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Hyperplane arrangements and diagonal harmonics

Drew Armstrong
∗

In 2003, Haglund’s bounce statistic gave the first combinatorial in-
terpretation of the q, t-Catalan numbers and the Hilbert series of
diagonal harmonics. In this paper we propose a new combinato-
rial interpretation in terms of the affine Weyl group of type A. In
particular, we define two statistics on affine permutations; one in
terms of the Shi hyperplane arrangement, and one in terms of a
new arrangement – which we call the Ish arrangement. We prove
that our statistics are equivalent to the area’ and bounce statistics
of Haglund and Loehr. In this setting, we observe that bounce is
naturally expressed as a statistic on the root lattice. We extend our
statistics in two directions: to “extended” Shi arrangements and to
the bounded chambers of these arrangements. This leads to a (con-
jectural) combinatorial interpretation for all integral powers of the
Bergeron-Garsia nabla operator applied to elementary symmetric
functions.
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1. Introduction

First we define the diagonal harmonics – which we will keep in mind through-
out – then we discuss hyperplane arrangements – which the paper is really
about.

1.1. Diagonal harmonics

The symmetric group S(n) acts on the polynomial ring S = Q[x1, . . . , xn]
by permuting variables. Newton showed that the subring of S(n)-invariant
polynomials is generated by the algebraically independent power sum poly-
nomials: pk =

∑n
i=1 x

k
i for k = 1, 2, . . . , n. It is known that the coinvariant
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ring R = S/(p1, . . . , pn) is a graded version of the regular representation of
S(n), with Hilbert series

n∑
i=0

dimRi q
i =

n∏
j=1

(1 + q + q2 + · · ·+ qj) = [n]q!.

The dual ring S∗ = Q[∂/∂x1, . . . , ∂/∂xn] acts on S via the pairing
(∂/∂xi)xj = δij , hence the coinvariant ring is isomorphic to the quotient
S∗/(p∗1, . . . , p

∗
n), where p∗k =

∑n
i=1(∂/∂xi)

k for k = 1, . . . , n. On the other
hand, this quotient is naturally isomorphic to the submodule H ⊆ S anni-
hilated by the p∗k:

H = {f ∈ S : p∗k f = 0 for all k}.

This H is called the ring of harmonic polynomials since, in particular, p∗2 is
the standard Laplacian operator on S.

Now consider the ring DS = Q[x1, . . . , xn, y1, . . . , yn] of polynomials in
two sets of commuting variables, together with the diagonal action of S(n),
which permutes the x variables and the y variables simultaneously. Weyl [31]
showed that the S(n)-invariant subring of DS is generated by the polarized
power sums: pk,� =

∑n
i=1 x

k
i y

�
i for all k + � > 0. Hence the ring of diagonal

coinvariants DR = DS/(pk,� : k + � > 0) is naturally isomorphic to the ring
of diagonal harmonic polynomials:

DH =

{
f ∈ DS :

n∑
i=1

(∂/∂xi)
k(∂/∂yi)

� f = 0 for all k + � > 0

}
.

The diagonal action preserves the bigrading of DS by x-degree and y-degree,
hence DH is a bigraded S(n)-module. The bigraded Hilbert series

(1.1) DH(n; q, t) :=

n∑
i,j=0

dim(DH)i,j qitj

has beautiful and remarkable properties. The study of DH(n; q, t) was initi-
ated by Garsia and Haiman (see [13]) and is today an active area of research.

1.2. Some arrangements

Let {e1, e2, . . . , en} be the standard basis for Rn. Given v ∈ Rn and k ∈
R, we will often use the notation “ v = k ” as shorthand for the set {x :
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Figure 1.1: Some arrangements in R3
0.

(x, v) = k} ⊆ Rn, where (·, ·) is the standard inner product. Consider the
following three arrangements of hyperplanes, respectively called the Coxeter
arrangement, Shi arrangement, and affine arrangement of type An−1:

Cox(n) := {ei − ej = a : 1 ≤ i < j ≤ n, a = 0} ,
Shi(n) := {ei − ej = a : 1 ≤ i < j ≤ n, a ∈ {0, 1}} ,
Aff(n) := {ei − ej = a : 1 ≤ i < j ≤ n, a ∈ Z} .

Since all hyperplanes in this paper contain the line e1+e2+ · · ·+en, we will
typically think of these arrangements in the (n− 1)-dimensional space

Rn
0 := {e1 + e2 + · · ·+ en = 0}.

If A is an arrangement in a space V then the connected components of the
complement V − ∪H∈AH are called chambers. We will refer to chambers of
the Coxeter arrangement as cones; and refer to affine chambers as alcoves.
Let C◦ denote the dominant cone, which satisfies the coordinate inequalities

e1 > e2 > · · · > en,

and let A◦ denote the fundamental alcove, satisfying

e1 > e2 > · · · > en > e1 − 1.

Figure 1.1 displays the arrangements Cox(3), Shi(3), and Aff(3) in R3
0, with

the dominant cone and fundamental alcove shaded. The Shi arrangement
was introduced by Jian-Yi Shi (see [23, Chapter 7]) in his description of the
Kazhdan-Lusztig cells for certain affine Weyl groups.
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1.3. Symmetric group

The symmetric group S(n) has a faithful representation as a group of isome-
tries of Rn

0 generated by the set

S = {s1, s2, . . . , sn−1},

where si is the reflection in the hyperplane ei − ei+1 = 0. The reflection si
corresponds in S(n) to the transposition of adjacent symbols (i, i+ 1).

The symmetric group acts simply-transitively on the cones of the Coxeter
arrangement Cox(n). By convention, let the dominant cone C◦ correspond
to the identity permutation; then for any permutation w ∈ S(n) the cone
wC◦ satisfies

ew(1) > ew(2) > · · · > ew(n).

1.4. Affine symmetric group

Now let sn denote the reflection in the affine hyperplane e1 − en = 1. The
linear reflections {s1, s2, . . . , sn−1} together with the affine reflection sn gen-
erate the affine Weyl group of type Ãn. This group acts simply-transitively
on the set of alcoves, where the fundamental alcove A◦ corresponds to the
identity element of the group. Note that A◦ is a (non-regular) simplex in Rn

0

whose facets are supported by the reflecting hyperplanes of the generators
{s1, s2, . . . , sn}.

Lusztig [21] studied an affine version of the symmetric group, whose
combinatorial properties were further developed by Björner and Brenti [5].
We define S̃(n) as the group of infinite permutations w̃ : Z → Z satisfying:

• w̃(k + n) = w̃(k) + n for all k ∈ Z,
• w̃(1) + w̃(2) + · · ·+ w̃(n) =

(
n+1
2

)
.

The first property says that w̃ is periodic and the second fixes a frame of
reference. The elements of S̃(n) are called affine permutations, and S̃(n) is
the affine symmetric group. Following Björner and Brenti, we will usually
express an affine permutation w̃ ∈ S̃(n) using the window notation:

“w̃ = [w̃(1), w̃(2), . . . , w̃(n)].”

For integers i < j we will write ((i, j)) : Z → Z to denote the “affine
transposition” that swaps the elements in positions i + kn and j + kn for
all k ∈ Z. We could also write ((i, j)) =

∏
k(i+ kn, j + kn). Lusztig proved
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that the correspondence si ↔ ((i, i+1)) defines an isomorphism between the
affine symmetric group and the affine Weyl group of type Ãn. Here the affine
transposition ((i, j)) corresponds to the reflection in the affine hyperplane

(1.2) ei′ − ej′ =

⌈
i

n

⌉
−

⌈
j

n

⌉
,

where i′ = i−n(�i/n	−1) and j′ = j−n(�j/n	−1). In particular, note that
the generator si = ((i, i+1)) corresponds to ei − ei+1 = 0 for 1 ≤ i ≤ n− 1,
and sn = ((n, n+ 1)) corresponds to e1 − en = 1.

1.5. The Ish arrangement

Finally, we introduce a new hyperplane arrangement, called the Ish arrange-
ment. Like the Shi arrangement, the Ish arrangement begins with the

(
n
2

)
linear hyperplanes of the Coxeter arrangement and then adds another

(
n
2

)
affine hyperplanes:

Ish(n) := Cox(n) ∪ {ei − en = a : 1 ≤ i ≤ n− 1, a ∈ {1, . . . , n− i}}.

Figure 1.2 displays the arrangements Shi(3) and Ish(3). Note that each has
16 chambers and 4 bounded chambers. There is an important reason for this:
the arrangements Shi(n) and Ish(n) share the same characteristic polynomial,
as we now show.

To avoid extra notation, we will use a non-standard definition of the
characteristic polynomial. This definition is due to Crapo and Rota, and was
applied extensively by Athanasiadis – see Stanley [29, Lecture 5] for details.
LetA be an arrangement of finitely many hyperplanes in Rn. Suppose further
that each of these hyperplanes has an equation with integer coefficients.

Figure 1.2: The arrangements Shi(3) and Ish(3).
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Then, given a (large) finite field Fq with q elements, we may consider the
reduced arrangement Aq in Fn

q . It turns out that (for all but finitely many
q), the number of points of Fn

q not on any hyperplane of Aq is given by a
polynomial in q, called the characteristic polynomial of A:

χ(A, q) = #
(
Fn
q − ∪H∈Aq

H
)
= qn −# ∪H∈Aq

H.

The characteristic polynomial of the Shi arrangement is well known (cf.
[29, Theorem 5.16]). Our new result is the following.

Theorem 1.1. The Shi arrangement and the Ish arrangement (in Rn) share
the same characteristic polynomial, viz.

χ(Ish(n), q) = q (q − n)n−1.

Proof. Let p be a large prime and consider a regular p-gon whose vertices
represent the elements of the finite field Fp = {1, 2, . . . , p}, in clockwise
order. We will think of a vector v = (v1, . . . , vn) ∈ Fn

p as a labeling of the
vertices, as follows: if vi = k ∈ Fp, then place the label vi on the vertex k.

To say that v ∈ Fn
p is in the complement of the reduced Ish arrangement

Ish(n)p, means that vi − vj 
= 0 for all 1 ≤ i < j ≤ n (that is, labels vi and
vj do not occupy the same vertex) and vi 
= vn + a for 1 ≤ a ≤ n− i (that
is, the label vi does not occur within the n − i vertices clockwise of vn).
To count the vectors in the complement, first note that there are p ways to
place the label vn. After this, we may place v1 in (p−n) ways, since it must
avoid the position of vn and the n− 1 positions just clockwise of this. Next,
we may place v2 in (p− n) ways since it must avoid the position of vn, the
n−2 positions just clockwise of this, and also the position of v1. Continuing
in this way, we find that there are p (p − n)n−1 vectors in the complement.
Since we have established the result for infinitely many p, the polynomial is
determined.

It is worth noting that the characteristic polynomial is (q− n)n−1 when
we restrict the arrangements to the hyperplane Rn

0 , because each point of
the complement in Rn

0 corresponds to a line of the complement in Rn (and
the line Fq has q points).

The following is a standard result on real hyperplane arrangements. Let
A be an arrangement in a real d-dimensional space V and suppose that the
normals to A span a subspace U ⊆ V of dimension k – this k called the rank
of A. If k < d then A has no bounded chambers; its chambers that have a
bounded intersection with U are called relatively bounded.
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Zaslavsky’s Theorem (see, e.g., Theorem 2.5 of [29]). Let A be a real
arrangement with dimension d and rank k. Then:

• The number of chambers of A is (−1)dχ(A,−1).
• The number of relatively bounded chambers of A is (−1)kχ(A, 1).

If we think of Shi(n) and Ish(n) in the space Rn
0 , then d = k = n− 1.

Corollary 1.2. The arrangements Shi(n) and Ish(n) have the same number
of chambers – viz. (n+ 1)n−1 – and the same number of bounded chambers
– viz. (n− 1)n−1.

Open Problem. Find a bijective proof of the corollary.

Theorem 1.1 gives a strong sense of “combinatorial symmetry” between
the Shi and Ish arrangements.1 This observation is at the heart of the paper.

2. Two statistics on Shi chambers

Now we define two statistics – called shi and ish – on the chambers of a Shi
arrangement (more generally, on the elements of the group S̃(n)). The first
statistic is well known and the second is new. Each statistic counts a certain
kind of “inversions” of an affine permutation. We begin by defining these.

2.1. Affine inversions

Let w be an element of the (finite) symmetric group S(n). If w(i) > w(j)
for indices 1 ≤ i < j ≤ n we say that the transposition (i, j) is an inversion
of w – equivalently, this means that the hyperplane ei − ej = 0 separates
the cone wC◦ from the dominant cone C◦. The number of inversions of w is
called its length.

In the affine symmetric group S̃(n) there is again a correspondence
between hyperplanes and transpositions. Recall that the affine transpositions
((i, j)) and ((i′, j′)) coincide if i′ = i + kn and j′ = j + kn for some k ∈ Z,
in which case they both represent the same hyperplane as in (1.2). Hence,
each affine transposition has a standard representative in the set

T̃ := {((i, j)) : 1 ≤ i ≤ n, i < j} ⊆ S̃(n).

Given an affine permutation w̃ ∈ S̃(n) and an affine transposition ((i, j)) ∈
T̃ , we say that ((i, j)) is an affine inversion of w̃ when w̃(i) > w̃(j). Equiva-
lently, the hyperplane (1.2) separates the alcove w̃A◦ from the fundamental
alcove A◦. Again, the (affine) length of w̃ is its number of affine inversions.

1This combinatorial symmetry has been developed further in [1]. However, the
problem of a bijective proof is still open.
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Figure 2.1: Chambers of Shi(3) labeled by affine permutations.

2.2. The shi statistic

Each chamber of the Shi arrangement contains a set of alcoves and we will
see (Theorem 3.1) that among these is a unique alcove of minimum length
– which we call the representing alcove of the chamber, or just a Shi alcove.
This defines an injection from Shi chambers into the affine symmetric group.
Figure 2.1 displays the representing alcoves for Shi(3), labeled by affine per-
mutations in window notation. We have labeled the Shi hyperplanes with
their corresponding affine transpositions,

Shi(n) = {((i, j)) : 1 ≤ i ≤ n, i < j < n+ i} .

Definition 2.1. Given a Shi chamber with representing alcove A, let shi(A)
denote the number of Shi hyperplanes separating A from the fundamental
alcove A◦. Equivalently, if A = w̃A◦ for affine permutation w̃ ∈ S(n), then
shi(w̃) is the number of affine inversions ((i, j)) of w̃ satisfying i < j < n+ i.

For example, consider the permutation w̃ = [1, 5, 0] in the figure. The
inversions of w̃ are ((1, 3)), ((2, 3)), ((2, 4)), ((2, 6)), and hence w̃ has length
4. However, only three of these – viz. ((1, 3)), ((2, 3)), ((2, 4)) – come from
Shi hyperplanes, hence shi(w̃) = 3.
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2.3. The ish statistic

To give a natural definition for our second statistic, we must discuss the

coset space S̃(n)/S(n). By abuse of notation, let S(n) denote the subgroup

of S̃(n) generated by the subset

I = {s1, . . . , sn−1} ⊆ {s1, . . . , sn−1, sn} = S.

In the language of Coxeter groups we say that S(n) is a parabolic subgroup
of S̃(n). The standard notation for this is to write S(n) = WI where W =

S̃(n). Then each affine permutation w̃ has a canonical decomposition

w̃ = wIw̃
I ,

where wI ∈ WI is a finite permutation and w̃I ∈ W is the unique right coset

representative of minimum (affine) length. Combinatorially (in window nota-

tion), [w̃I(1), . . . , w̃I(n)] is the increasing rearrangement of [w̃(1), . . . , w̃(n)]

and wI is the finite permutation needed to achieve the rearrangement. Ge-

ometrically, alcoves of the form A = w̃IA◦ are precisely those contained in

the dominant cone C◦; hence w̃A◦ = wIA is contained in the cone wIC◦.
We define the ish statistic in terms of minimal coset representatives.

Definition 2.2. Consider a Shi chamber with representing alcove A and

suppose that A = w̃A◦. Its minimal coset representative w̃IA◦ is the cor-

responding alcove in the dominant cone C◦. Let ish(A) denote the number

of hyperplanes of the form ei − en = a (with 1 ≤ i ≤ n − 1 and a ∈ Z)

separating w̃IA◦ from the fundamental alcove A◦. Equivalently, let ish(w̃)
denote the number of affine inversions of w̃I of the form ((n, j)) with n < j.

Two notes: In order to facilitate later generalization, we have defined ish
in terms of all hyperplanes of the form ei − en = a. In our current context,

however, only the Ish hyperplanes (i.e. a ∈ {1, . . . , n − i}) will contribute.

We also emphasize the fact that ish is a statistic on the (representing

alcoves of) Shi chambers, not on the Ish chambers. It seems that the

chambers of the Ish arrangement are not so natural.

For example, consider the affine permutation w̃ = [−1, 4, 3], as shown

in Figure 2.1. It is contained in the cone [1, 3, 2]C◦ and its increasing rear-

rangement is [−1, 3, 4]. Hence, it has parabolic decomposition

[−1, 4, 3] = w̃ = wIw̃
I = [1, 3, 2] [−1, 3, 4].
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Figure 2.2: The shi and ish statistics on the chambers of Shi(3).

The inversions of w̃I = [-1, 3, 4] are ((2, 4)) and ((3, 4)), of which only the
second is an Ish hyperplane; hence ish(w̃) = 1. In Figure 2.2 we have dis-
played the shi and ish statistics for all chambers of Shi(3). (Note: to compute
ish by hand, one may extend the Ish hyperplanes from the dominant cone
to the other cones by reflection.) Their joint-distribution is recorded in the
following table:

ish
0 1 2 3

shi

0 1
1 2 1
2 2 3 1
3 1 2 2 1

2.4. Theorems and a conjecture

We will make four assertions and then describe our state of knowledge about
them (i.e. whether each is a Theorem or a Conjecture). We will use the
following notation.

Recall from (1.1) that DH(n; q, t) denotes the bigraded Hilbert series of
the ring of diagonal harmonic polynomials. Define

Shi(n; q, t) :=
∑
A

qish(A)t(
n

2)−shi(A),

where the sum is taken over representing alcoves A for all of the chambers of
the arrangement Shi(n). We say that an alcove is positive if it is contained in
the dominant cone C◦ (i.e. if A is on the “positive” side of each generating
hyperplane for S(n)). Let Shi+(n; q, t) denote the corresponding sum over
positive Shi alcoves. Finally, consider the standard q-integer, q-factorial, and
q-binomial coefficient:
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[a]q = 1 + q + · · ·+ qa−1,

[a]q! = [a]q[a− 1]q · · · [2]q[1]q,[
a

b

]
q

=
[a]q!

[a− b]q![b]q!
.

Assertions.

(1) Shi(n; q, t) = DH(n; q, t), and hence is symmetric in q and t.

(2) q(
n

2)Shi(n; q, 1/q) = [n+ 1]n−1
q .

(3) Shi+(n; q, t) is equal to Garsia and Haiman’s q, t-Catalan number, and
hence is symmetric in q and t.

(4) q(
n

2)Shi+(n; q, 1/q) =
1

[n]q

[
2n
n−1

]
q
, the q-Catalan number.

In particular, note that q(
n

2)Shi+(n; q, 1/q) is equal to the sum of
qshi(A)+ish(A) over the positive Shi alcoves A. For n = 3 we may compute
this sum using the data in Figure 2.2 to obtain

1 + q2 + q3 + q4 + q6 =
[6]q[5]q
[3]q[2]q

=
1

[3]q

[
6

2

]
q

,

which is a q-Catalan number. One may check that the other three assertions
are also true in the case n = 3.

In the following section we will establish a bijection (Main Theorem 3.6)
from Shi chambers to labeled lattice paths, which sends our statistics (ish, shi−(
n
2

)
) to the statistics (bounce, area′) of Haglund and Loehr [16]. This allows

us to clarify the Assertions.

Status. Each of the following results depends on our Main Theorem 3.6.

(1) Conjecture. This is equivalent to a conjecture of Haglund and Loehr
[16] (known in a different form to Haiman). No combinatorial expla-
nation of the q, t symmetry is known.

(2) Theorem. This is equivalent to a theorem of Loehr [17].
(3) Theorem. This follows from theorems of Garsia and Haglund [9, 10].

No combinatorial explanation of the q, t symmetry is known.
(4) Theorem. This is equivalent to a theorem of Haglund [14], which was

later proved bijectively by Loehr [18].

3. Shi chambers and lattice paths

In this section we will prove the above stated results regarding the shi and
ish statistics. To do this we interpret Shi chambers as certain labeled lattice
paths.
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Figure 3.1: An ideal and its corresponding Dyck path.

3.1. The root poset and Dyck paths

Cartan and Killing invented root systems prior to 1890 and used these to
classify the semisimple Lie algebras. In this paper we are primarily concerned
with the “type A” root system, which is related to the symmetric group.
Recall that S(n) has a faithful action on Rn

0 generated by the reflections S =
{s1, s2, . . . , sn−1}, where si is the reflection in the hyperplane ei − ei+1 = 0.
The positive normal vectors to the generating hyperplanes form a special
basis, called the basis of simple roots Δ = {e1 − e2, . . . , en−1 − en}. The
positive normal vectors to all reflecting hyperplanes form the set of positive
roots Φ+ = {ei − ej : 1 ≤ i < j ≤ n}.

The root poset is a partial order on Φ+ defined as follows. Given two
positive roots α, β ∈ Φ+ we say that α ≤ β whenever β − α can be written
in the basis Δ using non-negative coefficients. Equivalently, we have α ≤ β
when β − α is in the positive cone generated by Δ. In type A this means
that ej − ek ≤ ei − e� if and only if i ≤ j < k ≤ �.

In this paper we will visualize the root poset in a particular way. Consider
an array of integer points (i, j), 1 ≤ i < j ≤ n, and place the label “ij” in
the unit square with top right corner (i, j). (See Figure 3.1.) This square
will represent the root ei − ej . Thus for α, β ∈ Φ+ we have α ≤ β when
the square labeled β occurs weakly to the left and weakly above the square
labeled α.

A set of roots I ⊆ Φ+ is called an ideal if α ∈ I and α ≤ β together
imply β ∈ I. We may picture this as a collection of unit squares aligned up
and to the left. The lower boundary of these squares defines a lattice path
from (0, 0) to (n, n) which
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• uses only steps of the form (0, 1) and (1, 0), and
• stays weakly above the diagonal.

This defines a bijection between ideals in Φ+ and so-called Dyck paths. For
example, Figure 3.1 displays an ideal in the root poset of S(9) and its
corresponding Dyck path.

3.2. Shi alcoves

3.2.1. The address of an alcove For each root α ∈ Φ+ and each real
number k ∈ R let Hα,k denote the hyperplane {x ∈ Rn

0 : (x, α) = k}.
When α = ei − ej this is the hyperplane ei − ej = k (in the language
of Section 1.2). Now let A be an alcove of the affine arrangement. For each
root α ∈ Φ+ there exists a unique integer kA(α) such that A lies between the
hyperplanes Hα,kA(α) and Hα,kA(α)+1. The function kA : Φ+ → Z determines
the position of A, so we call it the address of A. An important result of
J.-Y. Shi characterizes which functions can be addresses (see Sommers [27,
Proposition 4.1], which is a restatement of J.-Y. Shi [24, Theorem 5.2]).

Shi’s Theorem. A function k : Φ+ → Z is the address of an alcove if and
only if, for all triples α, β, α+ β of positive roots, we have

k(α) + k(β) ≤ k(α+ β) ≤ k(α) + k(β) + 1.

We say that the alcove A is positive if it lies in the dominant cone C◦.
Equivalently, A is positive if and only if its address kA takes non-negative
values. We observe that the address of a positive alcove is an increasing
function on the root poset. Indeed, if α ≤ β then β − α is a non-negative
integer combination of simple roots. Morever, there exists a way to get from
α to β by successively adding these simple roots, always staying within Φ+.
Since we assumed that kA(γ) ≥ 0 for all simple γ ∈ Δ ⊆ Φ+, the result
follows from Shi’s Theorem.

3.2.2. Positive Shi alcoves The Shi arrangement consists of the hyper-
planes Hα,k for all α ∈ Φ+ and k ∈ {0, 1}. Given an alcove A, we would like
to understand in which chamber of the Shi arrangement it lies. This problem
is easiest to solve for positive alcoves; in this case we need only specify for
which roots kA is zero and for which roots it is positive. To this end, we
define

IA := k−1
A ({1, 2, . . .}) ⊆ Φ+.
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Figure 3.2: The address of a positive Shi alcove.

Since the address of a positive alcove A is increasing, we observe in this case
that IA ⊆ Φ+ is an ideal in the root poset. It turns out that this defines a
bijection between positive Shi chambers and ideals. For this result we refer
to Sommers [27, Lemmas 5.1 and 5.2].

Theorem 3.1 (Representing Alcoves). Given an ideal I ⊆ Φ+ of positive
roots, there exists a unique positive alcove of minimum length such that
I = IA. The address of this alcove is given by kI : Φ+ → Z where kI(α) is
the maximum number r such that α can be expressed as a sum of r roots in
the ideal I.

We call the unique minimum alcove in a positive Shi chamber its repre-
senting alcove, or just a positive Shi alcove. Figure 3.2 displays the address
of the representing alcove corresponding to the ideal in Figure 3.1.

3.2.3. Non-positive Shi alcoves It is true that each non-positive Shi
chamber also contains a unique alcove of minimum length, which we call
a non-positive Shi alcove. Unfortunately, we do not know an expression for
the address of such an alcove in the spirit of Theorem 3.1. Instead we use a
slightly weaker result due to Pak and Stanley (see [28, Theorem 5.1]).

Recall that a positive Shi chamber C corresponds to an ideal I ⊆ Φ+ of
positive roots: given a positive root α = ei − ej , the chamber C lies on the
positive side of Hα,1 when α ∈ I and C lies between Hα,0 and Hα,1 when
α 
∈ I. In addition, the minimal roots α ∈ I (i.e. such that I − α is also an
ideal) correspond exactly to the hyperplanes Hα,1 that support a facet of
the chamber and also separate it from the fundamental alcove A◦. We call
these the floors of the chamber. In the language of Dyck paths, these are the
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squares contained in the “valleys” of the path. For instance, the valleys in
Figure 3.1 contain roots e1 − e4, e2 − e6, e6 − e7 and e7 − e9.

Now consider a non-positive Coxeter cone wC◦, with w ∈ S(n). The Shi
hyperplanes that intersect the dominant cone C◦ are precisely ei − ej = 1
for 1 ≤ i < j ≤ n. Let us say that the transposition (i, j) with i < j is
a non-inversion of w if w(i) < w(j). Then the Shi hyperplanes intersecting
wC◦ biject to non-inversions of w as follows. Note that we have i < j if and
only if the hyperplane ei− ej = 1 intersects C◦ if and only if the hyperplane
ew(i)−ew(j) = 1 intersects wC◦. Furthermore, the hyperplane ew(i)−ew(j) = 1
occurs in the Shi arrangement if and only if w(i) < w(j). Thus the Shi
hyperplanes intersecting the cone wC◦ are precisely ew(i) − ew(j) = 1, where
i < j and w(i) < w(j).

Finally, let A be a minimal alcove for some Shi chamber in wC◦. Then
w−1A is a Shi alcove in C◦ and the floors of A biject to the floors of w−1A
via w−1. In other words, the floors of A are of the form ew(i) − ew(j) = 1
where w(i) < w(j) and the label “ij” occurs in a valley of the Dyck path
corresponding to w−1A ⊆ C◦. In summary, we have the following.

Theorem 3.2 (Pak and Stanley [28]). The chambers of the Shi arrangement
are in bijection with pairs (w, I) where w ∈ S(n) is a permutation and
I ⊆ Φ+ is an ideal of positive roots (a Dyck path) such that the minimal
elements of I (labels in the valleys of the path) are a subset of non-inversions
of w.

Figure 3.3 shows an example corresponding to the permutation

w = 521863497 ∈ S(9)

and the same path I as in Figures 3.1 and 3.2. This diagram corresponds
to the non-positive Shi alcove wA, where A is the positive Shi alcove corre-
sponding to I. Here the symbols × and © represent, respectively, inversions
and non-inversions of w. The fact that the valleys of I contain ©’s means
precisely that wA is a minimal alcove in some Shi chamber. We call such a
diagram a labeled Dyck path.

Let us interpret the statistics shi and ish in terms of labeled Dyck paths.

3.2.4.
(n
2

)
− shi = area′ In [16] Haglund and Loehr defined two statistics

on labeled Dyck paths – called area′ and bounce – and they conjectured that
the generating function

∑
qarea

′
tbounce equals the bigraded Hilbert series

DH(n; q, t) of diagonal harmonic polynomials.
We first deal with area′, which Haglund and Loehr defined as the num-

ber of non-inversions of w below the labeled Dyck path (w, I). When
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Figure 3.3: A non-positive Shi chamber.

w is the identity permutation, this is just the number of unit squares fully

between the path and the diagonal, i.e. the “area” of the path.

Theorem 3.3. Let A = w̃A◦ be a (positive or non-positive) Shi alcove,

where w = wI ∈ S(n) is the finite permutation corresponding to w̃ = wIw̃
I ∈

S̃(n), and (w, I) is the corresponding labeled Dyck path. Then we have

(
n

2

)
− shi(A) = area′(w, I).

Proof. Recall that shi(A) is the number of Shi hyperplanes separating A from

the fundamental alcove A◦. These come in two classes. First, it is well known

that the hyperplanes separating A◦ from wA◦ are exactly ei − ej = 0 such

that 1 ≤ i < j ≤ n and w(i) > w(j); i.e. the inversions of w. These are all

of the ×’s in the diagram. Second, the hyperplanes of the form ei − ej = 1

separating A = w̃A◦ from wA◦ correspond to the cells above the path.

Such a hyperplane is a Shi hyperplane precisely when w(i) < w(j), so these

correspond to the ©’s above the path. Finally, since the total number of

symbols is
(
n
2

)
we conclude that

(
n
2

)
− shi(A) is the number of ©’s below the

path.

3.2.5. ish = bounce The bounce statistic was discovered by Haglund

in 2003 [14]. It provided the first combinatorial interpretation of the q, t-

Catalan numbers of Garsia and Haiman. Haglund and Loehr [16] later ex-

tended the statistic to labeled Dyck paths (w, I) by defining bounce(w, I) =
bounce(I) (i.e. ignoring the labeling by w).
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Figure 3.4: The bounce path decomposition.

Definition 3.4 (Haglund). Given a Dyck path I, we construct its bounce

path as follows. Begin at (n, n) and travel left until traveling further left

would cross the path I, then travel down until we hit the diagonal. Repeat

these two steps until we hit (0, 0). Define bounce(I) as the sum of i between

1 and n− 1 such that the bounce path contains the diagonal point (i, i).

For example, let I be the Dyck path (given by the solid lines) in Fig-

ure 3.4. Here the bounce path is indicated by the white vertices, and the

numbers along the bottom show that bounce for this path is

bounce(I) = 7 + 6 + 2 = 15.

Now let us compute ish for this example. Recall that the Dyck path I corre-

sponds to a positive Shi alcove A = w̃A◦ with address kI : Φ+ → Z given by

Figure 3.2. Since A is positive, we know that w̃ has minimum length in the

right coset S(n)w̃. Hence ish(A) is defined as the number of hyperplanes of

the form ei − en = a (for some a ∈ Z) separating A from the fundamental

alcove A◦. By the definition of the address kI , this is just the sum of the

numbers in the top row of Figure 3.2; i.e.

ish(I) = 3 + 3 + 2 + 2 + 2 + 2 + 1 = 15.

As we will see, it is not a coincidence that (7, 6, 2) and (3, 3, 2, 2, 2, 2, 1) are

conjugate partitions of the integer 15.
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Theorem 3.5. Given a (positive or non-positive) Shi alcove A and its cor-
responding labeled Dyck path (w, I) we have

ish(A) = bounce(w, I) := bounce(I).

Proof. Suppose that A = w̃A◦ where w̃ is an affine permutation w̃ ∈ S̃(n).
Suppose further that w̃ = wIw̃

I where wI ∈ S(n) ⊆ S̃(n) is a finite per-
mutation and w̃I is the minimal coset representative. The alcove A thus
corresponds to a labeled Dyck path (wI , I) and the positive alcove w̃IA◦
corresponds to the “unlabeled” Dyck path (1, I) = I.

Recall that ish(A) is the number of hyperplanes between w̃IA◦ and A◦
of the form ei − en = a (for a ∈ Z). Given α = ei − en the number of
these hyperplanes is exactly kA(α), where kA : Φ+ → Z is the address of
the positive Shi alcove w̃IA◦. Thus ish(A) = ish(I) is the sum

∑n−1
i=1 kA(in)

where in denotes a cell in the top row of our lattice path picture.
By Theorem 3.1, we know that kA(α) = kI(α) equals the maximum

integer r such that α can be written as a sum of r roots above the Dyck
path I. Now consider the bounce path of I and extend it to the left from each
point at which it hits I (as we have done in Figure 3.4). This decomposes the
cells above I into “blocks” (there are 3 blocks in Figure 3.4). Let the blocks
be denoted B1, B2, . . . , Bm from lowest to highest and let �(Bj) denote the
number of cells in the top row of block Bj . By construction we see that the
bounce path of I hits the diagonal precisely at the points (�(Bj), �(Bj)) for
j ∈ {1, . . . ,m}, hence bounce(I) =

∑m
j=1 �(Bj) equals the number of cells

in the top rows of the blocks.
On the other hand, we could count these cells by columns. Note that the

number of such cells in column i equals the number of blocks that intersect
column i. If we can show that this number equals kA(in), we will have proved
that

ish(I) =
n−1∑
i=1

kI(in) =
m∑
j=1

�(Bj) = bounce(I).

So consider the root α = ei−en corresponding to cell in and suppose we
have α = γ1+ · · ·+γr where each γi is a root above the Dyck path I. By [27,
Lemma 3.2], we can reorder the summands such that γi = ebi−ebi+1

for some
1 ≤ b1 < b2 < · · · < br+1 ≤ n. (In Figure 3.5 we have shown an example
where α = e1 − e9 and (b1, b2, b3, b4) = (1, 6, 7, 9).) In this case γi+1 is above
and to the right of γi and one gets from γi to γi+1 by “bouncing” off the
diagonal. By construction, this means that γi and γi+1 occur in distinct
blocks; hence γ1, . . . , γr occur in r distinct blocks, all of which intersect
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Figure 3.5: The root α as a sum of three roots γ1 + γ2 + γ3 above the path.

column i. Hence the maximum r for which this is possible (which equals

kI(in) by Theorem 3.1) is at most the number of blocks that intersect

column i.

We claim that in fact kI(α) (for α = ei − en) equals the number of

blocks (say m) that intersect column i. We will show this by finding roots

γ1, . . . , γm above the path (i.e. one from each block intersecting column i)

such that α = γ1 + · · ·+ γm. To begin, choose γ1 in column i to correspond

to the highest cell in the lowest block that intersects this column. Now

travel to the right from γ1, bounce off the diagonal, and travel up until we

reach a cell γ2 such that: γ2 is in the block just above the block containing

γ1, and γ2 is in the highest row of this block. This is always possible. (See

Figure 3.5; we are really just following the bounce path.) Continue in this

way to achieve the desired decomposition α = γ1 + · · ·+ γm.

In conclusion, here is the main result of the paper.

Main Theorem 3.6. The bijection A 
→ (w, I) from Shi alcoves to labeled

Dyck paths sends the pair of statistics (
(
n
2

)
−shi, ish) to the pair (area′, bounce).

4. The inverse statistics

We chose the definitions of shi and ish to emphasize their connection with

the Ish hyperplane arrangement. However, we will obtain a more natural

interpretation of ish when we compose it with inversion in the affine Weyl

group. That is, let us define the following inverse statistics.
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Definition 4.1. For any affine permutation w̃ ∈ S̃(n), we define

shi−1(w̃) := shi(w̃−1) and

ish−1(w̃) := ish(w̃−1).

First let us say why we care about the inverse statistics.

4.1. Inverse Shi alcoves

Let E denote the set of representing alcoves for the chambers of the Shi
arrangement Shi(n) (see Theorem 3.1). Thinking of these alcoves as elements
of the affine symmetric group S̃(n), we may invert them. J.-Y. Shi showed
that the set E−1 of inverted alcoves has a remarkable shape (see [25]).

Theorem 4.2. The inverted Shi alcoves E−1 are precisely the alcoves inside
the simplex Dn+1(n) ⊆ Rn

0 bounded by the hyperplanes

{ei − ei+1 = −1 : 1 ≤ i ≤ n− 1} ∪ {e1 − en = 2},

which is congruent to the dilation (n+ 1)A◦ of the fundamental alcove A◦.

Since the dimension of the space Rn
0 is n− 1, the simplex Dn+1(n) con-

tains (n+1)n−1 alcoves. Shi concluded that his arrangement has (n+1)n−1

chambers. Figure 4.1 displays the simplex D4(3) and the Shi arrangement
in R3

0. We have labeled each alcove by the window notation for the inverse
of the corresponding affine permutation. Compare to Figure 2.1.

Following Main Theorem 3.6, we assert that the joint-distribution of
shi−1 and ish−1 on the simplex Dn+1(n) is the bigraded Hilbert series of di-
agonal harmonic polynomials. In fact, since the shape Dn+1(n) (Figure 4.1)
is much nicer than the distribution of Shi alcoves (Figure 2.1), it seems that
the inverse statistics shi−1 and ish−1 are more important than the origi-
nals. Thus we would like to understand them directly, without reference to
inversion in S̃(n).

4.2. The inverse shi statistic

To do this we need to discuss the realization of the affine symmetric group
S̃(n) as a semi-direct product of the finite symmetric group S(n) and the
root lattice

Q = {(r(1), . . . , r(1)) ∈ Zn : r(1) + · · ·+ r(n) = 0}.
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Figure 4.1: The simplex D4(3) of inverted Shi alcoves.

By abuse of notation, we think of Q as an abelian group by associating the
root r ∈ Q with the translation tr : Rn

0 → Rn
0 defined by tr(v) = v + r.

Then S̃(n) is the semi-direct product Q�S(n) = {trw : x ∈ S(n), r ∈ Q},
where w ∈ S(n) acts on tr ∈ Q by wtrw

−1 = tw(r). Note in particular that
inversion is given by (trw)

−1 = t−w−1(r)w
−1.

The semi-direct product structure S̃(n) = Q � S(n) has the following
combinatorial interpretation in terms of the window notation. Recall that
an affine permutation w̃ : Z → Z must satisfy w̃(k + n) = w̃(k) + n for
all k ∈ Z, and w̃(1) + · · · + w̃(n) =

(
n+1
2

)
. If we denote w̃ ∈ S̃(n) by

the vector w̃ = [w̃(1), . . . , w̃(n)], then each affine permutation has a unique
decomposition,

[w̃(1), . . . , w̃(n)] = (w(1), . . . , w(n)) + n(r(1), . . . , r(n))

where w ∈ S(n) is a finite permutation and r = (r(1), . . . , r(n)) is an element
of the root lattice Q. For example, the affine permutation [−2, 2, 6] ∈ S̃(3)
decomposes as

[−2, 2, 6] = (1, 2, 3) + 3(−1, 0, 1).

One may easily check that the map w̃ = w+nr ↔ w̃ = trw is an isomorphism
between the two structures.
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We can now describe the inverse shi statistic explicitly. In fact, it doesn’t
change.

Theorem 4.3. For any affine permutation w̃ ∈ S̃(n) we have

shi−1(w̃) = shi(w̃).

Proof. First recall that the Shi arrangement Shi(n) consists of all the affine
hyperplanes Hα,k that touch the closure of the fundamental alcove A◦.2

There are two of these perpendicular to each root α ∈ Φ+; namely Hα,0 and
Hα,1.

The inversions of w̃ ∈ S(n) are the affine hyperplanes H separating the
alcoves w̃A◦ and A◦. These biject under the map w̃−1 to the hyperplanes
w̃−1H separating the alcoves A◦ and w̃−1A◦. If w̃ = trw, note that

w̃Hα,k = Hw(α),k+(r,α).

This implies that the separating hyperplanes of w̃ orthogonal to the root α
biject to the inversions of w̃−1 orthogonal to the root w−1(α). Then, for any
alcove A and positive root α ∈ Φ+ note that the number of Shi hyperplanes
orthogonal to α that separate A from A◦ is equal to 0 or 1. Call this number
χα(A) ∈ {0, 1}. Finally, since the finite permutation w−1 is a bijection on
the roots Φ = Φ+ ∪ −Φ+, this induces a bijection between the multisets
{χα(w̃A◦) : α ∈ Φ+} and {χα(w̃

−1A◦) : α ∈ Φ+}. Hence these multisets
have the same sum; i.e. shi(w̃) = shi−1(w̃).

For example, the affine permutation w̃ = [−2, 2, 6] has inversions ((2, 4)),
((3, 4)), ((3, 5)), and ((3, 7)), of which only ((3, 7)) does not come from a
Shi hyperplane. The inverse w̃−1 = [4, 2, 0] has inversions ((1, 2)), ((1, 3)),
((1, 6)), and ((2, 3)), where ((1, 6)) does not come from a Shi hyperplane.
Hence shi(w̃) = shi−1(w̃) = 3.

4.3. The inverse ish statistic

Next we will compute a formula for the ish−1 statistic. We will find that
ish−1 is a function on the root lattice Q.

To do this we need a lemma about the original ish statistic, which follows
directly from Björner and Brenti [5, Lemma 4.2]. The proof is instructive,
so we reproduce it here.

2This first sentence holds only for type A, but the rest of the proof holds for all
crystallographic root systems.
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Lemma 4.4. Given an affine permutation w̃ ∈ S̃(n), choose i ∈ {1, . . . , n}
such that w̃(i) is maximum. Then

ish(w̃) = w̃(i)− n.

Proof. By definition, ish(w̃) is the number of affine tranpositions ((n, j))
such that n < j and w̃I(n) > w̃I(j), where w̃I is the affine permutation
defined by taking [w̃I(1), . . . , w̃I(n)] to be the increasing rearrangement of
[w̃(1), . . . , w̃(n)]. Setting ũ = w̃I , we have ish(w̃) = ish(ũ). We wish to show
that ish(ũ) = ũ(n)− n.

So let ũ = u+ nr, where u ∈ S(n) is a finite permutation and r ∈ Q is
an element of the root lattice. Next fix an index 1 ≤ i ≤ n− 1 and consider
the integer � ũ(n)−ũ(i)

n �. Since ũ(1) < · · · < ũ(n), this number is always non-
negative and it counts transpositions ((i, j)) such that n < j = i + kn (for
some k ∈ Z) and ũ(n) > ũ(i+kn). Furthermore, since −n ≤ u(n)−u(i) ≤ n,
note that ⌊

ũ(n)− ũ(i)

n

⌋
=

⌊
u(n)− u(i)

n
+ r(n)− r(i)

⌋
equals r(n)− r(i) when u(i) < u(n) and equals r(n)− r(i)− 1 when u(i) >
u(n). Finally, summing over i gives

ish(ũ) =
n−1∑
i=1

⌊
ũ(n)− ũ(i)

n

⌋

=

(
n−1∑
i=1

r(n)− r(i)

)
−# {1 ≤ i ≤ n− 1 : u(i) > u(n)}

= (n− 1)r(n)−
(

n−1∑
i=1

r(i)

)
− (n− u(n))

= (n− 1)r(n)− (0− r(n))− (n− u(n))

= (u(n) + nr(n))− n

= ũ(n)− n.

Happily, everything balances to create a simple formula. From this for-
mula we get an expression for ish−1.

Theorem 4.5. Given an affine permutation w̃ = w + nr, where w ∈ S(n)
is a finite permutation and r ∈ Q is an element of the root lattice, choose
the largest index j ∈ {1, . . . , n} such that the value of r(j) is a minimum.
Then

ish−1(w̃) = j + n(−r(j)− 1).
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Figure 4.2: The shi and ish−1 statistics on D4(3).

Proof. For i ∈ {1, . . . , n} recall that w̃−1(i) = w−1(i) − nr(w−1(i)). Thus
the largest value of w̃−1(i) over i ∈ {1, . . . , n} equals the largest value of
j−nr(j) over j ∈ {1, . . . , n}. This value is achieved by the maximum j such
that r(j) is a minimum. Lemma 4.4 then tells us that

ish−1(w̃) = ish(w̃−1) = (j − nr(j))− n.

For example, Figure 2.2 displays the shi and ish−1 statistics on the sim-
plex D4(3). (The darker shaded alcoves have positive inverses.) This is the
inverse of Figure 4.2.

Finally, we wish to emphasize the following. The value of ish−1(w̃ =
trw) depends only on the element r ∈ Q of the root lattice. (This is the
analogue of the fact that ish(w̃ = wIw̃

I) depends only on the minimal coset
representative w̃I .) Combining this observation with the Main Theorem 3.6,
we conclude that Haglund’s bounce statistic is really a statistic on the root
lattice of type A.

5. Powers of nabla

In this final section we will describe several ideas for future research, roughly
in order of increasing generality. Most of this depends on the nabla operator
∇ of F. Bergeron and Garsia [4], which we define first.

5.1. The nabla operator

We call a formal power series in Q[[x1, x2, . . . , ]] a symmetric function if it
is invariant under permuting variables. Let Λ = ⊕n≥0 Λ

n denote the ring
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of symmetric functions, graded by degree. Then Λn is isomorphic to the
vector space of (virtual) representations of the symmetric group S(n) over
Q. Under this isomorphism, the role of the irreducible representations is
played by the basis of Schur functions sλ ∈ Λn, one for each partition λ =
(λ1 ≥ λ2 ≥ · · · ) of the integer n =

∑
i λi.

If we extend the field of coefficients fromQ toQ(q, t), another remarkable
basis of Λn is the set of modified Macdonald polynomials H̃μ, where again
μ = (μ1 ≥ μ2 ≥ · · · ) is an integer partition of n. Let ν(μ) :=

∑
i≥1(i−1)μi,

3

and let μ′ be the conjugate partition defined by μ′
i = #{j ≥ 1 : μj ≥ i}.

Then the Bergeron-Garsia nabla operator is the unique Q(q, t)-linear map
on Λn defined by

∇(H̃μ) = qν(μ
′)tν(μ)H̃μ.

That is, the modified Macdonald polynomials are a basis of eigenfunctions
for∇. It turns out that many results on diagonal harmonics can be expressed
elegantly in terms of ∇. In particular, if en =

∑
i1<···<in

xi1 · · ·xin is the
elementary symmetric function, then ∇(en) is the Frobenius character of the
diagonal harmonics. That is, if we replace each Schur function in ∇(en) by
its degree as a representation of S(n), we obtain DH(n; q, t) (in the notation
of Section 1.1). For details, see Haglund [15].

Now we suggest some ways to generalize our earlier results, which amount
to new conjectural interpretations of the ∇ operator.

5.2. Extended Shi arrangements

Recall that the set of reflections in the affine Weyl group S̃(n) is

T̃ = {((i, j)) : 1 ≤ i ≤ n, i < j}.

The affine transposition ((i, j)) corresponds to the hyperplane Hα,a where
α = ei′ − ej′ (with i′ = i − n(�i/n	 − 1), j′ = j − n(�j/n	 − 1), and a =
� i
n	−� j

n	). We will call � j−i
n � = k the height of the hyperplane; this is some

measure of how far the hyperplane is from the fundamental alcove. Recall
that the Shi arrangement consists of the hyperplanes of height 0. We may
now define the m-extended Shi arrangement.

Definition 5.1. Let Shim(n) denote the set of affine transpositions ((i, j))
with height in the set {0, . . . ,m− 1}. Equivalently,

Shim(n) := {ei − ej = a : 1 ≤ i < j ≤ n, a ∈ {−m+ 1, . . . ,m}} .
3The notation n(μ) is also used.
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Athanasiadis proved [3, Proposition 3.5] that every chamber of Shim(n)
contains a unique alcove of minimum length. Fishel and Vazirani [7, Theo-
rem 7.1] proved that the inverses of these representing alcoves are precisely
the alcoves contained in the simplex Dmn+1(n) ⊆ Rn

0 bounded by the hy-
perplanes

{ei − ei+1 = −m− 1 : 1 ≤ i ≤ n− 1} ∪ {e1 − en = m+ 1}.

Sommers showed in [27, proof of Theorem 5.7] that the simplex Dmn+1(n) is
congruent to the dilation (mn+1)A◦ of the fundamental alcove A◦. Since this
occurs in the (n− 1)-dimensional space Rn

0 , the simplex Dmn+1(n) consists
of (mn+ 1)n−1 alcoves. We would like to extend the statistics shi and ish−1

to these alcoves.
This turns out to be very easy to do. The shi statistic generalizes natu-

rally, and the ish statistic needs no generalization at all.

Definition 5.2. Given an affine permutation w̃ ∈ S̃(n), let shim(w̃) denote
the number of hyperplanes of Shim(n) separating w̃A◦ from the fundamental
alcove A◦.

The proof of Theorem 4.3 generalizes to show that shim(w̃) = shim(w̃−1)
for all w̃ ∈ S̃(n) (we simply let χα(A) take values beyond just 0 and 1). Thus
we want to study the joint distribution of shim and ish−1 on the alcoves of
the simplex Dmn+1(n).

Conjecture 5.3. Consider the following generating function for shim and
ish−1 over alcoves in the dilated simplex Dmn+1(n),

Shim(n; q, t) :=
∑

A⊆Dmn+1(n)

qish
−1(A)tm(

n

2)−shim(A),

and let Shim+ (n; q, t) denote the same sum over alcoves whose inverses are in
the dominant cone C◦. We conjecture the following:

(1) Shim(n; q, t) is the Hilbert series of ∇m(en).

(2) qm(
n

2)Shim(n; q, 1/q) = [mn+ 1]n−1
q .

(3) Shim+ (n; q, t) is the Hilbert series for the sign-isotypic component of
∇m(en).

(4) qm(
n

2)Shim+ (n; q, 1/q) = 1
[n]q

[
(m+1)n
n−1

]
q
, the q-Fuss-Catalan number.

For example, let m = 2 and n = 3. Figure 5.1 displays the statistics shi2

and ish−1 on the alcoves of D7(3), and Table 1 displays the corresponding
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Figure 5.1: The shi2 and ish−1 statistics on D7(3).

Table 1: The generating functions Shi2(3 : q, t) and Shi2+(3; q, t)

ish−1

shi2

0 1 2 3 4 5 6
0 1
1 2 1
2 2 3 1
3 1 4 3 1
4 3 5 3 1
5 1 3 4 3 1
6 1 2 2 1

ish−1

shi2

0 1 2 3 4 5 6
0 1
1 1
2 1 1
3 1 1
4 1 1 1
5 1 1
6 1

generating functions. One may observe that all four assertions hold in this
case.

Positive powers of ∇ have been well-studied. We believe that a suit-
able extension of our Main Theorem 3.6 is possible, which would make our
conjectures equivalent to earlier conjectures of Haiman, Loehr and Remmel
(see [19]), which are based on lattice paths from (0, 0) to (mn, n) that stay
weakly above the diagonal y = x/m.

5.3. Bounded chambers

While positive powers of ∇ have been investigated by several authors, to our
knowledge there has been no combinatorial conjecture for negative powers
of ∇. In this section we will provide one.
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It was shown by Edelman and Reiner [6, Section 3] and by Postnikov
and Stanley [22, Proposition 9.8] that the characteristic polynomial of the
m-extended Shi arrangement is

χ(Shim(n), x) = (x−mn)n−1.

Hence, by Zaslavsky’s Theorem, Shim(n) has (mn + 1)n−1 chambers (as
we noted above), and it has (mn − 1)n−1 bounded chambers. Athanasiadis
showed that this is also an example of Ehrhart reciprocity [2].

As mentioned earlier, Athanasiadis showed that each chamber of Shim(n)
contains a unique alcove of minimum length. In the case m = 1, Sommers
showed [27, Lemmas 5.1 and 5.2] that, moreover, every bounded chamber of
Shim(n) contains a unique alcove of maximum length. Fishel and Vazirani
[8, Theorem 6.1] showed that this is true for general m ≥ 1, and furthermore
that the inverses of these alcoves are precisely the alcoves contained in the
simplex Dmn−1(n) ⊆ Rn

0 bounded by the hyperplanes

{ei − ei+1 = m : 1 ≤ i ≤ n− 1} ∪ {e1 − en = −m+ 1}.

As with Dmn+1(n) above, Sommers has shown that Dmn−1(n) is congruent
to the dilation (mn − 1)A◦ of the fundamental alcove, which implies that
Dmn−1(n) contains (mn−1)n−1 alcoves. We wish to study the statistics shim

and ish−1 on these alcoves.

Conjecture 5.4. Consider the following generating function for shim and
ish−1 over alcoves in the dilated simplex Dmn−1(n),

Shi−m(n; q, t) :=
∑

A⊆Dmn−1(n)

qish
−1(A)t(mn−2)(n−1)/2−shim(A),

and let Shi−m
+ (n; q, t) denote the same sum over alcoves whose inverses are

in the dominant cone C◦. We conjecture the following.

(1) (−1)n−1Shi−m(n; 1/q, 1/t)/qn−1tn−1 is the Hilbert series of ∇−m(en).
(2) q(mn−2)(n−1)/2Shi−m(n; q, 1/q) = [mn− 1]n−1

q .

(3) (−1)n−1Shi−m
+ (n; 1/q, 1/t)/qn−1tn−1 is the Hilbert series for the sign-

isotypic component of ∇−m(en).

(4) q(mn−2)(n−1)/2Shi−m
+ (n; q, 1/q) = 1

[n]q

[
(m+1)n−2

n−1

]
q
.

For example, Figure 5.2 displays the statistics shi2 and ish−1 on the
simplex D5(3), and Table 2 displays the corresponding generating functions.
One may observe that all four assertions hold for this data.
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Figure 5.2: The shi2 and ish−1 statistics on D5(3).

Table 2: The generating functions Shi−2(3 : q, t) and Shi−2
+ (3; q, t)

ish−1

shi2

0 1 2 3 4
0 1
1 2 1
2 2 3 1
3 1 4 3 1
4 1 2 2 1

ish−1

shi2

0 1 2 3 4
0 1
1 1
2 1 1
3 1 1
4 1

Combining Conjectures 5.3 and 5.4, we obtain a conjectural combina-
torial interpretation for all integral powers of the nabla operator acting on
en. We wonder whether Athanasiadis’ result [2] on Ehrhart reciprocity for
Shi arrangements may reflect some sort of reciprocity theorem for the nabla
operator.

5.4. Interpolation

Since the forms of Conjectures 5.3 and 5.4 are so similar, one may ask for
a formula encompassing them both. In this case we do not have a concrete
conjecture, but we we will suggest some ideas.

The simplices Dmn+1(n) and Dmn−1(n) are both special cases of the
following construction of Sommers:
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Recall that the root system of type An−1 is defined by Φ = {ei−ej : 1 ≤
i, j ≤ n}, and the basis of simple roots is Δ = {ei − ei+1 : 1 ≤ i ≤ n − 1}.
Given a root α ∈ Φ, let b denote the sum of its coefficients in the simple

root basis; we say that b is the height of the root α. Let Φb ⊆ Φ denote the

set of roots of height b. Finally, let p = an+ b be any integer coprime to n,

with 1 ≤ b ≤ n − 1, and let Dp(n) be the region containing the origin and

bounded by the hyperplanes

{Hα,a : α ∈ Φ−b} ∪ {Hα,a+1 : α ∈ Φn−b}.

As with Dmn+1(n) and Dmn−1(n), Sommers showed for any p coprime to n

that Dp(n)

• is congruent to a dilation pA◦ of the fundamental alcove;

• contains pn−1 alcoves; and

• contains 1
p+n

(
p+n
n

)
alcoves whose inverses are in the dominant cone.

We suggest the following:

Open Problem. Define a statistic stat on the alcoves of Dp(n). Consider

the generating function

F (p, n; q, t) :=
∑

A⊆Dp(n)

qish
−1(A)t(p−1)(n−1)/2−stat(A),

and let F+(p, n; q, t) denote the same sum over alcoves whose inverses lie in

the dominant cone C◦. These generating functions should satisfy

(1) F (p, n; q, t) = F (p, n; t, q).

(2) q(p−1)(n−1)/2F (p, n; q, 1/q) = [p]n−1
q .

(3) q(p−1)(n−1)/2F (p, n; q, 1/q) = 1
[p+n]q

[
p+n
n

]
q
.

Note that ish−1 does not need to be modified. It is the shi statistic that

is difficult to define in general. We note that the smallest mystery case is

p = 2 and n = 5, which corresponds to the 4-dimensional simplex D2(5) in

R5
0 bounded by the hyperplanes

e1 − e3 = e2 − e4 = e3 − e5 = 0 and e1 − e4 = e2 − e5 = 1.

This simplex contains 24 = 16 alcoves, corresponding to the affine permuta-

tions
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[−1, 2, 5, 3, 6], [0, 3, 2, 4, 6], [1, 2, 4, 3, 5], [2, 1, 3, 4, 5],
[0, 2, 3, 4, 6], [2, 0, 3, 6, 4], [1, 3, 2, 4, 5], [2, 1, 3, 5, 4],
[0, 2, 4, 3, 6], [1, 2, 3, 4, 5], [1, 3, 2, 5, 4], [2, 1, 4, 3, 5],
[0, 3, 1, 4, 6], [1, 2, 3, 5, 4], [1, 4, 2, 5, 3], [3, 1, 4, 2, 5].

Of these, only 1
2+5

(
2+5
5

)
= 3 have inverses in the dominant cone – namely,

[1, 2, 3, 4, 5], [0, 2, 3, 4, 6] and [2, 0, 3, 6, 4]. The distribution of ish−1 over the
former 16 is

∑
qish

−1(A) = 10+5q+ q2 and the distribution of ish−1 over the
latter 3 is

∑
qish

−1(A) = 1 + q + q2. We do not know what the analogue of
shi is in this case.

5.5. Other types

In this paper we have focused on the affine Weyl group of type Ãn, which
is the group S̃(n) of affine permutations. However, we have tried to use
language throughout that is general to all affine Weyl groups. Certainly, the
combinatorics of Shi arrangements is completely general. Also, Sommers’
simplex Dp(h) is defined in general for any integer p coprime to the Coxeter
number h.

Haiman observed that the most obvious generalization of the ring of
harmonic polynomials to other types is “too large” (see [13, Section 7]), and
he conjectured that some suitable quotient should be considered instead.
Using rational Cherednik algebras, Gordon [11] was able to construct such
a quotient. Gordon and Griffeth [12] have now observed that this module
does have a suitable bigrading and it satisfies many of the desired combi-
natorial properties. Gordon-Griffeth [12] and Stump [30] have both defined
q, t-Catalan numbers in general type (even in complex types), however their
numbers disagree in the non-well-generated complex types. This is an active
area, and we wish to emphasize: as of this writing, there is no known
combinatorial interpretation for these objects beyond type A.

We suggest that the shi statistic on the simplex Dh+1(h) is a good place
to start. The next step is to define an analogue of the ish−1 statistic. Unfor-
tunately, we have checked that in type B2 it cannot simply be a statistic on
the root lattice.
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