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Counting subwords in flattened permutations

Toufik Mansour, Mark Shattuck, and David G. L. Wang

In this paper, we consider the number of occurrences of descents,
ascents, 123-subwords, 321-subwords, peaks and valleys in flat-
tened permutations, which were recently introduced by Callan in
his study of finite set partitions. For descents and ascents, we make
use of the kernel method and obtain an explicit formula (in terms
of Eulerian polynomials) for the distribution on Sn in the flat-
tened sense. For the other four patterns in question, we develop
a unified approach to obtain explicit formulas for the comparable
distributions. We find that the formulas so obtained for 123- and
321-subwords can be expressed in terms of the Chebyshev polyno-
mials of the second kind, while those for peaks and valleys are more
related to the Eulerian polynomials. We also provide a bijection
showing the equidistribution of descents in flattened permutations
of a given length with big descents in permutations of the same
length in the usual sense.
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1. Introduction

This paper concerns the enumeration problem for particular subwords of
length two or three. The subword counting problem for permutations has
been studied extensively from various perspectives in both enumerative and
algebraic combinatorics; see, e.g., [4, 9]. The comparable problem has also
been considered on other discrete structures such as k-ary words [2], com-
positions [12], and set partitions [11] (see also [7] and the references con-
tained therein). Here, we consider a variant of the subword problem using
the concept of a flattened permutation introduced recently by Callan [3] in
his study of set partitions (and considered further by two of the present
authors [10]).

Let π be a permutation of length n represented in standard cycle form,
i.e., cycles arranged from left to right in ascending order according to the size
of the smallest elements, where the smallest element is first within each cycle.
Define Flatten(π) to be the permutation of length n obtained by erasing the
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parentheses enclosing the cycles of π and considering the resulting word.

For example, if π = 71564328 ∈ S8, then the standard cycle form of π is

(172)(3546)(8) and Flatten(π) = 17235468. Throughout, Sn will denote the

set of permutations of size n.

Let π = π1π2 · · ·πn and σ = σ1σ2 · · ·σd be permutations of length n and

d, where n ≥ d. In the typical setting, the permutation π is said to contain

σ as a subword if there exists a set of consecutive letters πiπi+1 · · ·πi+d−1

in π that is order-isomorphic to σ. Otherwise, π is said to avoid σ. In this

context, σ is usually called a (subword) pattern. For example, the permu-

tation π = 1247653 ∈ S7 (represented as a word) contains two occurrences

of the pattern 321 (corresponding to 765 and 653; note that occurrences

of a given pattern need not be disjoint) but avoids the pattern 213. Sub-

words of the form πiπi+1, where 1 ≤ i ≤ n − 1 and πi > πi+1 (resp.,

πi < πi+1), are called descents (resp., ascents). A set of letters πiπi+1πi+2,

where 1 ≤ i ≤ n − 2, is said to be a 123-subword if πi < πi+1 < πi+2, a

321-subword if πi > πi+1 > πi+2, a peak if πi+1 = max{πi, πi+1, πi+2}, or a
valley if πi+1 = min{πi, πi+1, πi+2}.

In this paper, we will consider an alternative definition of subword con-

tainment for permutations obtained by looking at the comparable problem

on Flatten(π). More specifically, we will say from now on that a permu-

tation π contains an occurrence of the subword pattern ρ in the flattened

sense if and only if Flatten(π) contains the subword ρ in the usual sense

(and say π avoids ρ otherwise). In the current paper, using this new defini-

tion, we will concentrate on the following three pairs of subword patterns,

namely, descents and ascents, 123- and 321-subwords, and peaks and val-

leys. We provide a unified approach below for dealing with these patterns

and determine in each case an explicit formula for the distribution of the

pattern on Sn in the flattened sense. Our results may often be expressed in

terms of either Eulerian or Chebyshev polynomials. In some cases, formulas

for the number of permutations having a fixed number of occurrences of the

pattern in question are also supplied. In all cases, we give simple formulas for

the average number of occurrences of each pattern, providing both algebraic

and combinatorial proofs.

In what follows, we will let st denote a statistic defined on flattened

permutations. Let gstn denote the polynomial obtained by considering the

distribution of the statistic st = st(Flatten(π)) taken over all permutations

π of length n, that is

gstn =
∑
π∈Sn

qst(Flatten(π)).
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Define the generating function

Gst(x) =
∑
n≥0

gstn+1

xn

n!
.

In the next section, we determine Gst(x) for the statistics recording
the number of descents and ascents in Flatten(π), making use of the kernel
method [1], from which one may deduce a formula for gstn in these cases. In the
third section, we consider the comparable question for statistics recording
the number of 123-subwords, 321-subwords, peaks, and valleys. We remark
that in the case of descents, there are further combinatorial results. First,
it turns out that the descents statistic on permutations of a given length,
taken in the flattened sense, has the same distribution as does the statistic
on permutations of the same length for the number of descents of size two or
more, taken in the usual sense. We provide a combinatorial proof of this fact
by defining a suitable bijection of Sn. Furthermore, we also consider descents
of size d or more on flattened permutations, where d ≥ 1, and provide a
combinatorial proof of an explicit formula for the number of permutations
of a given length having a fixed number of such descents.

We will use the following notation throughout this paper. If n is a posi-
tive integer, then let [n] = {1, 2, . . . , n}, with [0] = ∅. If m and n are positive
integers, then let [m,n] = {m,m + 1, . . . , n} if m ≤ n, with [m,n] = ∅ if
m > n. Define the characteristic function χ by

χ(P ) =

{
1, if P is true;

0, if P is false,

for any proposition P . Throughout, we let θ = 1− q, where q is an indeter-
minate.

If n ≥ 0, then the Eulerian polynomial An(q) is defined by

An(q) =

n∑
k=0

An,kq
k = (1− q)n+1

∑
j≥1

jnqj−1,

where An,k denotes the Eulerian number which counts the permutations
of length n having exactly k ascents (in the usual sense). Recall that the
generating function of An(q) is given by

A(x, q) =
∑
n≥0

An(q)
xn

n!
=

1− q

e(q−1)x − q
;
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see, for example, Graham et al. [6, p. 351]. (See also Hirzebruch [8] and

Foata [5] for further information on the Eulerian numbers and polynomials.)

The Eulerian numbers are sometimes defined as En,k = An,k−1 when it is

more convenient. Note the generating function

(1) E(x, q) =
∑
n≥1

∑
k≥1

En,kq
k x

n

n!
=

q(eqx − ex)

qex − eqx
,

which will be used in the third section below.

Finally, recall that the Chebyshev polynomials Un(x) of the second kind

(see Rivlin [13]) are defined by the initial values U−2(t) = −1 and U−1(t) = 0,

along with the recurrence

(2) Un(t) = 2t · Un−1(t)− Un−2(t), n ≥ 0.

It is well-known that

(3) Un(t) =
(t+

√
t2 − 1)n+1 − (t−

√
t2 − 1)n+1

2
√
t2 − 1

.

2. Counting descents

2.1. Flattened descents

We will use a more explicit notation to denote the generating functions

under consideration in this section. Let Fρ(n; q|a1a2 · · · ak) be the generating
function which counts permutations π of length n according to the number

of occurrences of the subword ρ in Flatten(π) such that the first k elements

of the first cycle in the standard form of π are a1a2 · · · ak. Clearly, F21(n; q) =

F21(n; q|1), for all n ≥ 1. Considering whether or not the first cycle contains

exactly one element yields

F21(n; q|1) = F21(n− 1; q) +

n∑
j=2

F21(n; q|1j).(4)

From the definitions, we have

F21(n; q|12) = F21(n− 1; q|1) = F21(n− 1; q).(5)
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Considering whether the first cycle contains two or more elements yields
for j ≥ 3,

F21(n; q|1j)

= qF21(n− 2; q) +

j−1∑
k=2

F21(n; q|1jk) +
n∑

k=j+1

F21(n; q|1jk)

= qF21(n− 2; q) + q

j−1∑
k=2

F21(n− 1; q|1k) +
n−1∑
k=j

F21(n− 1; q|1k)

= qF21(n− 2; q) + (q − 1)

j−1∑
k=2

F21(n− 1; q|1k) +
n−1∑
k=2

F21(n− 1; q|1k),

which, by (4), implies

F21(n; q|1j)

(6)

= F21(n− 1; q) + (q − 1)F21(n− 2; q) + (q − 1)

j−1∑
k=2

F21(n− 1; q|1k),

for j ≥ 3. If n ≥ 2, then let F21(n; q, v) =
∑n

j=2 F21(n; q|1j)vj−2. Multiplying

(6) by vj−2 and summing over j = 3, 4, . . . , n, we obtain

F21(n; q, v)− F21(n; q|12)

=
v − vn−1

1− v
F21(n− 1; q) + (q − 1)

v − vn−1

1− v
F21(n− 2; q)

+
q − 1

1− v

n−1∑
k=2

(
F21(n− 1; q|1k)vk−1 − F21(n− 1; q|1k)vn−1

)
.

By (5), this may be rewritten as

F21(n; q, v) =
1− vn−1

1− v
F21(n− 1; q) + (q − 1)

v − vn−1

1− v
F21(n− 2; q)(7)

+
q − 1

1− v

(
vF21(n− 1; q, v)− F21(n− 1; q, 1)vn−1

)
,

n ≥ 2, with F21(1; q, v) = 0, F21(2; q, v) = 1, F21(1; q) = 1 and F21(2; q) = 2.
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Let H21(t; q, v) =
∑

n≥1 F21(n; q, v)t
n and H21(t; q) =

∑
n≥1 F21(n; q)t

n.
Multiplying (7) by tn and summing over n ≥ 2, we obtain

H21(t; q, v) =
t

1− v
(H21(t; q)−H21(vt; q))

+
(q − 1)vt2

1− v
(H21(t; q)−H21(vt; q))

+
(q − 1)t

1− v
(vH21(t; q, v)−H21(vt; q, 1)).

Note that by virtue of (4),

H21(t; q, 1) =
∑
n≥2

n∑
j=2

F21(n; q|1j)tn = (1− t)H21(t; q)− t.

Hence,

H21(t; q, v) =
t

1− v
(H21(t; q)−H21(vt; q))

+
(q − 1)vt2

1− v
(H21(t; q)−H21(vt; q))

+
(q − 1)t

1− v
(vH21(t; q, v)− (1− vt)H21(vt; q) + vt).

To solve this functional equation, we make use of the kernel method (see [1]).
Comparing the coefficients ofH21(t; q, v) on both sides and solving for v = v0
in terms of t and q, we get v0 =

1
1−(1−q)t . Setting v = v0 in the above equation

implies

H21(t; q) =
(1− q)t

1− 2(1− q)t
+

q(1− (1− q)t)

1− 2(1− q)t
H21

(
t

1− (1− q)t
; q

)
.(8)

Iterating (8) (assuming |t|, |q| < 1) gives

H21(t; q) =

m∑
j=1

qj−1(1− θt)θt

(1− jθt)(1− (j + 1)θt)
+

qm(1− θt)

1− (m+ 1)θt
H21

(
t

1−mθt
; q

)

for any m ≥ 1. Letting m → ∞ in the last expression, we see that the second
summand tends to zero, which implies

H21(t; q) = (1− θt)
∑
j≥1

qj−1

(
1

1− (j + 1)θt
− 1

1− jθt

)
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= θ(1− θt)
∑
j≥2

qj−2

1− jθt
− 1.

Extracting the coefficient of tn in the last expression yields the following
result.

Theorem 2.1. For any n ≥ 1, we have

F21(n; q) = (1− q)n+1
∑
j≥1

(j − 1)jn−1qj−2 =
1

q
(An(q) + (q − 1)An−1(q)),

where An(q) is the n-th Eulerian polynomial. Moreover,

(9)
∑
n≥0

F21(n+ 1; q)
xn

n!
=

(1− q)2

(e(q−1)x − q)2
= A(x, q)2,

where A(x, q) is the generating function of the Eulerian polynomials.

Corollary 2.2. The average number of descents in Flatten(π) over π ∈ Sn

is given by (n−1)(n−2)
2n .

Proof. By differentiating the generating function
∑

n≥1 F21(n; q)
xn−1

(n−1)! in the

statement of Theorem 2.1 with respect to q and taking the limit at q = 1,
we obtain ∑

n≥1

d

dq
F21(n; q) |q=1

xn−1

(n− 1)!
=

x2

(1− x)3
,

which implies

1

n!

d

dq
F21(n; q) |q=1=

1

n

(
n− 1

2

)
=

(n− 1)(n− 2)

2n
,

as required.

Let us refer to a descent or ascent occurring within Flatten(σ) as a
flattened descent or ascent, respectively, of a permutation σ. Since each of
the n− 1 adjacencies within any member of Sn is either a flattened descent
or ascent, the following corollary is immediate from Theorem 2.1.

Corollary 2.3. For any n ≥ 1, we have

F12(n; q) = qn−1F21(n; q
−1) = (q − 1)n+1

∑
j≥1

(j − 1)jn−1q−j .
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A proof similar to before then gives the following result.

Corollary 2.4. The average number of ascents in Flatten(π) over π ∈ Sn

is given by (n−1)(n+2)
2n .

If π1π2 · · ·πn is a permutation of length n, then we will call a position i ∈
[n− 1] a big descent if πi − πi+1 ≥ 2.

Theorem 2.5. The flattened descent and big descent statistics on Sn are
equally distributed for all n ≥ 1.

Proof. We will define a Foata style bijection showing this equivalence for
all n. To do so, first let An, where n ≥ 2, be the set comprising all sequences
of length n − 1 of ordered pairs (ai, bi), i ∈ [n − 1], satisfying the following
properties: (i) ai ∈ {0, 1} for all i; (ii) (a1, b1) = (0, 1) or (0, 2); (iii) If
i ≥ 2 and ai = 0, then let bi be any member of [s + 2], where s denotes
the number of 1’s occurring among the first coordinates of the ordered pairs
(a1, b1), (a2, b2), . . . , (ai−1, bi−1); and (iv) If i ≥ 2 and ai = 1, then let bi be
any member of [i−1−s], where s is as in part (iii). Note that An = n! since
there are i+ 1 choices for the i-th ordered pair, 1 ≤ i ≤ n− 1.

We now define a bijection g between An and Sn such that the number
of 1’s among the first coordinates of π ∈ An corresponds to the number of
flattened descents within g(π). To create g(π) from

π = {(a1, b1), (a2, b2), . . . , (an−1, bn−1)} ∈ An,

we first write 1 in a cycle by itself and call this permutation σ1. We then
subsequently add members of [n]−{1} using π as an encoding and create a
recursive sequence of permutations σ2, σ3, . . . , σn as follows. If aj = 0, where
j ∈ [n − 1], then insert j + 1 either within a cycle of σj so that it goes in
between any two letters comprising a descent of Flatten(σj) (with the �-th
such descent from left-to-right selected for the insertion site if bj = � ∈ [s] ⊆
[s + 2], assuming that there are s 1’s appearing as first coordinates within
the first j−1 ordered pairs of π, with s = 0 if j = 1) or at the end of the last
cycle of σj (if bj = s+ 1) or as the 1-cycle (j + 1) (if bj = s+ 2). If aj = 1,
then insert j + 1 into σj within one of its cycles so that it goes in between
two letters that create an ascent within Flatten(σj) (where one selects the
particular ascent in which to insert j + 1 from left to right based off of the
value of bj as before). In either case, we let σj+1 denote the permutation of
[j + 1] that results after j + 1 has been inserted into σj . After adding all of
the letters from [n]− {1} in this way, the permutation σn results, which we
define to be g(π). It may be verified that g is the desired bijection between
the sets An and Sn.
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For example, if n = 8 and

π = {(0, 2), (1, 1), (0, 3), (1, 2), (0, 3), (1, 1), (0, 5)},

then we get

(1) → (1)(2) → (13)(2) → (13)(2)(4) → (13)(25)(4) → (13)(25)(46)

→ (173)(25)(46) → (173)(25)(46)(8),

and thus, g(π) = (173)(25)(46)(8).
We next define a bijection h between An and Sn in which the number of

1’s occurring among the first coordinates of π ∈ An, represented as above,
corresponds to the number of big descents in h(π). Let ρ1 denote the per-
mutation of length one. We subsequently add members of [n]− {1} using π
as an encoding to generate a sequence of permutations ρ2, ρ3, . . . , ρn (repre-
sented as words) as follows. If aj = 0, where j ∈ [n−1], then insert the letter
j + 1 into the permutation ρj either between any two letters comprising a
big descent or just before j or at the very end (letting the value of bj dictate
the action taken here, much as before). If aj = 1, then we consider cases
on whether or not the letter j starts ρj . If j starts ρj , then insert j + 1 in
between any two letters of ρj which do not form a big descent within ρj . If
j does not start ρj , then either add j+1 at the beginning or in between any
two letters which do not form a big descent, except directly before j. In ei-
ther case, let the value of bj determine the position chosen for this insertion
going from left to right as bj increases. Let h(π) = ρn. It may be verified
that h is the desired bijection.

For instance, if π is as in the previous example, then we get

1 → 12 → 312 → 3124 → 31524 → 316524 → 7316524 → 73165248,

and thus, h(π) = 73165248.
The composition h ◦ g−1 then provides a bijection of Sn showing the

equivalence of the flattened descent and big descent statistics. Using the
previous examples, if σ = 75162438 = (173)(25)(46)(8) ∈ S8, which has
three flattened descents, then h ◦ g−1(σ) = 73165248, which has three big
descents.

2.2. d-Descents

Suppose d ≥ 1 and σ ∈ Sn, with Flatten(σ) = σ1σ2 · · ·σn. We will call
an index i such that σi − σi+1 ≥ d a (flattened) d-descent. For example,
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if d = 3 and σ = (1985)(24)(367) ∈ S9, then there are two 3-descents (at
positions 3 and 4) and four descents altogether. Let an,m,k = an,m,k(d) de-
note the number of permutations of [n] having exactly m d-descents and
k cycles. Note that if m > 0, then an,m,k is non-zero only when n ≥ m +
d+ 1.

Let cn,k denote the signless Stirling number of the first kind which counts
the permutations of [n] having exactly k cycles. Note that if 1 ≤ n ≤ d+ 1,
then

an,m,k =

{
cn,k, if m = 0;

0, if m > 0,

as there is no restriction on the positions of the letters. If n = d + 2, then
ad+2,1,k = cd+1,k and thus, ad+2,0,k = cd+2,k − cd+1,k, since the only possible
d-descent in this case occurs with the letter d+2 coming just before 2 once
the permutation is flattened. The following proposition provides a recurrence
for an,m,k when n ≥ d+ 3.

Proposition 2.6. If n ≥ d+ 3 and k ≥ 1, then

(10) an,m,k = an−1,m,k−1+(m+d)an−1,m,k+(n−m−d)an−1,m−1,k, m ≥ 0,

where an,−1,k = 0 and an,m,0 = 0 if n > 0.

Proof. The first term on the right-hand side of (10) counts the permutations
enumerated by an,m,k in which n occurs in a cycle by itself, while the second
term counts those in which n creates neither an additional d-descent nor
cycle when it is added to a permutation of length n − 1. Note that the
latter may be achieved only by adding n between two letters comprising a
d-descent or directly preceding some member of [n− d+ 1, n− 1] or at the
end of the last cycle, whence there are m + d choices altogether. Finally,
if n is to create a new d-descent, then it must be inserted between two
letters not comprising a d-descent but not directly preceding a member
of [n − d + 1, n − 1]. For this, there are (n − 2) − (m − 1) − (d − 1) =
n−m− d choices for the position of n, by subtraction, which completes the
proof.

Let an,m =
∑

k an,m,k denote the number of permutations of size n hav-
ing exactly m d-descents. Summing (10) over k implies

(11) an,m = (m+ d+ 1)an−1,m + (n−m− d)an−1,m−1, n > m ≥ 0.

Using (11), it is possible to show by induction the following explicit
formula for an,m.
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Proposition 2.7. If d ≥ 1, m ≥ 0, and n ≥ m+ d+ 1, then

an,m = (d+ 1)!
∑

i1+···+im+1=n−1−d−m
ij≥0

m∏
j=1

(i1 + · · ·+ ij + 1)

m+1∏
j=1

(d+ j)ij .

Proof. We provide a combinatorial proof by showing that the right-hand
side counts the permutations of length n having exactly m d-descents, the
set of which we will denote here by Sn,m. To form a member of Sn,m, where
n ≥ m+ d+ 1, we first write the elements of [d+ 1] as any permutation in
standard cycle form, of which there are (d + 1)! possibilities. Observe that
there is no restriction on the positions of these letters since none of them
may be the larger letter in a d-descent (note that d+1 cannot precede 1 after
a permutation has been flattened). Once the positions for the members of
[d+1] have been determined, we subsequently insert the members of [d+2, n]
to form a permutation of size n in standard cycle form and classify each
member according to whether or not it created an additional d-descent in
the step at which it was inserted. More specifically, we will call r ∈ [d+2, n]
a producer if r produces an additional d-descent when inserted into the
current permutation involving the letters in [r − 1] and a non-producer if
no additional d-descent is produced. Note than in forming any member of
Sn,m, there will be exactly m producers among the elements of [d+2, n] and
thus, n− 1− d−m non-producers.

Let ij , 2 ≤ j ≤ m, denote the number of non-producers between the
(j − 1)-st and j-th producers (with i1 denoting the number of non-producers
prior to the first producer and im+1 the number following the m-th pro-
ducer). Then the sets comprising the producers and the non-producers within
a member of Sn,m are uniquely determined by the vector (i1, i2, . . . , im+1),
where i1 + i2 + · · · + im+1 = n − 1 − d −m. To complete the proof, it suf-
fices to show that the number of permutations σ ∈ Sn,m having fixed vector
(i1, i2, . . . , im+1) is given by

(i1 + 1)(i1 + i2 + 1) · · · (i1 + i2 + · · ·+ im + 1)

m+1∏
j=1

(d+ j)ij

once the positions of the elements of [d+ 1] have been specified.

Let pj denote the j-th producer within such a permutation σ. Note first
that

pj = i1 + i2 + · · ·+ ij + j + d+ 1, 1 ≤ j ≤ m.
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If t is a non-producer coming between the (j − 1)-st and j-th producers of
σ, i.e., if t ∈ [pj−1 + 1, pj − 1], then t must be inserted so that it either
(i) goes between two consecutive letters comprising a current d-descent,
(ii) precedes directly any letter in [t− d+ 1, t− 1], (iii) occurs at the end of
the last cycle in the present permutation, or (iv) occurs as the 1-cycle (t).
In all, there are (j−1)+(d−1)+2 = j+d options regarding the placement
of such t and pj − pj−1 − 1 = ij possible t, which implies that there are
(d + j)ij choices concerning the placement of all letters occurring between
pj−1 and pj , 2 ≤ j ≤ m. Similarly, there are (d + 1)i1 choices for the non-
producers preceding p1 and (d+m+ 1)im+1 choices for those following pm.
Finally, concerning the placement of the j-th producer pj , note that it must
be inserted between two members of [pj − 1] but not between two letters
that comprise a current d-descent or directly preceding some member of
[pj − d+ 1, pj − 1]. Thus, there are

(pj − 2)− (j − 1)− (d− 1) = i1 + i2 + · · ·+ ij + 1

choices regarding the placement of the j-th producer for all j, which com-
pletes the proof.

Noting that n! =
∑

m an,m gives the following formula.

Corollary 2.8. If d ≥ 1 and n ≥ d+ 1, then

n!

(d+ 1)!
=

n−d−1∑
m=0

∑
i1+i2+···+im+1=n−1−d−m

ij≥0

m+1∏
j=1

(d+ j)ij
m∏
j=1

(
1 +

j∑
�=1

i�

)
.

Finally, it is possible to extend Theorem 2.5 as follows using the com-
binatorial argument given above for it, the details of which we leave to the
interested reader.

Proposition 2.9. The statistic which records the number of flattened de-
scents of size d or more has the same distribution on Sn as does the one
recording the number of typical descents of size d+1 or more for all n, d ≥ 1.

3. Counting 123-subwords, 321-subwords, peaks and valleys

In this section, we count the occurrences of 123-subwords, 321-subwords,
peaks, and valleys within flattened permutations of length n. We will use
the notation r, d, p and v to stand for these respective patterns. In the
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unified approach described below, we use the notation st to represent any
one of these statistics. Define

gstn (a1a2 · · · ak) =
∑
π

qst(Flatten(π)),

where π ranges over all the permutations of length n such that Flatten(π)
starts with the letters a1a2 · · · ak. It is clear that gstn (a1a2 · · · ak) = 0 if a1 �= 1.
Write gstn = gstn (1) for short. For example, the notation grn represents the
distribution for the number of 123-subwords in flattened permutations of
length n. By definition, we have

(12) gstn (a1a2 · · · ak) =
∑

h∈[n]\{a1,a2,...,ak}
gstn (a1a2 · · · akh)

for any 1 ≤ k ≤ n− 1.
Since the statistics r, d, p, v involve patterns of length three, we consider

k = 4 in (12). This leads us to find all of the gstn (1ijk). The following lemma
allows us to concentrate on those gstn (a1a2 · · · ak) with k ≤ 3.

Lemma 3.1. Let n ≥ 4. Suppose that i, j, k are all different numbers in the
set {2, 3, . . . , n}. Then for any statistic st ∈ {r, d, p, v}, we have

gstn (1ijk) = (1 + χ(i = 2))qst(1ijk)−st(1jk)· gstn−1(1j
′k′),

where j′ = j − χ(j > i) and k′ = k − χ(k > i).

Proof. Fix n ≥ 4 and i, j, k. Let π be a permutation of length n such
that Flatten(π) starts with 1ijk. Let ψ(π) be the permutation of length n−1
obtained from π by removing the letter i in the cycle notation and replacing
all of the remaining letters h by h′ = h−χ(h > i). In other words, we delete
the second letter in the cycle notation of π and translate the other letters
preserving the order to form a permutation of length n− 1. Since i, j, k are
fixed, it is easy to see that the map ψ is a bijection. Since st is a statistic
involving three letters, we may deduce

st(Flatten(π)) = st(Flatten(ψ(π))) + st(1ijk)− st(1j′k′)(13)

= st(Flatten(ψ(π))) + st(1ijk)− st(1jk).

Conversely, let σ be any permutation of length n−1 such that Flatten(σ)
starts with 1j′k′. If i ≥ 3, then the letter i must be in the first cycle of π.
In this case, the inverse ψ−1(σ) = π starts with 1ijk. Otherwise, i = 2.
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Then the letter 2 may be in either the first or the second cycle of π. So the
inverse ψ−1(σ) consists of two permutations {π, π′} such that Flatten(π) =
Flatten(π′). Therefore, the permutation σ contributes twice in this case.

In summary, we have

gstn (1ijk) =
∑
π

qst(Flatten(π))

= (1 + χ(i = 2))
∑
σ

qst(Flatten(σ))+st(1ijk)−st(1jk)

= (1 + χ(i = 2))qst(1ijk)−st(1jk)· gstn−1(1j
′k′),

where π ranges over all permutations of length n starting with 1ijk and
σ ranges over all permutations of length n − 1 starting with 1j′k′. This
completes the proof.

Let us now consider gstn (1ij). Note that gstn (1ij) with j > i can be reduced
via

(14) gstn (1ij) = gstn−1(1(j − 1))(1− θ·χ(st = r)),

which has only one variable j. For the sake of reducing gstn (1ij) in the other
case j < i, we need an exchanging letters trick.

Lemma 3.2. Let n ≥ 4. For any statistic st ∈ {r, d, p, v} and any 2 ≤ j <
i ≤ n, we have

gstn (1ij) = gstn (1(j + 1)j).

Proof. Let 2 ≤ j < i and st ∈ {r, d, p, v}. Assume that j ≤ i − 2. Let
π be a permutation of length n. Denote by π′ the permutation obtained
from Flatten(π) by exchanging the letters i and i− 1. It is easy to see that
st(Flatten(π)) = st(Flatten(π′)). Iterating in this way, we get

gstn (1ij) = gstn (1(i− 1)j) = · · · = gstn (1(j + 1)j),

which completes the proof.

Now, we can construct a recurrence for the sequence {gstn (1k)}nk=3 by
finding gstn (1(i + 1)i) in two different ways. Let 3 ≤ i ≤ n − 1 and st ∈
{r, d, p, v}. On one hand, by Lemma 3.2 and (14), we have

∑
2≤j≤i−1

gstn (1(j + 1)j) =
∑

2≤j≤i−1

gstn (1ij)(15)
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= gstn (1i)−
∑
j>i

gstn (1ij)

= gstn (1i)−
∑
j≥i

gstn−1(1j)(1− θ·χ(st = r)).

Then the first-order difference transformation of the above formula gives us

(16) gstn (1(i+ 1)i) = gstn (1(i+ 1))− gstn (1i) + gstn−1(1i)(1− θ·χ(st = r)).

On the other hand, applying Lemma 3.1 to gstn (1(i+ 1)ik), we find

gstn (1(i+ 1)ik)

=

{
[1− θ·χ(st = d)]· gstn−1(1(k + 1)k), if 2 ≤ k ≤ i− 1;

[1− θ·χ(st ∈ {p, v})]· gstn−2(1(k − 2)), if k ≥ i+ 2.

Therefore, by using (15), we may deduce

gstn (1(i+ 1)i)

(17)

=
∑

2≤k≤i−1

gstn (1(i+ 1)ik) +
∑

k≥i+2

gstn (1(i+ 1)ik)

= [1− θ·χ(st = d)]· gstn−1(1i) + [1− 2χ(st ∈ {p, v})]· θ·
∑
k≥i

gstn−2(1k).

Equating (16) and (17), we obtain a recurrence

θ−1·
[
gstn

(
1(i+ 1)

)
− gstn (1i)

]
= [χ(st = r)− χ(st = d)]· gstn−1(1i) + [1− 2χ(st ∈ {p, v})]·

∑
k≥i

gstn−2(1k).

Let 3 ≤ i ≤ n − 2. For the sake of eliminating the sum, we apply the
first-order difference transformation to it and get

θ−1·
[
gstn (1(i+ 2))− 2gstn (1(i+ 1)) + gstn (1i)

]
(18)

= [χ(st = r)− χ(st = d)]·
[
gstn−1(1(i+ 1))− gstn−1(1i)

]
− [1− 2χ(st ∈ {p, v})]· gstn−2(1i).

Our arguments will be based on the above recurrence.
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3.1. 123-Subwords

In this case, the recurrence (18) reads

grn(1k)− 2grn(1(k − 1)) + grn(1(k − 2))(19)

− θ
[
grn−1(1(k − 1))− grn−1(1(k − 2))− grn−2(1(k − 2))

]
= 0,

for any 5 ≤ k ≤ n. Recall that Un(x) is the n-th Chebyshev polynomial of
the second kind. We will now solve the recurrence (19) for 3 ≤ k ≤ n − 1,
with the initiation

grn(13) = (1− θ)grn−1 + 2θ(2− θ)grn−2, n ≥ 4,
(20)

grn(14) = (1− θ)grn−1 + 3θ(2− θ)grn−2 − 2θ(1− 3θ + θ2)grn−3, n ≥ 5.

Theorem 3.3. For any 3 ≤ k ≤ n− 1, we have

(21) grn(1k) =

k−1∑
i=1

αk, i · bri · grn−i,

where αk, i =
(
k−1
i−1

)
−
(
k−3
i−3

)
and bri = −θ(i−1)/2Ui+1(

√
θ/2).

Proof. It is straightforward to check that formula (21) admits the initia-
tion (20). It suffices to show that it satisfies the recurrence (19) as well.
Let 3 ≤ k ≤ n − 1. Note that αk,i = 0 if i ≤ 0 or i ≥ k. For notational
convenience, we rewrite (21) as

grn(1k) =
∑
i

αk, i · bri · grn−i,

where i runs over all integers. Since αk+1, i − αk, i = αk, i−1 for any i and

bri − θ
(
bri−1 − bri−2

)
(22)

= −θ(i−1)/2
[
Ui+1(

√
θ/2)−

√
θ · Ui(

√
θ/2) + Ui+1(

√
θ/2)

]
= 0,

we may deduce

k+1∑
i=1

αk+2,i b
r
i g

r
n−i − 2

k∑
i=1

αk+1,i b
r
i g

r
n−i +

k−1∑
i=1

αk,i b
r
i g

r
n−i

− θ

[
k∑

i=1

αk+1,i b
r
i g

r
n−1−i −

k−1∑
i=1

αk,i b
r
i g

r
n−1−i −

k−1∑
i=1

αk,i b
r
i g

r
n−2−i

]
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=
∑
i≥1

αk,i−2·
[
bri − θ

(
bri−1 − bri−2

)]
· grn−i = 0.

This completes the proof.

Corollary 3.4. For any n ≥ 4, we have

(23) grn =

n−2∑
i=1

grn−i

(
αn,i+1b

r
i − θ αn−1, ib

r
i−2

)
.

Proof. It is routine to verify (23) for n = 4. Let n ≥ 5. By (19) and (21), we

can derive a formula for grn(1n) as follows:

grn(1n) = grn − grn(12)−
∑

3≤k≤n−1

grn(1k)

= grn − 2q· grn−1 −
∑

3≤k≤n−1

(
q· grn−1 +

∑
i≥2

αk,i b
r
i g

r
n−i

)

= grn − (n− 1)q· grn−1 −
∑

2≤i≤n−2

αn,i+1b
r
i g

r
n−i

= −
∑
i≥0

αn,i+1b
r
i g

r
n−i.

Using the above formula, and taking k = n in recurrence (19), we find

0 = grn(1n)− 2grn(1(n− 1)) + grn(1(n− 2))

− θ
[
grn−1(1(n− 1))− grn−1(1(n− 2))− grn−2(1(n− 2))

]
= −

∑
i≥0

αn,i+1 b
r
i g

r
n−i − 2

∑
i≥0

αn−1, i b
r
i g

r
n−i +

∑
i≥0

αn−2, i b
r
i g

r
n−i

+ θ

[∑
i≥0

αn−1,i+1 b
r
i g

r
n−1−i +

∑
i≥0

αn−2, i b
r
i g

r
n−1−i −

∑
i≥0

αn−2,i+1 b
r
i g

r
n−2−i

]
,

which leads to

0 =
∑
i≥0

grn−i

[
(−αn,i+1 − 2αn−1, i + αn−2, i)b

r
i

− θ((−αn−1,i − αn−2, i−1) b
r
i−1 + αn−2,i−1 b

r
i−2)

]
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=
∑
i≥0

grn−i(θ αn−1, ib
r
i−2 − αn,i+1b

r
i),

from which (23) follows immediately.

To proceed further, we will need the generating function of brn. By (3),
we have ∑

n≥1

Un+1(t)
xn

n!
=

A(t)2eA(t)x −B(t)2eB(t)x

A(t)−B(t)
− 2t,

where A(t) = t+
√
t2 − 1 and B(t) = t−

√
t2 − 1. This gives us the generating

function

Br(x)

=
∑
n≥1

brn
xn

n!
= − 1√

θ

∑
n≥1

Un+1

(√
θ

2

)
(
√
θx)n

n!

= 1+
(
√
θ−

√
θ− 4)2e(

√
θ−

√
θ−4)

√
θx/2− (

√
θ+

√
θ − 4)2e(

√
θ+

√
θ−4)

√
θx/2

4
√
θ
√
θ− 4

.

By using Euler’s formula eiφ = cosφ+ i sinφ, one may show that

(24) Br(x) = 1− 2eθx/2√
θ(4− θ)

cos

(√
θ(4− θ)x

2
+ arcsin

(
2− θ

2

))
.

We now give an explicit formula for Gr(x).

Theorem 3.5. We have Gr(x) = 1 +
∫ x
0 H(t) dt, where

(25) H(x) = 2
√
θ(4− θ)(1 + ξ2)2H̃(x),

with

H̃(x) =
(1− ξ2)

√
4− θ(1− (1− θ)e−θx) + 2

√
θξ(1− (3− θ)e−θx)

(
√
θξ +

√
4− θ)3(

√
θ −

√
4− θξ)3

and ξ = tan(
√

θ(4− θ)x/4).

Proof. Recall that Gr(x) =
∑

n≥1 g
r
n

xn−1

(n−1)! . Since

αn,i =

(
n− 1

i− 1

)
−
(
n− 3

i− 3

)
=

(n− 3)![(n− 1)(n− 2)− (i− 1)(i− 2)]

(i− 1)!(n− i)!
,
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multiplying (23) by xn−4

(n−4)! and summing over n ≥ 4 gives us

∑
n≥4

grn
xn−4

(n− 4)!

=
∑
n≥4

n−2∑
i=1

grn−iαn,i+1b
r
i

xn−4

(n− 4)!
− θ

∑
n≥4

n−2∑
i=1

grn−iαn−1, ib
r
i−2

xn−4

(n− 4)!

=
∑
n≥4

n− 3

x3

n−2∑
i=1

brix
i

i!
·
grn−ix

n−i−1

(n− i− 1)!
· [(n− 1)(n− 2)− i(i− 1)]

− θ
∑
n≥4

1

x3

n−2∑
i=1

bri−2x
i

(i− 1)!
·
grn−ix

n−i−1

(n− i− 1)!
· [(n− 2)(n− 3)− (i− 1)(i− 2)].

Upon noting br−1 = −1/θ and br0 = −1, the preceding equation may then be
expressed as

d3

dx3
Gr(x) =

d3

dx3
((Gr(x)− 1)B(x))− d

dx

(
(Gr(x)− 1) · d2

dx2
B(x)

)

− θ
d2

dx2

(
(Gr(x)− 1)

(
−1

θ
− x+

∫ x

0
B(t) dt

))

+ θ

(
(Gr(x)− 1) · d

dx
B(x)

)
.

Letting H(x) = d
dxG

r(x) reduces the last equation to

2

(
θ − θB(x) +

d2

dx2
B(x)

)
H(x)

+

(
1 + θx+

3d

dx
B(x)− θ

∫ x

0
B(t) dt

)
d

dx
H(x) + (B(x)− 1)

d2

dx2
H(x) = 0.

With the boundary values H(0) = 2 and H ′(0) = 6−4θ, we obtain the solu-
tion (25) from the preceding differential equation. Consequently, we obtain
Gr(x), upon noting Gr(0) = 1.

After integration of H and several algebraic operations, one may derive
the further formula

Gr(x) =
2
√
θ cos(7γ + 2βx)− 4 cos(2γ + βx)− 4 + θ

4(1− cos(4γ + βx))2
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+
6− (4− θ)e−θx

2(1− cos(4γ + βx))
,

where β =
√

θ(4− θ) and γ = arccos
√
θ
2 . From this, one can find an explicit

formula for grn using the Taylor expansion of Gr(x), an exercise we leave to

the interested reader.

Differentiation of Gr(x) with respect to q yields the following result.

Corollary 3.6. If n ≥ 3, then the average number of occurrences of 123-

subwords in Flatten(π) over π ∈ Sn is given by n2+3n−6
6n .

3.2. 321-Subwords

Let n ≥ 5. Then the recurrence (18) reads for any 3 ≤ k ≤ n− 2 as

gdn(1(k + 2))− 2gdn(1(k + 1)) + gdn(1k)

+ θ
[
gdn−1(1(k + 1))− gdn−1(1k) + gdn−2(1k)

]
= 0.

It is easy to verify gdn(13) = gdn−1 and gdn(14) = gdn−1 − 2θ· gdn−3. Similar to

the proof of Theorem 3.3 above, one can derive a formula for gdn as follows.

Theorem 3.7. For any n ≥ k ≥ 3, we have

gdn(1k) =

k−1∑
i=1

αk, i · bdi · gdn−i,

where bdi = (−1)iθ(i−1)/2Ui−3(
√
θ/2). Moreover, Gd(x) = (1 − Bd(x))−2,

where

Bd(x)− 1

=
(
√
θ −

√
θ − 4)2e−(

√
θ+

√
θ−4)

√
θx/2− (

√
θ +

√
θ − 4)2e−(

√
θ−

√
θ−4)

√
θx/2

4
√

θ(θ − 4)
.

Consequently, for any n ≥ 1, we have

gdn = (θ − 4)
√
θ
n+1∑

j≥1

j ·
(√

θ +
√
θ − 4

2

)4j+4

·(
√
θ + j

√
θ − 4)n−1.
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Similar to (24), we have

Bd(x) = 1− 2e−θx/2√
θ(4− θ)

cos

(√
θ(4− θ)x

2
+ arcsin

(
2− θ

2

))
.

From this, one may obtain another expression for gdn as

gdn = (−θ)n+1
∑
j≥1

2j−1∑
�=1

B2j(−4)j(1− 4j)
(
n−1
�−1

)
2j(2j − 1− �)!

α�+1
θ arcsin2j−1−�

(
2− θ

2

)
,

where αθ =
√
4−θ

−2
√
θ
and Bn is the n-th Bernoulli number.

Corollary 3.8. If n ≥ 2, then the average number of occurrences of 321-

subwords in Flatten(π) over π ∈ Sn is given by (n−2)(n−3)
6n .

Proof. Differentiating Gd(x) with respect to q and substituting q = 1 yields

d

dq
Gd(x)

∣∣∣∣
q=1

=
x3

3(1− x)3
.

Thus, the total number of occurrences of 321-subwords in Flatten(π) over
all π ∈ Sn is given by (n−2)!

(
n−1
3

)
for n ≥ 2, which completes the proof.

3.3. Peaks

Let n ≥ 5. Then the recurrence (18) reads for any 3 ≤ k ≤ n− 2 as

gpn(1(k + 2))− 2gpn(1(k + 1)) + gpn(1k)− θ· gpn−2(1k) = 0.

With the initiation gpn(13) = gpn−1− 2θ· gpn−2 and gpn(14) = gpn−1− 3θ· gpn−2+
2θ· gpn−3, we can derive the next result.

Theorem 3.9. For any n ≥ k ≥ 3, we have

gpn(1k) =

k−1∑
i=1

βk, i · bpi · g
p
n−i,

where βk, i =
(
k−2
i−1

)
+

(
k−3
i−2

)
and bpi = (−1)i+1θ�i/2�. Moreover, Gp(x) =

(1−Bp(x))−2, where

Bp(x) =
∑
n≥1

bpn
xn

n!
= 1 +

sinh(
√
θx)√

θ
− cosh(

√
θx).
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We shall give two formulas for gpn. For the first one, we will need the
following proposition whose proof is straightforward.

Proposition 3.10. Let G(x) =
∑

n≥0 gn+1
xn

n! and B(x) =
∑

n≥1 bn
xn

n! be

two generating functions. If G(x) = (1 − B(x))−2, then for any n ≥ 1, we
have

gn+1 =

n∑
k=1

(k + 1)
∑(

n

i1, . . . , ik

)
bi1bi2 · · · bik .

where the internal sum is over i1, . . . , ik ≥ 1 such that i1 + · · ·+ ik = n.

For the second formula, we need a sequence tn,m defined by

tn,m = [xn](x2 cot(x))m

= 2n−2m(−1)(n−m)/2m!

m∑
�=0

n−2m+1∑
k=0

2�k!s1(�+ k, �)s2(n− 2m+ �, k)

(m− �)!(�+ k)!(n− 2m+ �)!
,

where s1(n, k) and s2(n, k) are the Stirling numbers of the first and second
kind, respectively; see Sequence A199542 in [14]. It follows that

(26) [xn](x2 coth(x))m = (−1)(n−m)/2tn,m.

Now we can give the two formulas for gpn.

Theorem 3.11. For any n ≥ 1, we have

gpn =

n−1∑
k=1

(k + 1)
∑

(−1)n+k−1

(
n− 1

i1, . . . , ik

)
θ
∑k

j=1�ij/2�(27)

= n!
∑
j≥1

(−1)(n+j+2)/2 ·
√
θ
n+j

tn+2j, j ,(28)

where the internal sum is over i1, . . . , ik ≥ 1 such that i1 + · · ·+ ik = n− 1.

Proof. The formula (27) follows immediately from Theorem 3.9 and Propo-
sition 3.10. To show (28), we deduce from (26) that

Gp(x) =
1

(1−B(x))2
=

1(
cosh(

√
θx)− sinh(

√
θx)√

θ

)2

=
d

dx

1√
θ coth(

√
θx)− 1

= − d

dx

∑
j≥1

√
θ
j
cothj(

√
θx)
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= − d

dx

∑
j≥1

√
θ
−j

x−2j
(
θx2 coth(

√
θx)

)j
=

∑
j≥1

∑
i≥j

(i− 2j)(−1)(i−j)/2+1
√
θ
i−j

ti, j ·xi−2j−1.

Extracting the coefficient of xn−1 gives (28) and completes the proof.

Corollary 3.12. If n ≥ 2, then the average number of peaks in Flatten(π)
over π ∈ Sn is given by n−2

3 .

Proof. Differentiating Gp(x) with respect to q and substituting q = 1 yields

d

dq
Gp(x)

∣∣∣∣
q=1

=
x2(3− x)

3(1− x)3
.

Thus, the total number of peaks in Flatten(π) over all π ∈ Sn is given by
n−2
3 n! for n ≥ 3, which completes the proof.

3.4. Valleys

Let n ≥ 5. Then the recurrence (18) has the same form for v as it does for p.
So for any 3 ≤ k ≤ n− 2, we have

gvn(1(k + 2))− 2gvn(1(k + 1)) + gvn(1k)− θ· gvn−2(1k) = 0,

with gvn(13) = gvn−1− 2θ· gvn−2 and gvn(14) = gvn−1− 3θ· gvn−2+2θ· gvn−3. Note
that the formula for gvn(13) does not hold when n = 3, in contrast to the
situation for peaks, which causes gvn(1k) to differ from gpn(1k).

Theorem 3.13. For any n ≥ k ≥ 3, we have

(29) gvn(1k) =

k−1∑
i=1

βk, i · bvi · gvn−i + 2
√
θ
n−1 · χ (n is odd and k = n),

where bvi = (−1)i+1θ�i/2�.

Since bvn = bpn, the generating function Bv(x) =
∑

n≥1 b
v
n
xn

n! is given by
Bv(x) = Bp(x).

Theorem 3.14. We have

Gv(x) =

√
θ(− sinh(2

√
θx) +

√
θ cosh(2

√
θx) + 2

√
θx+

√
θ)

2(− sinh(
√
θx) +

√
θ cosh(

√
θx))2

.
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Moreover, for any n ≥ 2, we have

(30) gvn = n(2
√
θ)n

∑
j≥1

jn−1 (1−
√
θ)j−1

(1 +
√
θ)j+1

.

Proof. By (29), we deduce

gvn =

n−1∑
i=1

βn+1, i+1 · bvi · gvn−i + 2
√
θ
n−1

χ(n is odd).(31)

Multiplying (31) by xn−2

(n−2)! , and summing over n ≥ 2, yields

d

dx
Gv(x) =

∑
n≥2

n−1∑
i=1

i ·
bvi · gvn−i · xn−2

i! · (n− 1− i)!

+
∑
n≥2

n−1∑
i=1

(n− 1) ·
bvi · gvn−i · xn−2

i! · (n− 1− i)!
+ 2

∑
n≥1, n is odd

√
θ
n+1xn

n!
,

which is equivalent to

d

dx
Gv(x) = Gv(x)

d

dx
Bv(x) +

d

dx
(Gv(x)Bv(x)) + 2

√
θ sinh(

√
θx).

Solving this equation gives

Gv(x) =

√
θ(− sinh(2

√
θx) +

√
θ cosh(2

√
θx) + 2

√
θx+

√
θ)

2(
√
θ cosh(

√
θx)− sinh(

√
θx))2

=
d

dx

( √
θx(e2

√
θx + 1)

(
√
θ − 1)e2

√
θx +

√
θ + 1

)
.

With the aid of (1), we obtain

Gv(x) =
d

dx

(
x+

x

1−
√
θ
E

(
x(1 +

√
θ),

1−
√
θ

1 +
√
θ

))

= 1 +
∑
n≥1

∑
k≥1

(n+ 1)En,k(1−
√
θ)k−1(1 +

√
θ)n−k x

n

n!
.
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Extracting the coefficient of xn−1 yields

gvn = n(1 +
√
θ)n−2

∑
k≥1

En−1,k

(
1−

√
θ

1 +
√
θ

)k−1

= n(1 +
√
θ)n−2An−1

(
1−

√
θ

1 +
√
θ

)

= n(2
√
θ)n

∑
j≥1

jn−1 (1−
√
θ)j−1

(1 +
√
θ)j+1

,

which completes the proof.

Corollary 3.15. If n ≥ 3, then the average number of valleys in Flatten(π)
over π ∈ Sn is given by n−3

3 .

Proof. Differentiating Gv(x) with respect to q and substituting q = 1 yields

d

dq
Gv(x)

∣∣∣∣
q=1

=
2x3(2− x)

3(1− x)3
.

Thus, the total number of valleys in Flatten(π) over all π ∈ Sn is given by
n−3
3 n! for n ≥ 3, which completes the proof.

3.5. Combinatorial proofs

In this section, we explain, bijectively, the previous formulas for the average
number of occurrences of the various subword patterns. We first consider
the cases for descents, ascents, and 321-subwords.

Combinatorial proofs of Corollaries 2.2, 2.4 and 3.8. We first treat
Corollary 2.2. Upon multiplying by n!, one sees that the total number of
descents in the flattened sense within all of the permutations of [n] is given by(
n−1
2

)
(n− 1)! if n ≥ 1. This formula may then be explained combinatorially

as follows. First select two members i < j of [2, n]. It is enough to show
that the number of permutations π of length n such that the letters i and j
comprise a descent in Flatten(π) is (n− 1)!. To do so, first write the letters
in [i− 1] as a permutation in standard cycle form. Then add the letter i to
this permutation either within a current cycle (following some member of
[i− 1]) or as a new cycle (i) of length one. In the former case, we then write
the letter j just before i within its cycle, while in the latter case, we write
j at the end of the cycle directly preceding the 1-cycle (i). Finally, add the
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letters in [i+ 1, n]− {j} so that no letter comes between j and i. Note that
there are (n − 1)! ways in which to arrange all of the letters in [n] subject
to the above restriction upon treating ji as a single letter, which completes
the proof of Corollary 2.2.

For Corollary 2.4, first note that each of the n − 1 adjacencies within
any member of Sn is either a flattened ascent or descent. By subtraction
and Corollary 2.2, there are

(n− 1)n!−
(
n− 1

2

)
(n− 1)! =

(n− 1)(n+ 2)

2
(n− 1)!

flattened ascents within all of the permutations of length n.
A proof similar to the one given for Corollary 2.2 applies to Corollary 3.8

and shows that the total number of occurrence of 321 is (n− 2)!
(
n−1
3

)
. One

would now choose three elements i < j < k in [2, n] and treat the string kji
as a single letter (equivalent to i) when forming a permutation of length n
having kji as a subword in the flattened form. Note that such a string may
lie completely within a cycle, or straddle two cycles, with i being the first
letter of a new cycle.

Combinatorial proofs of Corollaries 3.12 and 3.15. We first treat
Corollary 3.15 and show equivalently in this case that there are n−3

3 n! valleys
in the flattened sense within all of the members of Sn, where n ≥ 3. We first
consider valleys of the form abc, where the letter c is not the first letter of
some cycle within a permutation, while the letter b may or may not be. Note
that there are 2

(
n−1
3

)
choices for a, b, c ∈ [2, n], as there is no restriction on

the relative sizes of a and c. Once a, b, and c have been selected, there are
(n − 2)! permutations having a valley involving these letters (in the given
order), upon treating the string abc as a single letter (equivalent to the
letter b, in fact). In all, there are 2

(
n−1
3

)
(n− 2)! valleys of the given form.

To complete the proof, we must show that there are

n− 3

3
n!− 2

(
n− 1

3

)
(n− 2)! = 4

(
n− 1

3

)
(n− 3)!

valleys in the flattened sense of the form rst, where t starts a cycle, within
all of the members of Sn. To do so, we first count the number of occurrences
of rs within all the permutations of length n (expressed in standard cycle
form) such that (i) r > s; (ii) either r and s occur in the same cycle as the
last two letters in their cycle or r occurs at the end of a cycle, with (s) the
next cycle; and (iii) either no cycle follows the one containing s (in either
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case of (ii)) or the cycle directly following the one containing s starts with
a letter that is greater than s.

Note that there are 2
(
n−1
2

)
(n− 2)! occurrences of rs satisfying the con-

ditions (i)-(iii). To see this, first pick any two elements r, s ∈ [2, n] and then
arrange the remaining members of [n] as a permutation σ in standard cycle
form in any one of the possible (n− 2)! ways. Once this is done, either add
the string rs to the end of the cycle of σ whose smallest element is largest
among those cycles whose smallest element is less than s, or add r to the end
of this cycle of σ and then add the 1-cycle (s) directly after it. In the latter
case, note that the cycle (s) might possibly go between two cycles of σ, but
that the ordering of the cycles would be preserved in this case nonetheless.

From all the occurrences of rs satisfying conditions (i)-(iii) above, we
subtract those occurrences in which no cycle follows the one containing s
in (iii). (Note that this will give the total number of valleys rst, where t
starts a cycle.) To count these occurrences of rs, we equivalently count the
permutations π of [n] containing two letters r and s such that r > s, where
r and s are the last two letters in Flatten(π). To count such permutations,
first pick three numbers u < s < r of [n]. Arrange the members of [u−1] as a
permutation in standard form; then add u as a 1-cycle to this permutation;
then add the members of [u+ 1, n]− {s, r} such that no letter starts a new
cycle; finally, either add r and s to the end of the cycle containing u or just
add r to the end of this cycle along with the 1-cycle (s). Note that there are

2(u− 1)!

s−1∏
i=u+1

(i− 1)

r−1∏
j=s+1

(j − 2)

n∏
k=r+1

(k − 3) = 2(n− 3)!

ways in which to arrange the members of [n] as described, once u, s and r
have been chosen.

This implies that there are 2
(
n
3

)
(n − 3)! permutations of the form de-

scribed in the previous paragraph and thus, the same number of occurrences
of rs satisfying (i)-(iii) in which there is no cycle following the one contain-
ing s. By subtraction, we get

2

(
n− 1

2

)
(n− 2)!− 2

(
n

3

)
(n− 3)! = 4

(
n− 1

3

)
(n− 3)!

valleys of the form rst where t starts a cycle within all of the members of Sn,
as desired, which completes the proof of Corollary 3.15.

For Corollary 3.12, first note that there are the same number of peaks as
there are valleys in the flattened sense within a permutation π if and only if
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the last two letters of Flatten(π) comprise an ascent and there is one more
peak than valley if and only if the last two letters of Flatten(π) comprise a
descent. From the proof above for valleys, we see that there are 2

(
n
3

)
(n−3)! =

n!
3 permutations of length n whose last two letters form a flattened descent.

Thus, there are n!
3 more peaks than valleys within all of the members of Sn

and so the total number of peaks is n−2
3 n!, by the prior result.

Combinatorial proof of Corollary 3.6. First note that, by subtraction,
we have

total(123) = total(ascents)− total(ascents at end)− total(peaks),

where total(st) denotes the total number occurrences of the statistic in the
flattened sense within all of the members of Sn (by ascent at end, we mean an
ascent involving the final two letters of the flattened form). From the proof
of Corollary 3.15 above, we see that there are 2

(
n
3

)
(n − 3)! = n!

3 flattened

descents in all involving the final two letters and hence n!− n!
3 = 2n!

3 ascents
in all involving these letters, by subtraction. By Corollaries 2.4 and 3.12, we
then have

total(123) =
(n− 1)(n+ 2)

2
(n− 1)!− 2n!

3
− n− 2

3
n!

=
n2 + 3n− 6

6
(n− 1)!,

which completes the proof.

4. Conclusion

Lemma 3.1 holds for all patterns of length three and can even be generalized
to patterns of greater length. In fact, there are other patterns involving three
letters. For example, there are the patterns 132, 213, 231, 312, and those
of the form (i, j, k) where either i = max{i, j, k} or k = max{i, j, k} or
i = min{i, j, k} or k = min{i, j, k}. Among these eight patterns, only the
pattern of i = min{i, j, k} admits to the exchanging trick, which is necessary
for solving it by the technique featured in the current paper. However, for
this pattern, we will need a different technique to deal with gn(1ij) in the
case when j > i.

We note further that the methods of the third section provide not only
explicit formulas for gstn but also formulas for gstn (1k), where 2 ≤ k ≤ n and
st ∈ {r, d, p, v}, upon substituting the respective expressions for gstn back
into Theorems 3.3, 3.7, 3.9 and 3.13.
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We also remark that the method presented in the previous section ap-
plies to the descent statistic discussed in Section 2. Let gdesn (a1a2 · · · ak) =∑

π q
des(Flatten(π)), where π ranges over all permutations of length n such

that Flatten(π) starts with a1a2 · · · ak. One may show for all k ≥ 3 that

gdesn (1k) =

k−1∑
i=1

αk,i(−θ)i−1· gdesn−i,

where αk,i =
(
k−1
i−1

)
−
(
k−3
i−3

)
is as in Theorem 3.3 and gn = gn(1). Along these

same lines, we may deduce

gdesn =

n∑
i=1

[(
n

i

)
−
(
n− 2

i− 2

)]
(−θ)i−1· gdesn−i,

which implies the generating function (9).
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