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1. Introduction

The aim of this note is to provide a new combinatorial proof of a well-known
infinitary extension of the Hales–Jewett theorem. To state it, we need first
to recall the relevant terminology. Let A be an alphabet (i.e. any non-empty
set). The elements of A will be called letters. By W (A) we denote the set of
constant words over A, that is the set of all finite sequences with elements
in A including the empty sequence. For N ∈ N, by AN , we denote all finite
sequences from A, consisting of N letters. We also fix an element x /∈ A
which will be regarded as a variable. A variable word over A is an element
inW (A∪{x})\W (A). The variable words will be denoted by s(x), t(x), w(x),
etc. Given a variable word s(x) and a ∈ A, by s(a) we denote the constant
word in W (A) resulting from the substitution of the variable x with the
letter a. Let q ∈ N with q ≥ 1, then a q-coloring of a set X is any map
c : X → {1, . . . , q}. A subset Y of X will be called monochromatic, if there
exists 1 ≤ i ≤ q such that c(y) = i, for all y ∈ Y . Finally, for every finite set
X, by |X| we denote its cardinality.

We recall the following fundamental result in Ramsey Theory, due to
A. Hales and R. Jewett [8].

Theorem 1. For every positive integers p, q there exists a positive integer
HJ(p, q) with the following property. For every finite alphabet A with |A| =
p, every N ≥ HJ(p, q) and every q-coloring of AN there exists a variable
word w(x) of length N such that the set {w(a) : a ∈ A} is monochromatic.

∗The author would like to thank both Pandelis Dodos and Vassilis Kanellopoulos,
for all the stimulating discussions during the preparation of this paper.
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The Hales–Jewett theorem gave birth to a whole new branch of research

concerning extensions of it in the context of both finite and infinite alphabets

(see [3–6, 10, 14, 15]). For an exposition of these results the reader can also

refer to [7, 11, 13, 16].

The first theorem that we will prove is due to T. Carlson [3] and inde-

pendently due to H. Furstenberg and Y. Katznelson [5] and is the following.

Theorem 2. Let A be a finite alphabet. Then for every finite coloring of

W (A) there exists a sequence (tn(x))
∞
n=0 of variable words over A such that

for every n ∈ N and every m0 < m1 < · · · < mn, the words of the form

tm0
(a0)tm1

(a1) · · · tmn
(an) with ai ∈ A for all 0 ≤ i ≤ n are of the same

color.

Our approach for Theorem 2 can be extended in order to provide a proof

for a stronger version of it which concerns infinite increasing sequences of

finite alphabets and is the following.

Theorem 3. Let (An)
∞
n=0 be an increasing sequence of finite alphabets and

let A = ∪n∈NAn. Then for every finite coloring of W (A) there exists a

sequence (tn(x))
∞
n=0 of variable words over A such that for every n ∈ N and

every m0 < m1 < · · · < mn, the words of the form tm0
(a0)tm1

(a1) · · · tmn
(an)

with a0 ∈ Am0
, a1 ∈ Am1

, . . . , an ∈ Amn
are of the same color.

Let us point out that there exist easy counterexamples that show that

a direct extension of Theorem 2 for an infinite alphabet A is false. The-

orem 3 is a consequence of a more general result of T. Carlson (see [3,

Theorem 15]). The original proofs of Theorems 2 and 3 are based on topo-

logical as well as algebraic notions of the Stone–Čech compactification of the

related structures. Our approach is strictly combinatorial and relies on the

classical Hales–Jewett theorem. It has its origins in the proof of Hindman’s

theorem [9] due to J. E. Baumgartner [1] and is close in spirit with the proof

of Carlson–Simpson’s theorem [4]. In particular, a proof of a weaker version

of Theorem 2, given by R. McCutcheon in [13, §2.3], was the motivation for

this note.

Clearly, Theorem 2 is a consequence of Theorem 3. Although the proofs

of both theorems follow similar arguments, Theorem 3 is more demanding

and quite more technical. For this reason and in order to make the presen-

tation more clear, we have decided to start with a detailed exposition of

Theorem 2 and then proceed to Theorem 3. The present note is an updated

and extended version of part of [12].
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2. Proof of Theorem 2

2.1. Preliminaries

In this subsection we introduce some notation and terminology that we will

use for the proof of Theorem 2. For the following, we fix a finite alphabet A.

Let V (A) be the set of all variable words (over A). By V <∞(A) (resp.

V ∞(A)) we denote the set of all finite (resp. infinite) sequences of variable

words. Also let V ≤∞(A) = V <∞(A) ∪ V ∞(A). Generally, the elements of

V ≤∞(A) will be denoted by �s,�t, �w, etc. Also by N = {0, 1, . . .} we denote

the set of all non negative integers.

2.1.1. Constant and variable span of a sequence of variable words

over A Let m ∈ N and (sn(x))
m
n=0 ∈ V <∞(A).

(a) The constant span of (sn(x))
m
n=0, denoted by 〈(sn(x))mn=0〉c, is defined

to be the set

m⋃

n=0

{
sl0(a0) · · · sln(an) : 0 ≤ l0 < · · · < ln ≤ m, a0, . . . , an ∈ A

}
.

(b) The variable span of (sn(x))
m
n=0, denoted by 〈(sn(x))mn=0〉v, is defined

to be the set

V (A)∩
m⋃

n=0

{
sl0(a0) · · · sln(an) : 0 ≤ l0 < · · · < ln ≤ m, a0, . . . , an ∈ A∪{x}

}
.

The above notation is naturally extended to infinite sequences of variable

words as follows. Let (sn(x))
∞
n=0 ∈ V ∞(A). The constant span of (sn(x))

∞
n=0

is the set

〈(sn(x))∞n=0〉c={sl0(a0) · · · sln(an) : n ∈ N, 0 ≤ l0 < · · · < ln, a0, . . . , an ∈ A}

and the variable span of (sn(x))
∞
n=0, denoted by 〈(sn(x))∞n=0〉v, is the set

V (A) ∩
{
sl0(a0) · · · sln(an) : n ∈ N, 0 ≤ l0 < · · · < ln, a0, . . . , an ∈ A ∪ {x}

}
.

In the following we will also write 〈�s〉c (resp. 〈�s〉v) to denote the constant

(resp. variable) span of an �s ∈ V ≤∞(A).
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2.1.2. Extracted subsequences of a sequence of variable words We

start with the following definition.

Definition 4. Let �s = (sn(x))
∞
n=0 ∈ V ∞(A).

(a) Let l ∈ N and �t = (tn(x))
l
n=0 ∈ V <∞(A). We say that �t is a (finite)

extracted subsequence of �s if there exist 0 = m0 < · · · < ml+1 such that

ti(x) ∈ 〈(sn(x))mi+1−1
n=mi

〉v,

for all 0 ≤ i ≤ l.

(b) Let �t = (tn(x))
∞
n=0. We say that �t is an (infinite) extracted subse-

quence of �s if for every l ∈ N the sequence (tn(x))
l
n=0 is an finite extracted

subsequence of �s.

In the following we will write �t ≤ �s whenever �t ∈ V ≤∞(A), �s ∈ V ∞(A)
and �t is an extracted subsequence of �s. The next fact follows easily from the

above definitions.

Fact 5. Let �s ∈ V ∞(A).

(i) If �t ∈ V ≤∞(A) with �t ≤ �s then 〈�t〉c ⊆ 〈�s〉c and 〈�t〉v ⊆ 〈�s〉v.
(ii) If �w ∈ V ≤∞(A) and �t ∈ V ∞(A) with �w ≤ �t ≤ �s then �w ≤ �s.

2.1.3. The notion of large families The next definition is crucial for
the proof of Theorem 2.

Definition 6. Let E ⊆ W (A) and �s ∈ V ∞(A). Then E will be called large
in �s if E ∩ 〈�w〉c �= ∅, for every infinite extracted subsequence �w of �s.

We close this subsection with some properties of large families.

Fact 7. Let E ⊆ W (A) and �s = (sn(x))
∞
n=0 ∈ V ∞(A) such that E is large

in �s. Then for every �t ≤ �s we have that E is large in �t.

Moreover, arguing by contradiction, we obtain the following.

Fact 8. Let E ⊆ W (A) and �s ∈ V ∞(A) such that E is large in �s. Let r ≥ 2

and let E =
⋃r

i=1Ei. Then there exist 1 ≤ i ≤ r and �t ≤ �s such that Ei is
large in �t.

For the following fact, we will need the next definition.

Definition 9. Let m ∈ N and (sn(x))
m
n=0 ∈ V <∞(A). We set

[(sn(x))
m
n=0]c =

{
s0(a0) · · · sm(am) : a0, . . . , am ∈ A

}
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and

[(sn(x))
m
n=0]v = V (A) ∩

{
s0(a0) · · · sm(am) : a0, . . . , am ∈ A ∪ {x}

}
.

The next fact is a direct application of the Hales–Jewett theorem. In

a sense, it is a strengthening of Definition 6. More precisely, we have the

following.

Fact 10. Let E ⊆ W (A) and �s = (sn(x))
∞
n=0 ∈ V ∞(A) such that E is

large in �s. Then there exist m ∈ N and w(x) ∈ 〈(sn(x))mn=0〉v such that

{w(a) : a ∈ A} ⊆ E.

Proof. Assume to the contrary that the conclusion fails. By induction we

construct a sequence �w = (wn(x))
∞
n=0 ≤ �s such that 〈�w〉c ⊆ Ec which

is a contradiction since E is large in �s. The general inductive step of the

construction is as follows. Let n ≥ 1 and assume that (wi(x))
n−1
i=0 ≤ �s and

〈(wi(x))
n−1
i=0 〉c ⊆ Ec. Let n0 ≥ 1 be the least integer satisfying w0(x) · · ·

wn−1(x) ∈ 〈(si(x))n0−1
i=0 〉v. We set

N = HJ
(
|A|, 2(|A|+1)n

)
.

To each w ∈ [(sn0+i(x))
N−1
i=0 ]c we assign the set

{
uw : u ∈ 〈(wi(x))

n−1
i=0 〉c ∪

{∅}
}
. It is easy to see that |〈(wi(x))

n−1
i=0 〉c∪{∅}| ≤ (|A|+1)n. Therefore, since

either uw ∈ E or uw ∈ Ec, the above correspondence induces a 2(|A|+1)n-

coloring of the set [(sn0+i(x))
N−1
i=0 ]c. By the choice ofN , there exists a variable

word w(x) ∈ [(sn0+i(x))
N−1
i=0 ]v such that for each u ∈ 〈(wi(x))

n−1
i=0 〉c ∪ {∅},

the set {uw(a) : a ∈ A} either is included in E or disjoint from E. By

our assumption, there is no u ∈ 〈(wi(x))
n−1
i=0 〉c ∪ {∅} satisfying the first

alternative. So setting wn(x) = w(x) we easily see that (wi(x))
n
i=0 ≤ �s and

〈(wi(x))
n
i=0〉c ⊆ Ec. The inductive step of the construction of �w is complete

and as we have already mentioned in the beginning of the proof this leads

to a contradiction.

2.2. The main arguments

We pass now to the core of the proof. We will need the next definition.

Definition 11. Let E and F be non empty subsets of W (A). We define

EF = {z ∈ W (A) : wz ∈ E for every w ∈ F}.
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Lemma 12. Let E ⊆ W (A) and �s = (sn(x))
∞
n=0 ∈ V ∞(A) such that E is

large in �s. Then there exist m ≥ 1, w(x) ∈ 〈(sn(x))m−1
n=0 〉v and �t ∈ V ∞(A)

with �t ≤ (sn(x))
∞
n=m such that if we set F = {w(a) : a ∈ A} then E ∩EF is

large in �t.

Proof. We start with the following claim.

Claim 1. There exists n0 ∈ N such that for every z ∈ 〈(si(x))∞i=n0+1〉c there
exists w(x) in 〈(si(x))n0

i=0〉v such that {w(a)z : a ∈ A} ⊆ E.

Proof of Claim 1. Assume that the claim is not true. Then for every n ∈ N
there exists z ∈ 〈(si(x))∞i=n+1〉c such that for every w(x) ∈ 〈(si(x))ni=0〉v, the
set {w(a)z : a ∈ A} is not contained in E. Using this assumption we easily
find a strictly increasing sequence (kn)

∞
n=0 in N with k0 = 0 and a sequence

(zn)
∞
n=0 in W (A) such the following are satisfied.

(i) For every n ∈ N, we have zn ∈ 〈(si(x))kn+1−1
i=kn+1〉c.

(ii) For every n ∈ N and every variable word u(x) ∈ 〈(si(x))kn

i=k0
〉v we have

that {u(a)zn : a ∈ A} � E.

For every n ∈ N, we set vn(x) = skn
(x)zn.

By (i) we get that (sk0
(x)z0, . . . , skn

(x)zn) ≤ �s, for all n ∈ N and there-
fore, (vn(x))

∞
n=0 ≤ �s. Moreover, notice that every w(x) ∈ 〈(vn(x))∞n=0〉v is of

the form w(x) = u(x)zn, for some unique n ∈ N and

u(x) ∈ 〈(v0(x), . . . , vkn−1
(x), skn

(x)〉v.

Hence, since 〈(v0(x), . . . , vkn−1
(x), skn

(x)〉v ⊆ 〈(si(x))kn

i=k0
〉v, by (ii) we get

that {w(a) : a ∈ A} � E, for every w(x) ∈ 〈(vn(x))∞n=0〉v. But since
(vn(x))

∞
n=0 ≤ �s, E is large in (vn(x))

∞
n=0 and so by Fact 10 we arrive to

a contradiction.

We set m = n0+1. Also, let L = 〈(sn(x))m−1
n=0 〉v and for every w(x) ∈ L,

let F (w(x)) = {w(a) : a ∈ A}.
By Claim 1, we have that 〈(si(x))∞i=m〉c ⊆

⋃
w(x)∈LEF (w(x)) and there-

fore,

E ∩ 〈(si(x))∞i=m〉c ⊆
⋃

w(x)∈L
E ∩ EF (w(x)).

Hence,
⋃

w(x)∈LE ∩ EF (w(x)) is large in (si(x))
∞
i=m. So, by Fact 8, there

exist w(x) ∈ L and �t ≤ (sn(x))
∞
n=m such that E ∩ EF (w(x)) is large in �t, as

desired.
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Lemma 13. Let E ⊆ W (A) and �s ∈ V ∞(A) such that E is large in �s. Then
there exists a sequence (wn(x))

∞
n=0 ≤ �s such that setting Fn = 〈(wi(x))

n
i=0〉c

we have that E ∩ EFn
is large in (wi(x))

∞
i=n+1, for all n ∈ N.

Proof. Iterating Lemma 12 we obtain a sequence (wn(x))
∞
n=0 of variable

words, a sequence (�sn)
∞
n=0 in V ∞(A) with �s0 = �s and a sequence (mn)

∞
n=0 in

N, with m0 = 0 and mn ≥ 1 for all n ≥ 1, such that setting �sn = (s
(n)
i (x))∞i=0

then the following are satisfied.

(i) wn(x) ∈ 〈(s(n)i (x))
mn+1−1
i=0 〉v.

(ii) �sn+1 is an extracted subsequence of (s
(n)
i (x))∞i=mn+1

.
(iii) The set E ∩ EFn

is large in �sn+1.

The above construction is straightforward; we only mention that for the
proof of (iii) we use the following identity.

(E ∩ EFn
) ∩ (E ∩ EFn

)〈wn+1(x)〉c = E ∩ EFn+1
.

By conditions (i) and (ii) we easily see that �w ≤ �s and moreover, for every
n ∈ N, (wi(x))

∞
i=n ≤ �sn. Hence by condition (iii) and Fact 7 we obtain that

E ∩ EFn
is large in (wi(x))

∞
i=n+1, for all n ∈ N.

Corollary 14. Let E ⊆ W (A) and �s ∈ V ∞(A) such that E is large in �s.
Then there exists an extracted subsequence �t = (tn(x))

∞
n=0 of �s such that

〈�t〉c ⊆ E.

Proof. Let �w = (wn(x))
∞
n=0 be the sequence obtained in Lemma 13. Since E

is large in �s and �w ≤ �s, we obtain that E is large in �w and therefore, by
Fact 10, we have that there exist r1 ≥ 1 and t0(x) ∈ 〈(wi(x))

r1−1
i=0 〉v such

that {t0(a) : a ∈ A} ⊆ E. We set G0 = 〈t0(x)〉c and F = 〈(wi(x)
r1−1
i=0 〉c. By

Lemma 13, we have that E ∩ EF is large in (wi(x))
∞
i=r1

. Since G0 ⊆ F we
get that EF ⊆ EG0

and hence, E ∩ EG0
is large (wi(x))

∞
i=r1

. Using again
Fact 10, applied for E ∩ EG0

, we find r2 > r1 and a variable word t1(x) ∈
〈(wi(x))

r2−1
i=r1

〉v such that 〈t1(x)〉c ⊆ E ∩ EG0
. We set G1 = 〈(t0(x), t1(x))〉c

and we notice that G1 ⊆ E and also that E ∩ EG1
is large in (wi(x))

∞
i=r2

.

Proceeding similarly, we construct a sequence �t = (tn(x))
∞
n=0 ≤ �w ≤ �s

such that 〈(ti(x))ni=0〉c ⊆ E, for all n ∈ N. Hence, �t ≤ �s and 〈�t〉c ⊆ E, as
desired.

Proof of Theorem 2. Let r ≥ 2 and let W (A) = ∪r
i=1Ei. Let �v = (x, x, . . .).

Then 〈�v〉c = W (A) = ∪r
i=1Ei. Trivially, ∪r

i=1Ei is large in �v. Hence, by
Fact 8, there exist 1 ≤ i ≤ r and �s ≤ �v such that Ei is large in �s. By
Corollary 14, there exists �t ≤ �s such that 〈�t〉c ⊆ Ei and the proof is complete.
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3. Proof of Theorem 3

In this section we present the proof of Theorem 3. As mentioned in the
Introduction, the arguments are similar to those of Theorem 2. The main
difficulty that we encountered was the manipulation of the infinite sequence
of finite alphabets which, among others, it increases the complexity of the
notation. We start by reformulating the basic terminology from Section 2,
by taking into consideration the infinite sequence of alphabets.

3.1. Preliminaries

We fix an increasing sequence

A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · ·

of finite alphabets and we set

A =
⋃

n∈N
An.

Let V (A) be the set of all variable words (over A). By V <∞(A) (resp.
V ∞(A)) we denote the set of all finite (resp. infinite) sequences of variable
words. Also let V ≤∞(A) = V <∞(A) ∪ V ∞(A).

3.1.1. Constant and variable span of a sequence of variable words
with respect to a sequence of finite alphabets Let m ∈ N, (sn(x))mn=0

in V <∞(A) and (kn)
m
n=0 be a strictly increasing finite sequence of non neg-

ative integers. The constant span of (sn(x))
m
n=0 with respect to (Akn

)mn=0

denoted by 〈(sn(x))mn=0 ‖ (Akn
)mn=0〉c is defined to be the set

m⋃

n=0

{sl0(a0) · · · sln(an) : 0 ≤ l0 < · · · < ln ≤ m, ai ∈ Akli
, 0 ≤ i ≤ n}.

We also define the variable span of (sn(x))
m
n=0 with respect to (Akn

)mn=0,
denoted by 〈(sn(x))mn=0 ‖ (Akn

)mn=0〉v, to be the set

V (A) ∩
m⋃

n=0

{sl0(a0) · · · sln(an) : 0 ≤ l0 < · · · < ln ≤ m,

ai ∈ Akli
∪ {x}, 0 ≤ i ≤ n}.
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The above notation is extended to infinite sequences of variable words as fol-
lows. Let (sn(x))

∞
n=0 ∈ V ∞(A) and (kn)

∞
n=0 be a strictly increasing sequence

of non negative integers. Then the constant span of (sn(x))
∞
n=0 with respect

to (Akn
)∞n=0 denoted by 〈(sn(x))∞n=0 ‖ (Akn

)∞n=0〉c is defined to be the set

{sl0(a0) · · · sln(an) : n ∈ N, 0 ≤ l0 < · · · < ln, ai ∈ Akli
, 0 ≤ i ≤ n}.

Similarly, the variable span of (sn(x))
∞
n=0 with respect to (Akn

)∞n=0, denoted
by 〈(sn(x))∞n=0 ‖ (Akn

)∞n=0〉v, is the set

V (A) ∩ {sl0(a0) · · · sln(an) : n ∈ N, 0 ≤ l0 < · · · < ln,

ai ∈ Akli
∪ {x}, 0 ≤ i ≤ n}.

In the following we also write 〈�s ‖ (Akn
)∞n=0〉c (resp. 〈�s ‖ (Akn

)∞n=0〉v) to
denote the the constant (resp. variable) span of �s = (sn(x))

∞
n=0 with respect

to (Akn
)∞n=0.

3.1.2. Extracted k-subsequences of a sequence of variable words
In this subsection, we extend the notion of extracted subsequences defined
in Section 2.

Definition 15. Let k ∈ N and �s = (sn(x))
∞
n=0 ∈ V ∞(A).

(a) Let l ∈ N and �t = (tn(x))
l
n=0 ∈ V <∞(A). We say that �t is a (finite)

extracted k-subsequence of �s if there exist 0 = m0 < · · · < ml+1 such that

ti(x) ∈ 〈(sn(x))mi+1−1
n=mi

‖ (Ak+n)
mi+1−1
n=mi

〉v,

for all 0 ≤ i ≤ l.

(b) Let �t = (tn(x))
∞
n=0 ∈ V ∞(A). We say that �t is a (infinite) extracted

k-subsequence of �s if for every l ∈ N, the sequence (tn(x))
l
n=0 is a finite

extracted k-subsequence of �s.

In the following we will write �t ≤k �s, whenever �t ∈ V ≤∞(A), �s ∈ V ∞(A)
and �t is an extracted k-subsequence of �s. Taking into account that the se-
quence of alphabets (An)

∞
n=0 is increasing, the next fact follows easily from

the above definitions.

Fact 16. Let k, l ∈ N and �s,�t, �w ∈ V ∞(A).

(i) If �t ≤k �s then

〈�t ‖ (Ak+n)
∞
n=0〉c ⊆ 〈�s ‖ (Ak+n)

∞
n=0〉c
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and

〈�t ‖ (Ak+n)
∞
n=0〉v ⊆ 〈�s ‖ (Ak+n)

∞
n=0〉v.

(ii) If k ≤ l and �w ≤k �t ≤l �s then �w ≤l �s.

3.1.3. The notion of k-large families The following is an extension of
Definition 6.

Definition 17. Let k ∈ N, E ⊆ W (A) and �s ∈ V ∞(A). Then E will be
called k-large in �s if E ∩ 〈�w ‖ (Ak+n)

∞
n=0〉c �= ∅, for every infinite extracted

k-subsequence �w of �s.

We close this subsection with some properties of k-large families.

Fact 18. Let k ∈ N, E ⊆ W (A) and �s = (sn(x))
∞
n=0 ∈ V ∞(A) such that E

is k-large in �s. Then the following hold true.

(i) E is k-large in �t, for every infinite extracted k-subsequence �t of �s.
(ii) For every m ∈ N, E is (k +m)-large in (sn(x)

∞
n=m.

Proof. (i) It follows easily using the first part of Fact 16.
(ii) Let �t ∈ V ∞(A) such that �t ≤k+m (sn(x)

∞
n=m. It is easy to check that

�t ≤k �s and therefore, since E is k-large in �s, we obtain that

E ∩ 〈�t ‖ (Ak+n)
∞
n=0〉c �= ∅.

Moreover, since the sequence of alphabets (An)
∞
n=0 is increasing we get that

〈�t ‖ (Ak+n)
∞
n=0〉c ⊆ 〈�t ‖ (Ak+m+n)

∞
n=0〉c.

Hence, E ∩ 〈�t ‖ (Ak+m+n)
∞
n=0〉c �= ∅ for every �t ≤k+m (sn(x))

∞
n=m, i.e. E is

(k +m)-large in (sn(x))
∞
n=m.

Fact 19. Let k ∈ N, E ⊆ W (A) and �s ∈ V ∞(A) such that E is k-large in
�s. Let r ≥ 2 and let E =

⋃r
i=1Ei. Then there exist 1 ≤ i ≤ r and an infinite

extracted k-subsequence �t of �s such that Ei is k-large in �t.

Definition 20. Let m ∈ N and (sn(x))
m
n=0 ∈ V <∞(A) and let B be a finite

subset of A. We set

[(sn(x))
m
n=0 ‖ B]c =

{
s0(a0) · · · sm(am) : a0, . . . , am ∈ B

}

and

[(sn(x))
m
n=0 ‖ B]v = V (A) ∩

{
s0(a0) · · · sm(am) : a0, . . . , am ∈ B ∪ {x}

}
.



A comb. proof of an infinite version of the Hales–Jewett theorem 283

Fact 21. Let k ∈ N, E ⊆ W (A) and �s = (sn(x))
∞
n=0 ∈ V ∞(A) such that E is

k-large in �s. Then there exist m ∈ N and w(x) ∈ 〈(sn(x))mn=0 ‖ (Ak+n)
m
n=0〉v

such that {w(a) : a ∈ Ak} ⊆ E.

Proof. Assume to the contrary that the conclusion fails. By induction we
construct a sequence �w = (wn(x))

∞
n=0 ≤k �s such that 〈�w ‖ (Ak+n)

∞
n=0〉c ⊆ Ec

which is a contradiction since E is k-large in �s. The general inductive step
of the construction is as follows. Let n ≥ 1 and assume that (wi(x))

n−1
i=0 ≤k

�s and 〈(wi(x))
n−1
i=0 ‖ (Ak+i)

n−1
i=0 〉c ⊆ Ec. Let n0 ≥ 1 be the least integer

satisfying

w0(x) · · ·wn−1(x) ∈ 〈(si(x))n0−1
i=0 ‖ (Ak+i)

n0−1
i=0 〉v

and let

N = HJ(|Ak+n|, 2
∏n−1

i=0 (|Ak+i|+1)).

To each w ∈ [(sn0+i(x))
N−1
i=0 ‖ Ak+n]c we assign the set of words

{
uw : u ∈ 〈(wi(x))

n−1
i=0 ‖ (Ak+i)

n−1
i=0 〉c ∪ {∅}

}
.

Since uw ∈ E or Ec, it is easy to see that the above correspondence induces
a 2

∏n−1
i=0 (|Ak+i|+1)-coloring of the set [(sn0+i(x))

N−1
i=0 ‖ Ak+n]c. Hence, by the

Hales–Jewett theorem and the choice of N , there exists a variable word

w(x) ∈ [(sn0+i(x))
N−1
i=0 ‖ Ak+n]v

such that for each u ∈ 〈(wi(x))
n−1
i=0 ‖ (Ak+i)

n−1
i=0 〉c ∪ {∅} the set {uw(a) :

a ∈ Ak+n} either is included in E or is disjoint from E. By our initial
assumption, there is no u ∈ 〈(wi(x))

n−1
i=0 ‖ (Ak+i)

n−1
i=0 〉c ∪ {∅} satisfying the

first alternative. Setting wn(x) = w(x) we easily see that (wi(x))
n
i=0 ≤k �s

and 〈(wi(x))
n
i=0 ‖ (Ak+i)

n
i=0〉c ⊆ Ec. The inductive step of the construction

of �w is complete and as we have already mentioned in the beginning of the
proof this leads to a contradiction.

3.2. The main arguments

The next lemma corresponds to Lemma 12 and constitutes the core of the
proof of Theorem 3.

Recall that for every non empty subsets E, F of W (A) we have set

EF = {z ∈ W (A) : wz ∈ E for every w ∈ F}.
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Lemma 22. Let k ∈ N, E ⊆ W (A) and �s = (sn(x))
∞
n=0 ∈ V ∞(A) such

that E is k-large in �s. Then there exist m ≥ 1, a variable word w(x) in
〈(sn(x))m−1

n=0 ‖ (Ak+n)
m−1
n=0 〉v and �t ∈ V ∞(A) with �t ≤k+m (sn(x))

∞
n=m such

that setting F = {w(a) : a ∈ Ak} then E ∩ EF is (k +m)-large in �t.

Proof. We start with the following claim.

Claim 1. There exists n0 ∈ N such that for every

z ∈ 〈(si(x))∞i=n0+1 ‖ (Ak+i)
∞
i=n0+1〉c

there exists w(x) in 〈(si(x))n0

i=0 ‖ (Ak+i)
n0

i=0〉v such that

{w(a)z : a ∈ Ak} ⊆ E.

Proof of Claim 1. Assume that the claim is not true. Then for every n ∈ N
there exists z ∈ 〈(si(x))∞i=n+1 ‖ (Ak+i)

∞
i=n+1〉c such that the set {w(a)z :

a ∈ Ak} is not contained in E, for every w(x) ∈ 〈(si(x))n0

i=0 ‖ (Ak+i)
n0

i=0〉v.
Using this assumption we easily find a strictly increasing sequence (kn)

∞
n=0

in N with k0 = 0 and a sequence (zn)
∞
n=0 in W (A) such the following are

satisfied.

(i) For every n ∈ N, we have zn ∈ 〈(si(x))kn+1−1
i=kn+1 ‖ (Ak+i)

kn+1−1
i=kn+1〉c.

(ii) For every n ∈ N and every u(x) ∈ 〈(si(x))kn

i=k0
‖ (Ak+i)

kn

i=k0
〉v we have

that {u(a)zn : a ∈ Ak} � E.

We set vn(x) = skn
(x)zn, for every n ∈ N.

By (i), we have that (sk0
(x)z0, . . . , skn

(x)zn) ≤k �s, for every n ∈ N and
therefore, (vn(x))

∞
n=0 ≤k �s. Moreover, since the sequence (kn)

∞
n=0 is strictly

increasing and the sequence of finite alphabets (An)
∞
n=0 is increasing, by (ii),

we obtain that {u(a)zn : a ∈ Ak} � E, for every n ∈ N and every

u(x) ∈ 〈(sk0
(x)z0, . . . , skn−1

(x)zn−1, skn
(x) ‖ (Ak+i)

n
i=0〉v.

Hence, since every w(x) ∈ 〈(vn(x))∞n=0 ‖ (Ak+n)
∞
n=0〉v is of the form w(x) =

u(x)zn for some unique n ∈ N and some variable word u(x) in 〈(sk0
(x)z0, . . . ,

skn−1
(x)zn−1, skn

(x) ‖ (Ak+i)
n
i=0〉v, we conclude that there is no w(x) ∈

〈(vn(x))∞n=0 ‖ (Ak+n)
∞
n=0〉v such that {w(a) : a ∈ Ak} ⊆ E. But since

(vn(x))
∞
n=0 ≤k �s, we have that E is k-large in (vn(x))

∞
n=0 and so by Fact 21

we arrive to a contradiction.

We set m = n0 + 1. Also, let L = 〈(sn(x))m−1
n=0 ‖ (Ak+i)

m−1
i=0 〉v and for

every w(x) ∈ L, let F (w(x)) = {w(a) : a ∈ Ak}. By Claim 1, we have that
〈(si(x))∞i=m ‖ (Ak+i)

∞
i=m〉c ⊆

⋃
w(x)∈LEF (w(x)) and therefore,
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E ∩ 〈(si(x))∞i=m ‖ (Ak+i)
∞
i=m〉c ⊆

⋃

w(x)∈L
E ∩ EF (w(x)).

By part (ii) of Fact 18, we have that E is (k+m)-large in (si(x))
∞
i=m. Hence,⋃

w(x)∈LE∩EF (w(x)) is (k+m)-large in (si(x))
∞
i=m. So, by Fact 19 there exist

a variable word w(x) ∈ L and �t ≤k+m (sn(x))
∞
n=m such that E ∩EF (w(x)) is

(k +m)-large in �t and the proof is complete.

Lemma 23. Let k ∈ N, E ⊆ W (A) and �s = (sn(x))
∞
n=0 ∈ V ∞(A) such that

E is k-large in �s. Then there exist a sequence �w = (wn(x))
∞
n=0 ≤k �s and

two strictly increasing sequences (kn)
∞
n=0 and (pn)

∞
n=0 in N, with k0 = k and

p0 = 0, such that for every n ∈ N, the following are satisfied.

(W1) k + pn ≥ kn
(W2) wn(x) ∈ 〈(si(x))pn+1−1

i=pn
‖ (Ak+i)

pn+1−1
i=pn

〉v.
(W3) Setting Fn = 〈(wi(x))

n
i=0 ‖ (Aki

)ni=0〉c then E ∩ EFn
is kn+1-large in

(wi(x))
∞
i=n+1.

Proof. We start with the following.

Step 1. Let k ∈ N, E ⊆ W (A) and �s = (sn(x))
∞
n=0 ∈ V ∞(A) such that E is

k-large in �s. Then there exist (a) a sequence (wn(x))
∞
n=0 of variable words,

(b) a sequence (�sn)
∞
n=0 in V ∞(A) with �s0 = �s, (c) two sequences (mn)

∞
n=0

and (kn)
∞
n=0 in N, with m0 = 0 and k0 = k such that setting for every n ∈ N,

�sn = (s
(n)
i (x))∞i=0 then the following are satisfied.

(i) mn+1 ≥ 1 and kn+1 = kn +mn+1.

(ii) wn(x) ∈ 〈(s(n)i (x))
mn+1−1
i=0 ‖ (Akn+i)

mn+1−1
i=0 〉v.

(iii) �sn+1 is an extracted kn+1-subsequence of (s
(n)
i (x))∞i=mn+1

.
(iv) If we set Fn = 〈(wi(x))

n
i=0 ‖ (Aki

)ni=0〉c then E ∩ EFn
is kn+1-large in

�sn+1.

Proof of Step 1. For n = 0 we set m0 = 0, k0 = 0 and �s0 = �s. Assume that
the construction has been carried out up to some n ∈ N, i.e. the sequences
(wi(x))i<n, (�si)

n
i=0, (mi)

n
i=0, (ki)

n
i=0 have been selected. We setG = E∩EFn−1

(if n = 0, we set G = E). By our inductive assumptions we have that G
is kn-large in �sn. Therefore, by Lemma 22, there exist m ≥ 1, a variable

word w(x) ∈ 〈(s(n)i (x))m−1
i=0 ‖ (Akn+i)

m−1
i=0 〉v and an extracted (kn +m)-

subsequence �t of (s
(n)
i (x))∞i=m, such that G ∩ GF is (kn + m)-large in �t,

where F = {w(a) : a ∈ Akn
}. We set

mn+1 = m, kn+1 = kn +m,wn(x) = w(x) and �sn+1 = �t.
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Moreover, if Fn = 〈(wi(x))
n
i=0 ‖ (Aki

)ni=0〉c then it is easy to check that
G ∩GF = E ∩ EFn

. The above choices clearly fulfill conditions (i)–(iv) and
the proof of the inductive step of the construction is complete.

Step 2. Let (�sn)
∞
n=0, (mn)

∞
n=0 and (kn)

∞
n=0 be the sequences obtained in

Step 1. Then there exists a strictly increasing sequence (pn)
∞
n=0 in N with

p0 = 0 such that for every n ∈ N, the following are satisfied.

(v) k + pn ≥ kn.

(vi) The set 〈(s(n)i (x))
mn+1−1
i=0 ‖ (Akn+i)

mn+1−1
i=0 〉v is a subset of

〈(si(x))pn+1−1
i=pn

‖ (Ak+i)
pn+1−1
i=pn

〉v.
(vii) �sn is an extracted (k + pn)-subsequence of (si(x))

∞
i=pn

.

Proof of Step 2. We set p0 = 0 and we easily see that (v) and (vii) are
satisfied for n = 0. Let n ∈ N and assume that the sequence (pi)

n
i=0 has been

selected. By (vii) we obtain that for every m ≥ 1 there exists a sequence
(Ij)

m−1
j=0 of successive nonempty intervals of N with min(I0) = 0 such that

setting M(m) = max(Im−1) + 1, then

(1) s
(n)
j (x) ∈ 〈(spn+i(x))i∈Ij ‖ (Ak+pn+i)i∈Ij 〉v

for every j ∈ {0, . . . ,m− 1} and,

(2) (s
(n)
i (x))∞i=m ≤k+pn+M(m) (si(x))

∞
i=pn+M(m).

We claim that we may set

pn+1 = pn +M(mn+1).

Indeed, by our inductive assumptions we have that k+pn ≥ kn and therefore,
since the sequence of the alphabets (An)

∞
n=0 is increasing, by (1) (for m =

mn+1), we conclude that

〈(s(n)i (x))
mn+1−1
i=0 ‖ (Akn+i)

mn+1−1
i=0 〉v ⊆ 〈(si(x))pn+1−1

i=pn
‖ (Ak+i)

pn+1−1
i=pn

〉v

and so (vi) is satisfied. Moreover, notice that M(m) ≥ m. Hence,

(3) k + pn+1 = k + pn +M(mn+1) ≥ k + pn +mn+1 ≥ kn +mn+1 = kn+1,

that is (v) is also satisfied. Finally, by (iii) of Step 1 and (2) above, we have

�sn+1 ≤kn+1
(s

(n)
i (x))∞i=mn+1

≤k+pn+1
(si(x))

∞
i=pn+1

.
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Since kn+1 ≤ k + pn+1, by part (ii) of Fact 16, we obtain that

�sn+1 ≤k+pn+1
(si(x))

∞
i=pn+1

.

Hence, (vii) is also valid and the inductive step of the construction is com-
plete.

If n0 ≥ 1 then starting from �sn0
and kn0

instead of �s0 = �s and k0 = k
and working as in Step 2 we derive the following.

Step 3. Let n0 ≥ 1 and let (�sn)
∞
n=0, (mn)

∞
n=0 and (kn)

∞
n=0 be the sequences

obtained in Step 1. Then there exists a strictly increasing sequence (qn)
∞
n=0

in N with q0 = 0 such that for every n ∈ N the following are satisfied.

(v′) kn0
+ qn ≥ kn0+n.

(vi′) The set 〈(s(n0+n)
i (x))

mn0+n+1−1
i=0 ‖ (Akn0+n+i)

mn0+n+1−1
i=0 〉v is a subset of

the set 〈(s(n0)
i (x))

qn+1−1
i=qn

‖ (Akn0+i)
qn+1−1
i=qn

〉v.
(vii′) �sn0+n is an extracted (kn0

+ qn)-subsequence of (s
(n0)
i (x))∞i=qn

.

We are now ready to complete the proof of the lemma. Clearly, condition
(W1) follows by (v). Also, by (ii) and (vi) we obtain that

wn(x) ∈ 〈(si(x))pn+1−1
i=pn

‖ (Ak+i)
pn+1−1
i=pn

〉v,

for every n ∈ N and so (W2) is also satisfied. It remains to verify (W3). To
this end, let n0 be an arbitrary positive integer. Then, by (ii) and (vi′) we
get that

wn0+n(x) ∈ 〈(s(n0)
i (x))

qn+1−1
i=qn

‖ (Akn0+i)
qn+1−1
i=qn

〉v,
for every n ∈ N, that is (wi(x))

∞
i=n0

is an extracted kn0
-subsequence of �sn0

.
Therefore, for every n ∈ N, (wi(x))

∞
i=n+1 is a kn+1-subsequence of �sn+1 and

so, by (iv) of Step 1 and part (i) of Fact 18, we get that for every n ∈ N,
E ∩ EFn

is kn+1-large in (wi(x))
∞
i=n+1, that is (W3). Finally, setting �w =

(wn(x))
∞
n=0, by (W2) we obtain that �w ≤k �s and the proof is complete.

Corollary 24. Let k ∈ N, E ⊆ W (A) and �s ∈ V ∞(A) such that E is k-large
in �s. Then there exists an infinite extracted k-subsequence �t of �s such that

〈�t ‖ (Ak+n)
∞
n=0〉c ⊆ E.

Proof. Let �w = (wn(x))
∞
n=0, (kn)

∞
n=0 and (pn)

∞
n=0 be the sequences obtained

in Lemma 23. We start with the following claim.
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Claim 1. There exist a strictly increasing sequence (rn)
∞
n=0 in N with r0 = 0

and a sequence �t = (tn(x))
∞
n=0 of variable words such that for every n ∈ N

the following are satisfied.

(T1) tn(x) ∈ 〈(wrn+i(x))
rn+1−rn−1
i=0 ‖ (Akrn+i)

rn+1−rn−1
i=0 〉v.

(T2) 〈(ti(x))ni=0 ‖ (Akri
)ni=0〉c ⊆ E.

Proof of Claim 1. Since �w ≤k �s and E is k-large in �s we get that E is k-large
in �w. Therefore, by Fact 21 there exist a positive integer r1 and a variable
word

t0(x) ∈ 〈(wi(x))
r1−1
i=0 ‖ (Ak+i)

r1−1
i=0 〉v

such that {t0(a) : a ∈ Ak} ⊆ E. Since k0 = k and r0 = 0 we have that
conditions (T1) and (T2) are satisfied for n = 0.

We setG0 = {t0(a) : a ∈ Ak}. Notice thatG0 ⊆ 〈(wi(x)
r1−1
i=0 ‖ (Aki

)r1−1
i=0 〉c

and so, by (W3) of Lemma 23, we get that E∩EG0
is kr1-large in (wi(x))

∞
i=r1

.
Hence, again by Fact 21, there exists an integer r2 > r1 and a variable word

t1(x) ∈ 〈(wr1+i(x))
r2−r1−1
i=0 ‖ (Akr1+i)

r2−r1−1
i=0 〉v

such that {t1(a) : a ∈ Akr1
} ⊆ E ∩ EG0

. Observe that conditions (T1) and
(T2) are also satisfied for n = 1. Continuing in the same way, we select the
desired sequence �t.

Claim 2. For every n ∈ N, tn(x) ∈ 〈(si(x))
prn+1

−1

i=prn
‖ (Ak+i)

prn+1
−1

i=prn
〉v. There-

fore, �t ≤k �s.

Proof of Claim 2. Fix n ∈ N and let j ∈ N be arbitrary. By (W2) of
Lemma 23, we have that

wrn+j(x) ∈ 〈(si(x))prn+j+1−1
i=prn+j

‖ (Ak+i)
prn+j+1−1
i=prn+j

〉v.

Moreover, by (W1) of Lemma 23 and the monotonicity of the sequence
(ki)

∞
i=0, we have

k + prn+j ≥ krn+j ≥ krn + j

and therefore, since the sequence of alphabets (Ai)
∞
i=0 is increasing, we get

that

Akrn+j ⊆ Ak+prn+j
.

Hence,

{wrn+j(a) : a ∈ Akrn+j} ⊆ 〈(si(x))prn+j+1−1
i=prn+j

‖ (Ak+i)
prn+j+1−1
i=prn+j

〉c,
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for every j ∈ N. Therefore, for every d ∈ N, we conclude that

〈(wrn+j(x))
d
j=0 ‖ (Akrn+j)

d
j=0〉v ⊆ 〈(si(x))prn+d+1−1

i=prn
‖ (Ak+i)

prn+d+1−1
i=prn

〉v.

Setting d = rn+1 − rn − 1 and using (T1) of Claim 1, the result follows.

We are now ready to complete the proof. By Claim 2 we have that
�t ≤k �s. Moreover, since (kn)

∞
n=0 and (pn)

∞
n=0 are strictly increasing, we get

that Ak+i ⊆ Akri
, for all i ∈ N. Therefore, for every n ∈ N, we have

〈(ti(x))ni=0 ‖ (Ak+i)
n
i=0〉c ⊆ 〈(ti(x))ni=0 ‖ (Akri

)ni=0〉c,

and so, by (T2) of Claim 1, we get that 〈(ti(x))ni=0 ‖ (Ak+i)
n
i=0〉c ⊆ E, for

every n ∈ N. Hence, 〈�t ‖ (Ak+n)
∞
n=0〉c ⊆ E, as desired.

Proof of Theorem 3. Let r ≥ 2 and let W (A) = ∪r
i=1Ei. Let �v = (x, x, . . .).

Then we have that 〈�v ‖ (An)
∞
n=0〉c ⊆ W (A) = ∪r

i=1Ei. Trivially, ∪r
i=1Ei is

0-large in �v. Hence, by Fact 19, there exist 1 ≤ i ≤ r and �s ≤0 �v such that
Ei is 0-large in �s. Applying Corollary 24 for k = 0, we have that there exists
�t ≤0 �s such that 〈�t ‖ (An)

∞
n=0〉c ⊆ Ei and the proof is complete.

Remark 1. In [14, Theorem 2.3] the following version of Theorem 2 was
shown.

Theorem 25. Let A be a finite alphabet. Then for every finite coloring of
W (A) there exists a sequence (tn(x))

∞
n=0 of variable words over A such that

for every n ≥ 1, tn(x) is a left variable word and for every n ∈ N and every
0 = m0 < m1 < · · · < mn, the words of the form tm0

(a0)tm1
(a1) · · · tmn

(an)
with ai ∈ A for all 0 ≤ i ≤ n are of the same color.

The above theorem is a stronger version of a well-known result of T. Carl-
son and S. Simpson [4, Theorem 6.3]. We mention also that a left variable
version of Theorem 3 does not hold true (see [10, §3]). Although our approach
can be applied for [4, Theorem 6.3] (see [12]), it is open for us whether it
can also provide an alternative proof of Theorem 25.
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pactification, Walter de Gruyter, Berlin. MR1642231

[12] N. Karagiannis (2012). Combinatorial Proofs of Infinite Versions of the

Hales–Jewett Theorem, arXiv:1211.1960, Preprint.

[13] R. McCutcheon (1999). Elemental Methods in Ergodic Ramsey Theory,

Lecture Notes in Mathematics, Springer. MR1738544

[14] R. McCutcheon (2000). Two new extensions of the Hales-Jewett theo-

rem, Electron. J. Combin. 7, Research Paper 49, 18 pp. MR1785145
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