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A note on spanning trees and totally cyclic
orientations of 3-connected graphs
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Merino and Welsh conjectured that for a 2-edge connected graph
G with no loops, the number of spanning trees of G is always less
than or equal to either the number of acyclic orientations of G, or
the number of totally cyclic orientations of G. In this paper, we
prove that the Merino-Welsh conjecture holds for a 3-connected
simple graph of minimum degree at least 4 and average degree at
least 7.02.
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1. Introduction

An orientation of a graph is an arbitrary assignment of a direction to every
edge of the graph. An orientation such that every edge is contained in some
oriented cycles is said to be totally cyclic orientation. It is well known that an
orientation is totally cyclic if and only if the digraph under this orientation
is strongly connected (that is, for any two vertices u and v there exists a
directed path from u to v). An orientation is said to be acyclic if the digraph
under this orientation has no directed cycles.

Let G denote a graph and V (G), E(G) denote its vertex set and edge
set respectively. Denote n = |V (G)|, m = |E(G)|. The Tutte polynomial
T (G, x, y), which is a polynomial in two variables, plays an important role
in graph theory. We gather some of the naturally occurring interpretations of
the Tutte polynomial. Let c(G), a(G), Γ(G) and f(G) denote the number of
totally cyclic orientations of G, the number of acyclic orientations of G, the
number of spanning trees of G and the number of forests of G respectively.
Then T (G, 0, 2) = c(G), T (G, 1, 1) = Γ(G), T (G, 2, 0) = a(G), T (G, 2, 1) =
f(G) (see [2, 5]). It is important to point out that the exact evaluation of
any such invariant is NP-hard even for planar bipartite graphs (see [7]).

The motivation for this work is that the number of totally cyclic orien-
tations of a graph is closely related to the number of spanning trees of a
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graph. Merino and Welsh [5] conjectured that for a 2-edge connected graph
G with no loops, the number of spanning trees of G is always less than or
equal to either the number of acyclic orientations of G, or the number of
totally cyclic orientations of G. Recently, Thomassen [6] proved that the
Merino-Welsh conjecture holds for all bridgeless and loopless multigraphs
with maximum degree at most three. He also proved that Γ(G) < a(G) if G
has at most 16n/15 edges, and Γ(G) < c(G) if G has at least 4n− 4 edges.

In this paper, all graphs considered are simple graphs (have no loops
and no parallel edges), unless otherwise specified. For the notation and ter-
minology not defined herein, we refer readers to [3]. We prove that the
Merino-Welsh conjecture holds for a 3-connected simple graph of minimum
degree at least 4 and average degree at least 7.02.

The rest of the paper is organized as follows. In Section 2, we describe
a special sequence of 3-augmentations which can be used to generate 3-
connected graphs. In Section 3, we give a method to construct some totally
cyclic orientations of 3-connected graphs. Then use the method described in
[6] to prove the main result.

Theorem 1 (Main Theorem). Let G be a 3-connected graph with minimum
degree δ ≥ 4 and m ≥ 3.51n. Then Γ(G) ≤ c(G).

2. Generating 3-connected graphs

Let G be a graph with minimum degree at least 3. If G has an edge e
such that G − e is a subdivision of H, where H is a 3-connected graph,
then we say that G is obtained from H by 3-augmentation. In particular, if
|V (G)| > |V (H)|, then this 3-augmentation is called strict 3-augmentation.
Let Λ3 be the set of all graphs that can be generated from complete graph
K4 using a sequence of 3-augmentations. The following well known result
was proved by Barnette and Grünbaum.

Theorem 2. [1] Λ3 is the set of all 3-connected graphs.

Suppose xy is an edge of H, and v is a vertex of H other than x, y. Let
G be the graph obtained from H by using a new vertex a to subdivide the
edge xy, then adding the edge av to the resulting graph. Clearly, |V (G)| =
|V (H)|+ 1 and |E(G)| = |E(H)|+ 2. We say that the graph G is obtained
from H by type-1 strict 3-augmentation with base {v, xy}. Denote

G := H(v, a, xy).

Similarly, suppose x1y1, x2y2 are two edges of H. Let G′ be the graph
obtained from H by using two new vertices a1, a2 to subdivide the edges
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x1y1, x2y2 respectively, then adding the edge a1a2 to the resulting graph.
Then |V (G′)| = |V (H)| + 2 and |E(G′)| = |E(H)| + 3. We say that the
graph G′ is obtained from H by type-2 strict 3-augmentation with base
{x1y1, x2y2}. Denote

G′ := H(a1, x1y1; a2, x2y2).

Hence, we can partition 3-augmentations into three types: type-1 strict
3-augmentation, type-2 strict 3-augmentation and edge addition.

By Theorem 2, all 3-connected graphs can be obtained from K4 by
a sequence of 3-augmentations, but how many type-1 (or type-2) strict
3-augmentations contained in this sequence is unsolved. In the following
lemma, we answer the question in some sense for a 3-connected graph with
minimum degree δ ≥ k > 3.

Lemma 3. Suppose G is a 3-connected graph with minimum degree δ(G) ≥
k > 3. There is a sequence of 3-augmentations, by which G is obtained from
K4 such that n1 ≥ (k − 3)n2, where n1, n2 denote the number of type-1,
type-2 strict 3-augmentations contained in this sequence respectively.

Proof. Suppose G is obtained from K4 by a sequence of 3-augmentations

Q := {G1, G2, . . . , Gi−1, Gi, . . . , Gs−1, Gs},

and Q has the following properties: 1) G1 = K4, Gs = G, and Gi is a proper
minor of G, i = 2, 3, . . . , s − 1; 2) suppose Gl+1 is obtained from Gl by
type-2 strict 3-augmentation, then Gl could not expand to a minor of G
by some type-1 strict 3-augmentations or edge additions. In the following,
we prove that Q is just the sequence satisfying lemma condition. Suppose
Gl+1 is obtained from Gl by type-2 strict 3-augmentation. Without loss of
generality, let Gl+1 := Gl(a1, x1y1; a2, x2y2). Now add edges to Gl+1 as many
as possible such that the resulting graph G′

l+1 is a minor of G. We claim
that ai (i = 1, 2) is not adjacent to any vertices of Gl other than xi, yi
by 2); that is, G′

l+1 = Gl+1. Otherwise, say xa1 ∈ E(G′
l+1), x ∈ V (Gl) but

x /∈ {x1, y1}. Let G′ := Gl(x, a1, x1y1) and G′′ := G′(a1, a2, x2y2). It is clear
that G′′ = Gl+1 is a minor of G. Note that Gl could be expanded into a
minor of G by two type-1 strict 3-augmentations, which is contrary to the
choice of Q. Hence, G′

l+1 = Gl+1. Now expand Gl+1 into a minor of G as
large as possible using type-1 strict 3-augmentations and edge additions.
Noting that the degree of ai (i = 1, 2) is three in Gl+1, but δ(G) ≥ k, there
are at least k− 3 type-1 strict 3-augmentations before another type-2 strict
3-augmentation having to be chosen in Q. Hence, n1 ≥ (k− 3)n2 in Q. The
proof is completed.
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Figure 1: A real line denotes an edge between two vertices, and a dotted line
denotes a path between two vertices.

3. Totally cyclic orientations

Lemma 4. Suppose G is obtained from H by type-1 strict 3-augmentation.
Then c(G) ≥ 3c(H).

Proof. Let G := H(v, a, xy) (see Fig. 1(a)). We claim that for each totally
cyclic orientation of H, it can be extended to three totally cyclic orienta-
tions of G, and for each pair of totally cyclic orientations of H, their cor-
responding totally cyclic orientations of G are pairwise disjoint. According
to the direction of edge xy in H, we partition the totally cyclic orientation
set D(H) of H into two subsets D1(H) and D2(H), where D1(H) denotes
the subset of D(H) such that the edge xy is directed from x to y and
D2(H) = D(H) \D1(H).

Given an orientation �H ∈ D1(H), we define three orientations of G
which are extended from �H as follows (see Fig. 1(b)).

G1( �H): The orientation of G is extended from E( �H) − xy by directing
the edge xa from x to a, the edge ay from a to y, and the edge va from v
to a.

G2( �H): The orientation of G is obtained from G1( �H) by reversing the
orientation of the edge va.

G3( �H): Since �H is a totally cyclic digraph, �H is strongly connected.
Hence there exists a directed path Pyv from y to v in �H. Then C := ay −
Pyv−va is a directed cycle in G1( �H). G3( �H) is an orientation of G obtained

from G1( �H) by reversing the orientations of all the edges of C.
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Given an orientation �H ′ ∈ D2(H), we define three orientations of G
which are extended from �H ′ as follows (see Fig. 1(c)).

G′
1(

�H ′): The orientation of G is extended from E( �H ′)− yx by directing
the edge ax from a to x, the edge ya from y to a, and the edge va from v
to a.

G′
2(

�H ′): The orientation of G is obtained from G′
1(

�H ′) by reversing the
orientation of the edge va.

G′
3(

�H ′): Similarly, there exists a directed path Pvy from v to y in �H ′.

Then C ′ := av − Pvy − ya is a directed cycle in G′
2(

�H ′). G′
3(

�H ′) is an

orientation of G obtained from G′
2(

�H ′) by reversing the orientations of all
the edges of C ′.

Let Oi := {Gi( �H), �H ∈ D1(H)}, O′
i := {G′

i(
�H ′), �H ′ ∈ D2(H)}, i =

1, 2, 3. For i, j = 1, 2, 3, note that in Oi and O′
j the edge ax is directed in

reverse; hence, Oi ∩O′
j = ∅. It is obvious that Oi ∩Oj = ∅ and O′

i ∩O′
j = ∅

when i �= j. Hence, the claim holds.

Lemma 5. Suppose G is obtained from H by type-2 strict 3-augmentation.
Then c(G) ≥ 2.5c(H).

Proof. Let G := H(a1, x1y1; a2, x2y2) (see Fig. 2(a)). According to the direc-
tion of the edges x1y1, x2y2 in H, we partition the totally cyclic orientation
set D(H) of H into four subsets D11(H), D12(H), D21(H) and D22(H),
where D11(H) denotes the subset of D(H) such that direct the edge x1y1
from x1 to y1 and the edge x2y2 from x2 to y2, D12(H) denotes the subset
of D(H) such that direct the edge x1y1 from x1 to y1 and the edge x2y2
from y2 to x2, D21(H) denotes the subset of D(H) such that direct the edge
x1y1 from y1 to x1 and the edge x2y2 from x2 to y2, and D22(H) denotes
the subset of D(H) such that direct the edge x1y1 from y1 to x1, and the
edge x2y2 from y2 to x2.

Given an orientation �H ∈ D11(H), we define three orientations of G
which are extended from �H as follows (see Fig. 2(b)).

G1
11(

�H): The orientation of G is extended from E( �H)− x1y1 − x2y2 by
directing the edge x1a1 from x1 to a1, the edge a1y1 from a1 to y1, the edge
x2a2 from x2 to a2, the edge a2y2 from a2 to y2, and the edge a1a2 from a1
to a2.

G2
11(

�H): The orientation of G is obtained from G1
11(

�H) by reversing the
orientation of the edge a1a2.

G3
11(

�H): Since �H is a totally cyclic digraph, �H is strongly connected.

Hence, there exists a directed path Py1x2
from y1 to x2 in �H. Then C :=

a1y1 − Py1x2
− x2a2 − a2a1 is a directed cycle in G2

11(
�H). G3

11(
�H) is an
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Figure 2: A real line denotes an edge between two vertices, and a dotted line
denotes a path between two vertices.

orientation of G obtained from G2
11(

�H) by reversing the orientations of all
the edges of C.

Given an orientation �H ∈ D12(H), we define three orientations of G,
which are extended from �H as follows (see Fig. 2(c)).

G1
12(

�H): The orientation of G is extended from E( �H)−x1y1−y2x2 by di-
recting the edge x1a1 from x1 to a1, the edge a1y1 from a1 to y1, the edge a2x2
from a2 to x2, the edge y2a2 from y2 to a2, and the edge a1a2 from a1 to a2.
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G2
12(

�H): The orientation of G is obtained from G1
12(

�H) by reversing the
orientation of the edge a1a2.

G3
12(

�H): Since �H is a totally cyclic digraph, �H is strongly connected.

Hence, there exists a directed path Px2x1
from x2 to x1 in �H. Then C :=

a2x2 − Px2x1
− x1a1 − a1a2 is a directed cycle in G1

12(
�H). G3

12(
�H) is an ori-

entation of G obtained from G1
12(

�H) by reversing the orientations of all the
edges of C.

Given an orientation �H ∈ D21(H), we define three orientations of G,
which are extended from �H as follows (see Fig. 2(d)).

G1
21(

�H): The orientation of G is extended from E( �H)−x1y1−x2y2 by di-
recting the edge x1a1 from a1 to x1, the edge y1a1 from y1 to a1, the edge x2a2
from x2 to a2, the edge a2y2 from a2 to y2, and the edge a1a2 from a1 to a2.

G2
21(

�H): The orientation of G is obtained from G1
21(

�H) by reversing the
orientation of the edge a1a2.

G3
21(

�H): Since �H is a totally cyclic digraph, �H is strongly connected.

Hence, there exists a directed path Px1x2
from x1 to x2 in �H. Then C :=

x2a2 − a2a1 − a1x1 − Px1x2
is a directed cycle in G2

21(
�H). G3

21(
�H) is an ori-

entation of G obtained from G2
21(

�H) by reversing the orientations of all the
edges of C.

Given an orientation �H ∈ D22(H), we define three orientations of G,
which are extended from �H as follows (see Fig. 2(e)).

G1
22(

�H): The orientation of G is extended from E( �H)−x1y1−x2y2 by di-
recting the edge x1a1 from a1 to x1, the edge y1a1 from y1 to a1, the edge x2a2
from a2 to x2, the edge y2a2 from y2 to a2, and the edge a1a2 from a1 to a2.

G2
22(

�H): The orientation of G is obtained from G1
22(

�H) by reversing the
orientation of the edge a1a2.

G3
22(

�H): Since �H is a totally cyclic digraph, �H is strongly connected.

Hence, there exists a directed path Px2y1
from x2 to y1 in �H. Then C :=

y1a1 − a1a2 − a2x2 − Px2y1
is a directed cycle in G1

22(
�H). G3

22(
�H) is an ori-

entation of G obtained from G1
22(

�H) by reversing the orientations of all the
edges of C.

Note that G1
11, G

2
11, G

3
11, G

1
12, G

2
12, G

3
12, G

1
21, G

2
21, G

1
22 and G2

22 are
distinct orientations of G, but G3

21 and G3
11 may be the same orientation,

and G3
22 and G3

12 may be the same orientation. Hence, it is obvious that
c(G) ≥ 2.5c(H).

Theorem 6. Let G be a 3-connected graph with minimum degree δ ≥ k > 3.
Then

c(G) ≥ 3
(k−3)n−3k+11

k−1 · 2.5
n−4

k−1 · 2m− (2k−3)n

k−1
+ 5k−9

k−1 .
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Proof. Let Q = {G1, G2, . . . , Gs} be a sequence of 3-augmentations which
satisfies the conditions of Lemma 3. If Gi is obtained from Gi−1 by type-1
strict 3-augmentation, then c(Gi) ≥ 3c(Gi−1) by Lemma 4. If Gi is obtained
from Gi−1 by type-2 strict 3-augmentation, then c(Gi) ≥ 2.5c(Gi−1) by
Lemma 5. If Gi is obtained from Gi−1 by edge addition, it is obvious that
c(Gi) ≥ 2c(Gi−1). By Lemma 3, n1 ≥ (k− 3)n2, where ni (i = 1, 2), denotes
the number of type-i strict 3-augmentations contained in Q. Note that

n1 + 2n2 = n− 4;

hence,

n2 ≤
n− 4

k − 1
.

It is not difficult to find that c(K4) = 24. Hence,

c(G) ≥ 24 · 3n1 · 2.5n2 · 2m−6−2n1−3n2

= 24 · 3n−4−2n2 · 2.5n2 · 2m−6−2(n−4)+n2

≥ 3
(k−3)n−3k+11

k−1 · 2.5
n−4

k−1 · 2m− (2k−3)n

k−1
+ 5k−9

k−1 .

Lemma 7. [4] If G is a graph with vertex-degree sequence d1, d2, . . . , dn.
Then the number of spanning trees

Γ(G) ≤ d1d2 . . . dn/(n− 1).

We prove the main theorem using Theorem 6 and Lemma 7 in the fol-
lowing.

Proof of Main Theorem. Let

f(m) =
m+(13 log2(3)+

1
3 log2(2.5)−

8
3)n− 4

3 log2(2.5)−
1
3 log2(3)+

14
3

n− 1
ln 2

− ln
m

n
.

Then

f ′(m) =
ln 2

n− 1
− 1

m
> 0

when m ≥ n−1
ln 2 . Thus, f(m) is an increasing function when m ≥ n−1

ln 2 .
Note that f(3.51n) > 0. Hence, f(m) > 0 when m ≥ 3.51n; that is, if

m ≥ 3.51n, then

3
n−1

3 · 2.5n−4

3 · 2m− 5n

3
+ 11

3 ≥
(
2m

n

)n−1

.
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Then by Lemma 7 and Theorem 6,

Γ(G) ≤ d1d2 . . . dn
n− 1

≤ 1

n− 1

(
d1 + d2 + . . .+ dn

n

)n

=

(
2m

n

)n−1

· 2m

n(n− 1)

≤
(
2m

n

)n−1

≤ 3
n−1

3 · 2.5n−4

3 · 2m− 5n

3
+ 11

3

≤ c(G).
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