Gi has at least
n−1
2 universal vertices,

and every i-cycle of Gi has at least f(n) − n−1
2 (n − 2) + n−3

2 i chords. In
particular, every n-cycle of G has at least f(n) chords.

Proof. Suppose G ∈ G4 ∩ G5 ∩ G6 is hamiltonian with order n ≥ 6, and
suppose the function f(n) and the subgraphs Gi are as in the statement of
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the theorem, noting that these Gi exist precisely because G is chordal. In

fact, since each Gi−1 results from Gi by deleting a simplicial vertex, all the

graphs G3, . . . , Gn are chordal and hamiltonian.

Suppose 3 < i ≤ n and C is an i-cycle of Gi and v is the simplicial vertex

of Gi for which Gi−1 = Gi−v. Let u and w be the two neighbors of v along C

and let C ′ be the (i−1)-cycle with edge set E(C)∪{uw}−{uv, vw}. Let v′ /∈
{u, v, w} be a second simplicial vertex of Gi with neighbors u′ and w′ along
C, and let C ′′ be the (i−1)-cycle with edge set E(C)∪{u′w′}−{u′v′, v′w′}.
Let c′ denote the number of chords that C ′ has, and let u′′ denote the number

of universal vertices x �= v that G[V (C ′′)] has, noting that xv will be an edge

or chord of C ′′ but not of C ′. Thus C has at least c′ + (u′′ − 2) + 1 chords,

where the −2 term reflects that u or w might be a universal vertex of C ′′

without uv or vw being a chord of C ′′, and the +1 term reflects that uw is

a chord of C that is neither a chord of C ′ nor incident with v. Therefore, C

has at least c′ + u′′ − 1 chords.

Case 1. n ≥ 6 is even. Argue by induction on i ∈ {3, . . . , n}. For the i = 3

basis, Gi
∼= K3 and Gi has i = 3 universal vertices, and every 3-cycle of K3

has (32 − 3 · 3)/2 = 0 chords.

If 3 < i ≤ n
2 , then the induction hypothesis implies that C has at least

c′ + u′′ − 1 ≥ [(i− 1)2 − 3(i− 1)]/2 + (i− 1)− 1 = (i2 − 3i)/2 chords; thus

Gi is complete and has i universal vertices.

If i = n
2 , then the preceding paragraph implies that C has at least

(i2 − 3i)/2 = (n2 − 6n)/8 = f(n) − n−2
2 (n − i) chords, and Gi has at least

i = n
2 universal vertices.

If n
2 < i ≤ n, then the induction hypothesis implies that C has at least

c′ + u′′ − 1 ≥ [f(n)− n−2
2 (n− (i− 1))] + n

2 − 1 = f(n)− n−2
2 (n− i) chords,

and Gi has at least u
′′ = n

2 universal vertices.

In particular, if i = n, then the preceding paragraph implies that C has

at least f(n)− n−2
2 (n− n) = f(n) chords.

Case 2. n ≥ 7 is odd. Argue by induction on i ∈ {3, . . . , n}. For the i = 3

basis, Gi
∼= K3 and Gi has i = 3 universal vertices, and every 3-cycle of K3

has (32 − 3 · 3)/2 = 0 chords.

If 3 < i ≤ n−1
2 , then the induction hypothesis implies that C has at least

c′ + u′′ − 1 ≥ [(i− 1)2 − 3(i− 1)]/2 + (i− 1)− 1 = (i2 − 3i)/2 chords; thus

Gi is complete and has i universal vertices.

If i = n−1
2 , then the preceding paragraph implies that C has at least

(i2 − 3i)/2 = (n2 − 8n + 7)/8 = f(n) − n−1
2 (n − 2) + n−3

2 i chords, and Gi

has at least i = n−1
2 universal vertices.
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If n−1
2 < i ≤ n, then the induction hypothesis implies that C has at least

c′+u′′−1 ≥ [f(n)−n−1
2 (n−2)+n−3

2 (i−1)]+n−1
2 −1 = f(n)−n−1

2 (n−2)+n−3
2 i

chords, and Gi has at least u
′′ = n−1

2 universal vertices.

In particular, if i = n, then the preceding paragraph implies that C has
at least u = n−1

2 universal vertices. Thus G has an order-n subgraph H that
consists of u degree-n vertices and n−u independent degree-u vertices, and
so H will have

(
u
2

)
+ u(n − u) = (n2 − 4n + 1)/8 edges. Since u < n − u

and H is spanned by a Ku,n−u subgraph, H is not hamiltonian. Since G is
hamiltonian, G must have at least one additional edge beyond H, and so G
has at least (n2 − 4n+ 1)/8 + 1 = f(n) + n edges. Therefore, the n-cycle C
has at least f(n) chords.

Theorem 5.1. Each of the following is equivalent to being in G4 ∩ G5 ∩ G6:

(1) For every k, every k-cycle C has at least 1
2�

k
2��

3
2(k − 3)� chords, and

G[V (C)] �∼= K6 −K1,3.
(2) For every k, every induced hamiltonian subgraph of order k has at least

�k2� universal vertices.

Proof. Define f(k) = 1
2�

k
2��

3
2(k − 3)� and notice that f(k) = (3k2 − 10k)/8

and �k2� =
k
2 when k is even, and that f(k) = (3k2−12k+9)/8 and �k2� =

k−1
2

when k is odd.

The one hamiltonian graph of order k = n = 3 in G4∩G5∩G6 isK3, which
has 3 > �32� universal vertices, and every hamiltonian cycle has 0 = f(3)
chords. The two hamiltonian graphs of order k = n = 4 in G4 ∩ G5 ∩ G6 are
K1,1,2 and K4, which have, respectively, 2 or 4 (so at least �42�) universal
vertices, and every hamiltonian cycle has 1 or 2 (so at least f(4) = 1) chords.
The three hamiltonian graphs of order k = n = 5 in G4∩G5∩G6 are K5−P3

and K5 − P2 and K5, which have, respectively, 2 or 3 or 5 (so at least �52�)
universal vertices, and every hamiltonian cycle has 3 or 4 or 5 (so at least
f(5) = 3) chords. By Lemma 5.1, the hamiltonian graphs of order k = n ≥ 6
in G4 ∩ G5 ∩ G6 have at least �k2� universal vertices, and every hamiltonian
cycle has at least f(k) chords. By Corollary 5.1, G[V (C)] �∼= K6 − K1,3.
Therefore, every graph in G4 ∩ G5 ∩ G6 satisfies both conditions (1) and (2).

Conversely, suppose a graph G satisfies condition (1) and has a k-cycle
C. If k ≥ 4, then C has at least f(k) ≥ k − 3 chords, and so G ∈ G4. If
k ≥ 5, then C has at least f(k) ≥ �32(k − 3)� chords, and so G ∈ G5.

To show G ∈ G6, assume C has minimum length k ≥ 6 such that C does
not have three pairwise nonadjacent chords (arguing by contradiction). If
k = 6, then C has at least f(6) = 6 chords and G[V (C)] �∼= K6−K1,3, and so
Corollary 5.1 implies that G[V (C)] is one of the four supergraphs ofK6−K3;



Requiring pairwise nonadjacent chords in cycles 371

but then C would have three pairwise nonadjacent chords (contradicting
that C does not have such chords). If k ≥ 7, let v be a simplicial vertex of
G[V (C)] with neighbors u and w along C and let C ′ be the (k − 1)-cycle
with edge set E(C) ∪ {uw} − {uv, vw}. By the assumed minimality of the
length of C, the cycle C ′ does have three pairwise nonadjacent chords, and
these are also chords of C (contradicting that C does not have such chords).
Thus G ∈ G6 and, therefore, G ∈ G4 ∩ G5 ∩ G6.

Finally, suppose a graph G satisfies condition (2) and has a k-cycle C. If
k ≥ 4, then G[V (C)] has at least �k2� ≥ 2 universal vertices v1 and v2, and
so C has at least the one chord v1v2; thus G ∈ G4. If k ≥ 5, then G[V (C)]
has at least �k2� ≥ 2 universal vertices v1 and v2, and so C has nonadjacent
chords v1w1 and v2w2 where w1, w2 are distinct vertices in V (C)− {v1, v2};
thus G ∈ G5. If k ≥ 6, then G[V (C)] has at least �k2� ≥ 3 universal vertices
v1, v2, v3, and so C has nonadjacent chords v1w1, v2w2, v3w3 where w1, w2, w3

are distinct vertices in V (C) − {v1, v2, v3}; thus G ∈ G6. Therefore, G ∈
G4 ∩ G5 ∩ G6.

The function 1
2�

k
2��

3
2(k−3)� can be shown to be optimum for G4∩G5∩G6

by constructing a sequence G∗
4, G

∗
5, . . . of graphs as follows: If k ≥ 4 is even,

define G∗
k to be the order-k graph that has k/2 vertices of degree k and k/2

vertices of degree k/2. If k ≥ 5 is odd, define G∗
k to be the order-k graph

obtained by inserting one additional edge into the order-k graph that has
(k−1)/2 vertices of degree k and (k+1)/2 vertices of degree (k−1)/2. Each
G∗

k is in G4∩G5∩G6 and has a hamiltonian cycle with exactly 1
2�

k
2��

3
2(k−3)�

chords.

In conclusion, Corollary 5.2 will observe that, unsurprisingly, the graph
class G4 ∩ G5 ∩ G6 ∩ G7 is rather ridiculously restricted.

Corollary 5.2. A graph in G4 ∩ G5 ∩ G6 is also in G7 if and only if it has
no cycles of length 7 or more.

Proof. By Theorem 5.1, every hamiltonian graph of order k in G4 ∩ G5 ∩ G6

has at least �k/2� ≥ 1 universal vertices. By Theorem 3.1, every hamiltonian
graph or order 7 or more in G7 is bipartite, and so cannot have universal
vertices.
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