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Coincidental pattern avoidance

BRIDGET EILEEN TENNER*

There are several versions of permutation pattern avoidance that
have arisen in the literature, and some known examples of two
different types of pattern avoidance coinciding. In this paper, we
examine barred patterns and vincular patterns. Answering a ques-
tion of Steingrimsson, we determine when barred pattern avoidance
coincides with avoiding a finite set of vincular patterns, and when
vincular pattern avoidance coincides with avoiding a finite set of
barred patterns. There are 720 barred patterns with this property,
each having between 3 and 7 letters, of which at most 2 are barred,
and there are 48 vincular patterns with this property, each having
between 2 and 4 letters and exactly one bond.

KEYWORDS AND PHRASES: Permutation, pattern, barred pattern, vin-
cular pattern, generalized pattern.

1. Introduction

A number of phenomena are equivalent to pattern avoidance; that is, the ob-
jects possessing a particular property P can be described by permutations,
and these permutations are precisely the permutations that avoid a partic-
ular set of patterns S(P). For example, the permutations whose principle
order ideals in the Bruhat order are boolean are exactly those permuta-
tions that avoid the two patterns 321 and 3412 [11]. For classical pattern
avoidance, such phenomena are catalogued in [10].

The classical idea of pattern avoidance began with the work of Simion
and Schmidt [8]. Since then, variations on the theme have been developed,
including barred patterns, vincular patterns, bi-vincular patterns, mesh pat-
terns, marked mesh patterns, and Bruhat-restricted patterns. The purpose
of the current paper is to describe the relationship between the first two
of these variations: barred patterns and vincular patterns. Barred patterns
were first introduced by West [14], where he showed that two-stack sortable
permutations are exactly those that avoid a particular classical pattern on
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4 letters and a barred pattern on 5 letters. One of the first enumerative
studies of barred patterns was by Pudwell in [7]. Vincular patterns, also
called “generalized” or “dashed” patterns, were first studied systematically
by Babson and Steingrimsson in [1], where many Mahonian permutation
statistics were shown to be linear combinations of vincular patterns. Vin-
cular patterns were also surveyed in [9]. (For the sake of completeness, we
point out that the other types of patterns mentioned above can be found
in [2, 3, 13, 15], respectively. More generally, patterns in both permutations
and words have been explored in the text [6].)

Perhaps surprisingly, given their definitions, there are sporadic instances
of different types of pattern avoidance coinciding. For example,

Av(132) = Av(132),
Av(41352) = Av(3142), and
Av(6317524) = Av(52413, 631524, 526413)

(see Lemma 2.14 and Example 5.2). On the other hand, for any classical
permutation p, there is no set of barred permutations B for which Av(p)
and Av(B) are the same set (see Lemma 2.12).

In this paper, we answer a question of Steingrimsson, posed in [9], to
characterize when barred pattern avoidance can be mimicked by avoiding a
set of vincular patterns. We also answer the symmetric question, of when
vincular pattern avoidance can be mimicked by avoiding a set of barred pat-
terns. These answers appear in Theorem 5.1 and Corollary 5.6, respectively,
and it turns out that there are exactly 720 barred patterns that can be
mimicked in this way, and 48 vincular patterns that can be. The elements
in this latter category are listed explicitly in Table 3.

Section 2 is devoted to carefully defining barred and vincular patterns,
giving examples of each, and exploring basic properties. In Sections 3 and 4,
we lay the groundwork for stating and proving the main results of the paper,
which occur in Sections 5 and 6, respectively. Finally, in the last section, we
suggest two directions for further research on this topic.

2. Flavors of pattern avoidance

When studying permutation patterns, it is most useful to write permutations
in one-line notation, although it should be noted that a relationship between
patterns and reduced decompositions was shown in [12]. Throughout this
paper, all permutations will be written in one-line notation.
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Definition 2.1. For a positive integer n, the set of integers {1,...,n} is
denoted [n].

Example 2.2. The permutation 52134 is the automorphism of [5] defined
byl—52—23—1 4~ 3,and 5+ 4.

The classical concept of pattern avoidance is that a permutation w con-
tains a pattern p if there is a subsequence of the one-line notation of w that
is in the same relative order as the letters in p. If w does not contain p, then
w avoids p.

Example 2.3.

e The permutation 52134 contains the pattern 312 because the letters
in the subsequence 513 are in the same relative order as the letters in
the pattern 312. There are also three other occurrences of the pattern
312 in 52134: 514, 523, and 524.

e The permutation 52134 avoids the pattern 1234 because it does not
have an increasing subsequence of length 4.

Patterns, whether they be classical, barred, or vincular, are concerned
with the relative order of values in a permutation. Thus, throughout this
paper, order isomorphic permutations of subsets of R will be considered
equivalent. This equivalence will be denoted “==,” or “=” when no confusion
can arise.

Example 2.4. As permutations of subsets of R, we have 312 ~ /5 —1 0.

The two pattern generalizations that we study in this work are barred
patterns and vincular patterns. Although this paper examines multiple types
of patterns simultaneously, it will be obvious from the notation whether a
given pattern is classical (no decoration), barred (bars over some symbols),
or vincular (brackets beneath some symbols). Given a barred or vincular
pattern p, the classical pattern underlying p, obtained by ignoring all deco-
rations, will be denoted ||p||.

Definition 2.5. A barred pattern is a permutation in which a subset of the
letters have bars written over them. A barred pattern is proper if bars cover
a proper subset of its letters. A permutation w contains a barred pattern
b if w contains an occurrence of the unbarred portion of b that is not also
part of an occurrence of an entire ||b||-pattern. Otherwise — that is, if each
occurrence of the unbarred portion of b in w is part of a ||b||-pattern — the
permutation w avoids b.
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Henceforth, all barred patterns will be assumed to be proper and simply
called “barred.”

Example 2.6. Consider the barred pattern b = 3241, where the unbarred
portion is 34 / 12. For a permutation w to contain b, some 12-pattern in w
must not be part of a 3241-pattern in w. The permutation 42351 contains b
because the increasing subsequence 23 is not part of any 3241-pattern. On
the other hand, the permutation 43251 avoids b.

Generalizing the idea of classical patterns in a different direction, vincu-
lar patterns allow some letters in the pattern to be forced to be consecutive,
or “bonded” together (hence the terminology).

Definition 2.7. A wvincular pattern is a classical permutation in which
consecutive symbols, including the left and right endpoints (each of which is
denoted “x”), may be bonded together. A vincular pattern is proper if there
is at least one bond and if the non-* symbols are not all bonded together.
A permutation w contains a vincular pattern v if w contains a ||v||-pattern in
which any substring bonded together in v must appear consecutively in w. If
the left (respectively, right) “x” is bonded to its adjacent symbol in v, then
the corresponding letter in w must appear in the leftmost (respectively,

rightmost) position of w. Otherwise, the permutation w avoids v.

Henceforth, all vincular patterns will be assumed to be proper, and sim-
ply called “vincular.”
In a vincular pattern, brackets are drawn to indicate the bonds.

Example 2.8.

e Consider the vincular pattern v = 3 14 2. The permutation 41532 con-
tains v in two ways: 4153 and 4152. The permutation 41352 avoids v
because, although 4152 is a ||v||-pattern in 41352, the 1 and the 5 are
not consecutive.

e Consider the vincular pattern v = %x3142. The permutation 41532
contains v in two ways: 4153 and 4152. The permutation 24153 avoids
v because the single occurrence of |lv|| in w does not begin in the
leftmost position of 24153.

In general, we define the set of permutations avoiding a pattern as fol-
lows.

Definition 2.9. For a (classical, barred, or vincular) pattern p, let Av(p)
be the set of permutations that avoid p. Similarly, if P is a collection of
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patterns (possibly of different types), then Av(P) is the set of permutations
simultaneously avoiding all patterns in P:

Av(P) = () Av(p).

peEP

It will be helpful to note that for any p € P,
Av(P) C Av(p).

The following lemma follows immediately from Definitions 2.5 and 2.7.

Lemma 2.10. Let b be a barred pattern and v a vincular pattern. Then
|Ibl| € Av(b) and ||v| & Av(v).

Barred and vincular patterns have arisen in numerous contexts in the
literature. We highlight a few of these here. Precise definitions of the object
they characterize are not relevant to this work, and the interested reader is
referred to the citations given.

Example 2.11.

e The two-stack sortable permutations are Av(2341,35241) (see [14]).

e Baxter permutations are Av(41352,25314) (see [5]).

e The elements of Av(3142,2413) are in bijection with £(1,0)-trees
(see [4]).

e By definition, alternating permutations are Av(123,321,x12) and re-
verse alternating permutations are Av(123,321, x21).

—

There are some situations where vincular pattern avoidance can be
equivalently phrased in terms of classical pattern avoidance, such as
Av(132) = Av(132). However, the same cannot be said for barred pattern
avoidance.

Lemma 2.12. Let p be a permutation. There is no set B of barred patterns
such that Av(p) = Av(B).

Proof. Suppose, to the contrary, that there is such a B. Let b € B have
minimally many unbarred letters. If p is a permutation of [n], then Av(p)
contains all permutations of [k] for each k¥ < n. Thus b must have at least n
unbarred letters. Because p € Av(p), the unbarred portion of b must actually
be a p-pattern. But then ||b|| &€ Av(p) = Av(B) C Av(b), contradicting
Lemma 2.10. O
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On the other hand, as pointed out in [9], there are some situations where
avoidance of a barred pattern is equivalent to avoidance of a suitably chosen
vincular pattern.

Example 2.13.

o Av(41352) = Av(3142).
o Av(25314) = Av(2413).

o Av(21354) = Av(2143).

The veracity of the three parts of Example 2.13 is easy to show, and we
prove one of them here. Proofs of the other two are entirely analogous.

Lemma 2.14. Av(41352) = Av(3142).

Proof. Suppose w € Av(41352). Thus any occurrence of 3142 in w must have
a relative value of 2.5 sitting between the “1” and the “4” in that pattern.
Thus w avoids the vincular pattern 3142, and so w € Av(3142). Hence
Av(41352) C Av(3142).

If w ¢ Av(41352), then there is a 3142-pattern in w that is not part of any
41352-pattern in w. Choose this occurrence of 3142 in w so that the positions
of “1” and “4” are as close together in w as possible. This ensures that no
values less than the “2,” nor greater than the “3,” appear between this “1”
and “4.” Because this 3142-pattern is not part of a 41352-pattern, no values
between the “2” and the “3” appear in any of these positions either. Thus
the “1” and “4” must actually be adjacent, and so we have an occurrence of
3142. Hence w ¢ Av(3142), and so Av(41352) D Av(3142). O

In contrast to Example 2.13, it is not the case that avoidance of a barred
pattern is always equivalent to avoidance of a finite set of vincular patterns.

Lemma 2.15. There is no finite set of vincular patterns V for which
Av(123) = Av(V).

Proof. Suppose, to the contrary, that there is such a finite set V.

Because 1,123 € Av(123) but 12 ¢ Av(123), we must have x12x € V.
Moreover, because 123 € Av(123), this is the only element of V whose un-
derlying classical pattern is 12.

Fix an integer n > 0 and suppose, inductively, that for all 0 < k < n,
there is a unique v, € V with |lvg|| = k(k — 1)---4312, and that in fact
vk = xk(k —1)---4312x.

Consider u = n(n — 1) ---4312. Because u € Av(123), it must contain
some v € V. Because Av(123) = Av(V), Lemma 2.10 implies v & Av(123).
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Thus |v|| = ||vk||, for some k < n. The inductive hypothesis implies that
k =n, so ||v|| = w itself. It remains only to determine the bonds in v.

For any ¢ € [n—2], inserting (—1)0 immediately before the ith letter in u
yields an element of Av(123). This ensures that the (i — 1)st and ith letters
must be bonded in v (where the 9th letter is the left endpoint). Moreover,

n(n —1)---4312(n 4+ 1)(n + 2) € Av(123),

so there must also be a bond between the rightmost letter in v and the right
endpoint. It now remains to determine whether 1 is bonded to either of its
neighbors in v. If at least one of these bonds does not exist, then v would
be contained in

(n+1)n---54123 € Av(123).

Thus 1 must be bonded to both of its neighbors, and so v =
sn(n —1)---4312«. Therefore, by induction, *n(n — 1) ---4312% € V for all

n > 0, contradicting the assumption that V was a finite set. O

In order to classify Lemmas 2.14 and 2.15, we introduce the following
terminology.

Definition 2.16. Suppose that B is a finite set of barred patterns and that
V is a finite set of vincular patterns. If Av(B) = Av(V), then B and V
are coincident. If B (respectively, V) is a finite set of barred (respectively,
vincular) patterns for which such a set V (respectively, B) exists, then B
(respectively, V) is coincidental. If B (respectively, V) is a coincidental set
containing just a single element, then that pattern itself is coincidental.

In [9], Steingrimsson posed the problem of classifying all coincidental
barred patterns.

Example 2.17. The barred patterns 41352, 25314, and 21354 are each coin-
cidental. The vincular patterns 3142, 241 3, and 2 14 3 are each coincidental.
The sets {41352} and {3142} are coincident. The barred pattern 123 is not
coincidental.

In the present work, we will refine the notion of a coincidental barred
permutation to what we call “naturally coincidental,” or “nat-co.” This
concept will be made precise in Definition 4.4, and is intended to capture
the particular prohibitions of the particular barred pattern. This restriction
is necessary because of the particularly sensitive nature of barred pattern
avoidance. More precisely, to avoid a barred pattern b, it is necessary that
a pattern property be true for every occurrence of the unbarred portion
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of b, and these cannot be systematically ruled out if we are not looking at
nat-co barred patterns. Note that it is rare for barred pattern avoidance to
characterize a certain phenomenon, and so it is perhaps not surprising that
we handle these patterns delicately.

Of the two characterizations, it is optimal to start with coincidental
vincular patterns because, as shown in Proposition 3.4, each such pattern
is coincident with a single (and, as it turns out, naturally coincidental)
barred pattern. Thus both characterizations can be addressed by examining
naturally coincidental barred patterns (Theorem 5.1).

3. Preparation for coincidental vincular patterns

Definition 3.1. Fix a vincular pattern v. Consider the set Bo(v) of barred
patterns obtained by replacing a single bond of v by a barred symbol. Define
B(v) C Bp(v) to be those elements that, when viewed as classical permuta-
tions, do not also contain the vincular pattern v.

Example 3.2.

o B(3142x) = {41352, 42531, 31524, 31425}.
e B(3142) = {41352, 31452, 31542, 42513, 31542, 31452}.

Lemma 2.10 and the definition of B(v) immediately imply the following
result.

Corollary 3.3. For any vincular pattern v,
{||b]| : b€ B(v)} C (Av(v) ﬂAv(B(v))).
Elements of B(v) are those barred patterns whose bars reflect the vin-
cular nature of v.

Proposition 3.4. Ifv is a coincidental vincular pattern, then |B(v)| = 1.

Proof. Suppose, to the contrary, that Av(v) = Av(B) for some finite set B of
barred patterns, and that there exist distinct b, b’ € B(v). By Lemma 2.10,
we know that ||b|]| € Av(b) and ||b’|| € Av(b’). Also, the definition of B(v)

gives
(1) [IbIl, [[6]] € Av(v) = Av(B).

Suppose that v is a vincular pattern of n letters. Each barred pattern in
B must contain at least n unbarred letters, because Av(v) = Av(B) contains
all permutations of fewer than n letters. The barred patterns b and b’ each
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have n unbarred letters and a single unbarred letter, meaning that they must
be elements of B itself in order to satisfy equation (1). However, because

Ib]| & Av(b’) 2 (Av(b) N Av(b')) 2 Av(B) = Av(v),

this contradicts equation (1).

If B(v) = 0, then Av(v) = Av(]|v|]). But, by Lemma 2.12, such a v would
not be coincidental.

Thus B(v) = 1. O

Suppose that v is a coincidental vincular pattern. Then, by Proposi-
tion 3.4, we have B(v) = {b}, and Av(v) = Av(b). This b has the particular
form dictated by the definition of B(v), and it will be clear from Defini-
tion 4.4 that this b is then a naturally coincidental vincular pattern. Thus
the problem of determining exactly which vincular patterns are coincidental
is a special case of the problem of determining exactly which barred patterns
are nat-co, which will be treated in Theorem 5.1.

4. Preparation for (naturally) coincidental barred patterns

We now define what it means for a barred pattern to be nat-co.

Definition 4.1. Fix a barred pattern b. Remove a nonempty subset of the
barred letters from b, and replace each of them by a bond between the newly
adjacent letters. Finally, obtain a vincular pattern by ignoring any bars (not
the barred letters themselves) that remain. Let V(b) be the set of vincular
patterns obtained in this way.

Some of the vincular patterns obtained by the process described in Def-
inition 4.1 could be equivalent, as in the second example below.

Example 4.2.

o V(4T352) = {3241, 3142, 3124, 231, 213«, 213x, 12«}.
o V(512346) = {41235, 41235, 41235, 41235, 3124, 3124, 3124,
3124, 3124, 3124, 213, 213, 213, 12}.

The elements of V(b) are those vincular patterns whose bonds reflect
the barred nature of b. As such, these will be the only vincular patterns
we allow in our attempt to have vincular patterns mimic the behavior of a
barred pattern.

The next result follows immediately from the definition of the set V(b),
and is a complement to Corollary 3.3.
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Corollary 4.3. For any barred pattern b,
{lIv]l : v e V(b)} N Av(b) = 0.

Definition 4.4. A barred pattern b is naturally coincidental, or nat-co, if
Av(b) = Av(V(b)).

To show that 123 is not nat-co, it would suffice to prove that Av(123) #
Av(12). Thus Lemma 2.15 actually proves a stronger result about the barred
pattern 123.

In order to characterize nat-co barred patterns, we will need to consider
their maximal factors (that is, consecutive subsequences) of barred letters,
together with the letters (if any) that appear immediately to the left and
to the right of these factors. To this end, we define “boycotts,” so-named to
refer to the collective barring of a set of values.

Definition 4.5. Let b be a barred pattern. Suppose that b;b;11---b; is a
barred factor in b, of maximal length. Then X = {b;_1,b;,...,bj,bj11} is
a boycott of b. Let U(X) = {b;—1,bj;+1} be the set of unbarred letters in X,
and B(X) = {b;,...,b;} be the set of barred letters in X.

Note that either element of the set U(X) may be undefined, although
they are not both undefined because we have assumed that all barred pat-
terns are proper barred patterns.

Example 4.6. The barred pattern 924371568 has three boycotts. From left
to right, they are {2,4,9}, {1,3,5,7}, and {5,6,8}. Moreover, U({2,4,9}) =
{4} and B({2.4,9)) — {2.9).

The definition of a boycott gives the following easy result.

Lemma 4.7. Any distinct boycotts in a barred pattern share at most one
letter, and that letter is unbarred.

5. Main results

This paper gives a complete description of all naturally coincidental barred
patterns and all coincidental vincular patterns. These results are stated as
Theorem 5.1 and Corollary 5.6, respectively.

Theorem 5.1. A barred pattern of n letters is naturally coincidental if and
only if it has a unique boycott X and satisfies

e |[B(X)| <2,
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e for all distinct x,2' € X with {x,2'} # U(X), we have |z — 2'| > 1,
and
e for all0 < k <n, we have {k,k +1} N X # 0.

Note that the last bullet point of Theorem 5.1 means {1,n} € X, and
all three requirements force 3 < n < 7.

The proof of this result will follow from a sequence of smaller results,
and is presented in Section 6.

Example 5.2. It is easy to check that 1423, 15324, and 6317524 each satisfy
the hypotheses of Theorem 5.1. The conclusion for each case is given below.

o Av(1423) = Av(123).
o Av(T5324) = Av(x213, 1324, x4213).
o Av(6317524) = Av(524 13, 631524, 526413).

It is interesting to note that the non-boycott portion of a nat-co barred
pattern is unspecified, once the hypotheses of Theorem 5.1 are met. For
example, 15324 and 15342 are both nat-co barred patterns.

The restrictive nature of Theorem 5.1 yields several easy corollaries.

Corollary 5.3. A barred pattern of n letters is nat-co if and only if it as a
unique boycott X and satisfies

o n="Tand X = {1,3,5,7}, with |B(X)| = 2,
e n=06 and (U(X),B(X)) is one of the following pairs:

({1,2},{4,6}), ({3,4},{1,6}), or ({5,6},{1,3}),

e n=>5and X ={1,3,5}, with |B(X)| € {1, 2},
o n=4 and (U(X),B(X)) is one of the following pairs:

({1,2},{4}) or ({3,4},{1}), or
o n=23 and X = {1,3}, with |B(X)| necessarily equal to 1.

Note that Corollary 5.3 points out that for a nat-co barred pattern b,
there will be no degeneracy in the set V(b) as there had been in the second
part of Example 4.2.

Corollary 5.4. For any nat-co barred pattern b, the size of the set V(b) is
either 1 or 3. More precisely, if b has a single barred symbol then |V (b)| =1,
and if b has two barred symbols then |V(b)| = 3.

Corollary 5.5. There are 720 nat-co barred patterns.
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Table 1: The number of nat-co barred patterns having n letters, of which b
are barred. There are 0 nat-co barred patterns for each (n,b) not listed in
the table
|n=3]4]5 |6 | 7
b=1 4 8136 | 0 0
2 0 0124 | 72| 576

Table 2: Examples of nat-co barred patterns having n letters, of which b are
barred

|n=3] 4 | 5 | 6 | 7
b=1| 312 | 1423 | 15324 | - -
2| - — | 35124 | 146235 | 1573246

Corollary 5.5 is refined in Table 1.

An example of a nat-co barred permutation for each of the nonzero
entries in Table 1 is given in Table 2.

The complementary result to Theorem 5.1, the characterization of coin-
cidental vincular patterns, is now very easy to state. It follows from Proposi-
tion 3.4, and Definitions 3.1 and 4.1, that a vincular pattern v is coincidental
if and only if B(v) = {b} for some nat-co barred pattern b.

Corollary 5.6. There are 48 coincidental vincular patterns, all of which
were yielded by Theorem 5.1.

The 48 patterns of Corollary 5.6 are listed in Table 3. Note that the
first entry in each of the three columns of Table 3 has its corresponding
coincidental barred pattern in the b = 1 row of Table 2.

6. Proof of Theorem 5.1

The proof of Theorem 5.1 will be given in several steps. We first show that
each boycott in a nat-co barred pattern must contain both the smallest and
largest letters in the pattern, and hence there is exactly one boycott. We
will then describe the minimal and maximal distance between values in the
boycott, finally concluding that there are at most two barred letters in the
boycott.

Proposition 6.1. Let b be a nat-co barred pattern of n letters and X a
boycott in b. Then 1,n € X.

Proof. Suppose, to the contrary, that 1 ¢ X. (The proof that n € X is
entirely analogous.)
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Table 3: All coincidental vincular patterns, organized by number of letters,
n, in the pattern

n=2|n:3 |n:4

«12 | 123 312 1324 2134 2413

«21 | 213 321 | 1342 4132 4213

12« | 231 123| 3124 2314 2431

21x | 321 1323142 4312 4231
1423 2143 2314
1432 3142 3214
4123 2413 2341
4132 3412 3241
2413 1243 1324
2431 3241 3124
4213 1423 1342
4231 3421 3142

Write U(X) = {bj—1,bj+1} and B(X) = {b;, bi+1,...,b;}, where one or
both of the elements of U(X) may be undefined. Let v € V(b) be the unique
vincular pattern in V(b) having fewest letters, obtained from b by replacing
all of its barred symbols by bonds. Let z be the classical permutation ob-
tained by inserting a new smallest symbol between the bonded letters b;_;
and bjq in v. Note that

z & Av(b),
so z must contain some element of V(b).

Because 1 ¢ B(X), we have that z & {||V/|| : v/ € V(b)}. Similarly, be-
cause 1 ¢ U(X), the permutation z does not contain the vincular pattern v.
Because v is the unique element of V(b) using the fewest letters, and because
z has just one more letter than v does, we see that z does not contain any
of the vincular elements of V(b) as patterns, and so

2 € Av(V(b)).

This contradicts the assumption that Av(b) = Av(V(b)). O

The following corollary is an immediate result of Lemma 4.7 and Pro-
postion 6.1.

Corollary 6.2. A nat-co barred pattern b has exactly one boycott.

For the remainder of this section, suppose that b is a nat-co barred pat-
tern of n letters, with unique boycott X. Moreover, let U(X) = {b;—1,bj4+1}
and B(X) = {bz, bi+17 ceey b]}

Consider the proximity of values that appear in X.
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Proposition 6.3. For any distinct x,2’ € B(X), we have |z — 2’| > 1.

Proof. Suppose, to the contrary, that there exist 1 < h < I/ < j with
|bh — bh/ = 1. Then

by ---bp_1 bpbpy1 bpya---by € V(b)

is contained in b. Thus b ¢ Av(V(b)) = Av(b), contradicting Lemma 2.10.
O

Proposition 6.4. For any x € B(X) and 2’ € U(X), we have |x — 2’| > 1.

Proof. Suppose, to the contrary, that there exists b, € B(X) such that
(without loss of generality) |b;, — b;—1| = 1. Then

by---bi_2b;_1bpt1 bpio-- by € V(b)

is contained in b. Thus b ¢ Av(V(b)) = Av(b), again contradicting Lem-
ma 2.10. O

The previous two propositions demonstrate that there is a minimal dis-
tance between values in B(X) and between B(X) and U(X) values. The
next proposition shows that there is also a maximal distance between values
in X.

Proposition 6.5. For all 0 < k < n, we have {k,k+ 1} N X # (.

Proof. Suppose, to the contrary, that there is such a k with k., k+1 ¢ X.
Consider

z=Dby--- bi_l(k + .5)bj+1 - by,
obtained by removing the entire barred factor b and inserting k + .5 in its
place. By construction, z & {|lv|]| : v € V(b)}, and z does not contain the
vincular pattern by ---b;_1bjyq1---b, € V(b). Thus z € Av(V(b)). However,
z & Av(b), yielding a contradiction. O

Proposition 6.6. |B(X)| < 2.

Proof. Suppose, to the contrary, that |B(X)| > 2; that is, j — ¢ > 1. Then
consider

y="by--- bi—lbi+1(bi+1 + '5)bj+1 R

By Propositions 6.3-6.5, we have y € Av(V(b)). However, once again we
have y & Av(b), yielding a contradiction. O
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Propositions 6.3-6.6 now prove one direction of Theorem 5.1: if a barred
pattern is nat-co then it must satisfy the listed points. The other direction
of the theorem is given by the following proposition.

Proposition 6.7. If a barred pattern b has one of the forms outlined in
Corollary 5.3, then b is nat-co.

Because the rules are so restrictive, Proposition 6.7 is easy to check
by hand and relies entirely on the following observation: inserting a value
to break the bond in some v € V(b) will always yield a permutation that
again contains a pattern from V(b), or else is equal to b itself. The proof of
Lemma 2.14 demonstrates the procedure.

7. Further directions

There are two obvious directions for future research. The first is to char-
acterize all sets of coincidental barred or vincular patterns — not just those
of cardinality 1. Certainly there are such sets, as indicated by Example 5.2.
Also, although our imposed “natural” coincidence restriction for barred pat-
terns was entirely in keeping with their barred behavior, it could be inter-
esting to try to characterized all coincidental barred patterns after relaxing
this rule. Barred pattern containment can be especially fussy, and so it is
not clear that completely removing the naturality condition would yield in-
teresting results. However, there may still be some intermediate requirement
that would be informative.
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