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Some new additive and multiplicative Ramsey
numbers

Neil Hindman
∗
and Dev Phulara

For a, r ∈ N, the set of positive integers, define FSP2(a, r)
(
respec-

tively SP2(a, r)
)
to be the first n ∈ N, if such exists, such that

whenever {1, 2, . . . , n} is r-colored, there exist x and y with a ≤
x < y such that {x, y, x + y, xy} is monochromatic (respectively
{x + y, xy} is monochromatic). If no such n exists, the number is
defined to be infinite. It is an old result of R. Graham that SP2(a, 2)
is finite for all a. With that exception, the only cases (with r > 1)
for which FSP2(a, r) or SP2(a, r) are known to be finite are those
for which explicit values have been computed. In this paper, we
provide exact values of FSP2(a, 2) for a ≤ 5 (of which FSP2(1, 2)
and FSP2(2, 2) were previously known). We provide exact values
of SP2(a, 3) for a ≤ 9 and exact values of SP2(a, 2) for a ≤ 105.
We also compute upper and lower bounds for SP2(a, 2).

2010 Mathematics Subject Classifications: 05D10.

1. Introduction

In [1, Theorem 2.6], it was shown that if r ∈ N and N is r-colored, there
exist sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 such that FS(〈xn〉∞n=1)∪FP (〈yn〉∞n=1) is
monochromatic. Here FS(〈xn〉∞n=1) = {

∑
t∈F xt : F ∈ Pf (N)} and

FP (〈yn〉∞n=1) = {
∏

t∈F yt : F ∈ Pf (N)}, where Pf (N) is the set of fi-
nite nonempty subsets of N. At that time, it was not known whether one
could always choose one sequence 〈xn〉∞n=1 with FS(〈xn〉∞n=1)∪FP (〈xn〉∞n=1)
monochromatic. However, it was shown in [3] that there is a 7-coloring of
N such that there is no sequence 〈xn〉∞n=1 with PS(〈xn〉∞n=1) ∪ PP (〈xn〉∞n=1)
monochromatic, where PS(〈xn〉∞n=1)={xn+xm :n �= m} and PP (〈xn〉∞n=1) =
{xnxm : n �= m}.

Given a finite sequence 〈xt〉kt=1, the notations FS(〈xt〉kt=1), FP (〈xt〉kt=1),
PS(〈xt〉kt=1), and PP (〈xt〉kt=1) have their obvious meanings. The first author
of this paper has maintained for a few decades that the following is a fact.

∗This author acknowledges support received from the National Science Founda-
tion via Grant DMS-1160566.
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Let r, k ∈ N and let N be r-colored. There exists a sequence 〈xt〉kt=1 such
that FS(〈xt〉kt=1) ∪ FP (〈xt〉kt=1) is monochromatic.

It should be understood that he has not claimed that he can prove this
fact. The only case (with r > 1) with a proof is r = k = 2. And this
is a computer generated result. Sometime in the mid 1970’s, R. Graham
used a computer program to verify that if {1, 2, . . . , 252} is 2-colored, then
there exist x �= y such that {x, y, x+ y, xy} is monochromatic and that the
corresponding statement fails for {1, 2, . . . , 251}. He noted that the fact that
x = 1 is allowed is crucial because, if y and 1 are the same color, then y+1
must be the opposite color. Accordingly, one is led to define FSP2(a, r) as
in the abstract and ask whether one can establish that FSP2(a, r) is finite
for all a and r.

In [1], the fact that FSP2(1, 2) = 252 was verified and it was established
that FSP2(2, 2) = 990. These results were obtained using a Fortran program
on the IBM mainframe computer in use at SUNY Binghamton in 1976.
The result for FSP2(1, 2) took approximately two seconds of computer time
and the result for FSP2(2, 2) took approximately four minutes of computer
time. The author of [1] did not try to find FSP2(3, 2), feeling that the
amount of computer time required would not be feasible. In 2012, running a
Pascal program on a desktop computer with an Intel Cor2Duo CPU E8400
processor operating at 3.00 GHz, the result for FSP2(2, 2) took less than
2 seconds of computer time. And the fact that FSP2(3, 2) = 3150 was
established using less than 52 seconds of computer time. We no longer have
the program used in Binghamton, and we were able to significantly improve
the efficiency of the current program by some modifications, but we suspect
that the main difference in time consumption comes from improvement in
processor speeds.

In Section 2 of this paper, we discuss the basic coloring algorithm used
to compute FSP2(a, 2), SP2(a, 2), and SP2(a, 3), as well as the limits on
extending the results to higher values of a.

In the case of SP2(a, 2), we have a good deal of additional information.
As we mentioned in the abstract, R. Graham proved that SP2(a, 2) is finite
for all a. (This proof was presented with his permission as [2, Theorem 3.3].)
We have computed the upper bounds that are provided by this original proof
and also have computed a very slight improvement. Both of these bounds
are on the order of 8

9a
4. We also prove a lower bound on the order of a3.

These results are presented in Section 3.
We conclude this introduction by presenting the exact numbers that we

have obtained. As we have remarked, the fact that FSP2(1, 2) = 252 is due
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Table 1: Values of FSP2(a, 2)

a FSP2(a, 2)

1 252
2 990
3 3150
4 5600
5 14364

Table 2: Values of SP2(a, 3)

a SP2(a, 3)

1 100
2 216
3 774
4 3504
5 11100
6 28260
7 62034
8 122304
9 222264

to R. Graham. The fact that SP2(1, 3) = 100 was established by D. Tang
in [4], where a detailed proof that any 3-coloring of {1, 2, . . . , 100} has a
monochromatic {x+ y, xy} with x < y was presented.

2. The coloring algorithm

Flow charts for the basic coloring algorithm used to compute values for
FSP2(a, 2), SP2(a, 2), and SP2(a, 3) are in Figures 1, 2, 3, and either 4
(for FSP2(a, 2) and SP2(a, 2)) or 5 (for SP2(a, 3)). For SP2(a, r), one is
dealing with a graph with vertex set V = {a, a + 1, . . . ,max} and edges
of the form {x + y, xy} where a ≤ x < y. If one can r-color V with no
monochromatic edges, then SP2(a, r) > max. In discussing FSP2(a, 2) we
will use hypergraph terminology, so that an “edge” is a set of the form
{x, y, x+ y, xy} where a ≤ x < y.

For each of the calculations, one inputs the numbers a and m. If there
is an edge-free coloring of V , the algorithm will find one. If there is none,
the algorithm amounts to a proof by cases that no such coloring exists.

The “preliminary calculations” referred to in Figure 1 involve such things
as computing the degrees of vertices and sorting so that the higher degree
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Table 3: Values of SP2(a, 2)

a SP2(a, 2) a SP2(a, 2) a SP2(a, 2)

1 8 36 68688 71 514182
2 24 37 80771 72 523584
3 54 38 83752 73 554216
4 128 39 86697 74 564028
5 250 40 96000 75 573750
6 432 41 109265 76 583376
7 686 42 112896 77 592900
8 1024 43 116487 78 638820
9 1377 44 120032 79 661546
10 1800 45 125550 80 672000
11 2662 46 152352 81 721710
12 3168 47 156839 82 766536
13 3887 48 161280 83 778457
14 4312 49 180075 84 790272
15 5625 50 185000 85 867000
16 6912 51 189873 86 880124
17 8959 52 205504 87 893142
18 9720 53 210675 88 906048
19 11552 54 215784 89 926757
20 12400 55 235950 90 939600
21 14553 56 241472 91 1010282
22 16456 57 272916 92 1100320
23 20102 58 292668 93 1115721
24 21312 59 299366 94 1139844
25 26875 60 306000 95 1155200
26 28392 61 320006 96 1170432
27 29889 62 326740 97 1213761
28 32928 63 333396 98 1229312
29 38686 64 360448 99 1244727
30 40500 65 367575 100 1280000
31 48050 66 400752 101 1366934
32 50176 67 430944 102 1383732
33 52272 68 439280 103 1495869
34 60112 69 447534 104 1514240
35 66150 70 455700 105 1543500

vertices come first. Here also some tables may be computed that allow one

to quickly find which vertices a given vertex is connected to. In the case of

the computation of SP2(a, 3), one enters by hand the vertices of a triangle,

assigning each such vertex to one color. For example, when a = 3, the values
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Figure 1: Start of Coloring Algorithm.

Table 4: Smallest Triangles

a Triangle

4 {59, 220, 864}
5 {94, 445, 2200}
6 {137, 786, 4680}
7 {188, 1267, 8820}
8 {247, 1912, 15232}
9 {314, 2745, 24624}

32, 87, and 252 are vertices of a triangle. (32 = 3 + 29 and 87 = 3 · 29 so

{32, 87} is an edge. 32 = 14 + 18 and 252 = 14 · 18 so {32, 252} is an edge.

87 = 3+84 and 252 = 3 ·84 so {87, 252} is an edge.) Of these, only {32, 252}
remains an edge when a = 4. The smallest triangles for a = 3 through 9 are

given in Table 4.

There are three variables and three arrays that are updated throughout

the program. The array entry assgclr[i] is 0 if i has not been assigned

to a color, and otherwise is the number of the color to which i has been

assigned; assglist[i] is the ith vertex assigned; and listlevel[i] is the

address in assglist of the first item assigned when level=i. The variable

level records the number of free assignments made; listtop is the address

in assglist of the last assignment made; and checktop is the address in

assglist of the last entry which has been checked for forcing or contradic-

tions resulting from its assignment.
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Figure 2: Free Assignments.

In Figure 2, the “first” unassigned is one of the highest degree vertices
which have not been assigned. One such is assigned to color 1. Then, as de-
scribed in Figure 3, one checks whether this assignment forces a monochro-
matic edge. If not, one finds all vertices which are forced to some other color
(called “kolor” in Figure 3). The process is iterated to see what is forced by
each of the new assignments.

If there is a monochromatic edge, then one proceeds to the “contradic-
tion” segment. What is done here depends on whether one is considering
2-colorings (Figure 4) or 3-colorings (Figure 5). In either case, let k be the
vertex which was freely assigned at the current value of level and let color
be the color to which it was assigned. In the case of 2-colorings, necessarily
color = 1, and since this assignment led to a contradiction, k is forced to
color 2 at the previous value of level (unless level = 0, in which case no
good coloring is possible).

In the case of 3-colorings, if color = 1, then one needs to consider the
assigment of k to color 2. If color = 2, then since both the assignment of k
to color 1 and to color 2 has led to a contradiction, k is forced to color 3 at
the previous value of level (again unless level = 0, in which case no good
coloring is possible).
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Figure 3: Forcing.

In terms of time consumption, the most critical part of the algorithm is
in Figure 3 where one determines whether m is in a monochromatic edge and
whether the assignment of m to kolor forces some other vertex to a different
color. Consider for example the program for computing SP2(a, 3). Comput-
ing from scratch each time whether there is an edge from m to k would, of
course, be very time consuming. Initially, among the preliminary calcula-
tions, we computed a {a, a+ 1, a+ 2, . . . ,max} × {a, a+ 1, a+ 2, . . . ,max}
array edges with edges[i,j] = 1 if there is an edge between i and j and
edges[i,j] = 0 otherwise. One then checked individually for each value of
k whether there is an edge from m to k. Running this version of the algo-
rithm on a laptop computer with an Intel Cor2Duo CPU P8400 processor
operating at 2.26 GHz with a = 6 and max = 28259, it took 246 seconds to
find a coloring with no edges, and with max = 28260, it took 350 seconds
to determine that all colorings have a monochromatic edge.

Motivated partly by the fact that the array edges was taking up a huge
amount of RAM as a increased, we changed edges to a one dimensional array
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Figure 4: Contradiction for 2-coloring.

(with size twice the total number of edges) and introduced a new {a, a+1, a+
2, . . . ,max}× {1, 2} array inedges. We set inedges[i,1] = 0 if the degree
of i is 0. Otherwise, we set inedges[i,1] = k and inedges[i,2] = m
where edges[k], edges[k+1], . . ., edges[m] are the other ends of edges with
i. This significantly reduced the amount of RAM being used and allowed to
only check values of k which do form an edge with m. Running the revised
program on the same laptop with a = 6 and max = 28259, it took 7 seconds
to find a coloring with no edges, and with max = 28260, it took 5 seconds
to determine that all colorings have a monochromatic edge.

A word about our confidence in our results is in order. In principle, when
the program declares that there are no good colorings, one could have the
computer print the cases considered and use those to write out a proof. This
was in fact done in [1, Theorem 4.3]. But for larger numbers, this is not
feasible. What we are very confident of is the fact that each of the listed
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Figure 5: Contradiction for 3-coloring.

numbers is at least as large as stated. This is because we had the program
in each instance produce a file which had the colors to which each number
was assigned. This file was then used as input for a separate program which,
with a very simple and transparent algorithm, verified that the coloring had
no monochromatic edges.

We conclude this section with a brief discussion of what made us stop
when we did. For the computation of FSP2(a, 2), the reason was simply time
consumption. Running on the same laptop mentioned above, it took 3 hours,
47 minutes, and 19 seconds to find a 2-coloring of {5, 6, . . . , 14363} with no
x < y such that {x, y, x+ y, xy} is monochromatic, and it took 3 hours, 54
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minutes, and 7 seconds to show that any 2-coloring of {5, 6, . . . , 14364} does
have a monochromatic edge. This contrasts with times of 40 seconds for
{4, 5, . . . , 5599} and 13 minutes and 44 seconds for {4, 5, . . . , 5600}. It seems
clear that finding FSP2(6, 2) using this program is not feasible. (Don’t forget
that the program needs to be run once for each value of max that is tested.)

For the computation of SP2(a, 3), the constraint was available RAM.
The revised program mentioned three paragraphs above required twice the
storage (as 4 byte numbers) as the number of edges. The number of edges
in {7, 8, . . . , 62033} is 194985. The number of edges in {8, 9, . . . , 122303} is
408521. The number of edges in {9, 10, . . . , 222263} is 781075.

For the computation of SP2(a, 2), the constraint was largely available
RAM, mixed in with a feeling of diminishing returns. The main reason we
continued all the way to 105 was the fact, which we will discuss further in
the next section, that in each case we kept finding that SP2(a, 2) is divisible
by a2.

3. Bounds for SP2(a, 2)

In this section, we compute the upper bound on SP2(a, 2) which results
from Graham’s original proof that the number is finite, and establish a
slight improvement on that bound. Both of these upper bounds are on the
order of 8

9a
4. And we establish a lower bound of a2(a+ �2√a
).

For a ∈ {3, 4, 5, 6, 7, 8, 11}, SP2(a, 2) = 2a3 and for all computed cases
with a > 2, SP2(a, 2) ≤ 2a3. We have not been able to prove that 2a3 is an
upper bound.

We begin with the very simple proof of our lower bound.

Theorem 3.1. Let a ∈ N. Then SP2(a, 2) ≥ a2(a+ �2√a
).
Proof. The conclusion holds for a = 1 and a = 2, so assume that a ≥ 3. Let

k = a+ �2√a
 and note that
(
a+k
2

)2 ≤ a(k + 1). Let

A1 = {a, a+ 1, . . . , a+ k} ∪ {a(k + 1), a(k + 1) + 1, . . . , a2k − 1}

and let A2 = {a + k + 1, a + k + 2, . . . , a(k + 1) − 1}. We need to show
that there do not exist x and y with a ≤ x < y and i ∈ {1, 2} such that
{x+ y, xy} ⊆ Ai. So suppose instead we have such x, y, and i.

If x + y ≥ a(k + 1), then, since x ≥ a, xy ≥ a(x + y − a) ≥ a2k so
xy /∈ (A1 ∪ A2). Suppose x+ y ∈ {a, a+ 1, . . . , a+ k}. Then xy ≥ a(a+ 1)

and a(a+ 1) > a+ k since a > 2. Also xy <
(
a+k
2

)2 ≤ a(k + 1) so xy /∈ A1.
Finally suppose that x+ y ∈ A2. Then xy ≥ a(x+ y − a) ≥ a(k + 1) so

xy /∈ A2.
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Now we present the upper bound which is given by Graham’s original
argument.

Theorem 3.2. Let a ∈ N and let t = �a3
.

(1) If a = 3t, then SP2(a, 2) ≤ 72t4 + 72t3 + 6t2 − 6t− 4.
(2) If a = 3t+ 1, then SP2(a, 2) ≤ 72t4 + 216t3 + 222t2 + 90t+ 8.
(3) If a = 3t+ 2, then SP2(a, 2) ≤ 72t4 + 288t3 + 420t2 + 264t+ 56.

Proof. We shall establish (1), the other proofs being very similar. The case
t = 1 holds by hand computation, so assume t > 1. Let k = t2 + 3t. We are
claiming that SP2(a, 2) ≤ 2(k−2)(k+1). Let ϕ : {1, 2, . . . , 2(k−2)(k+1)} →
{1, 2}.

Case 1. ϕ
(
3(3t + 1)

)
=

(
3(3t + 2)

)
= . . . = ϕ(3k). Let x = 3t and let

y = 6t+3. Then a = x < y, x+y = 3(3t+1), and xy = 3k < 2(k−2)(k+1).

Case 2. Not case 1. Pick d ∈ {3t, 3t+1, . . . , k−2} such that ϕ(3d+3) �=
ϕ(3d+6). Then d(2d+6) = 2d(d+3). If ϕ

(
d(2d+6)

)
= ϕ(3d+6), let x = d

and let y = 2d + 6. If ϕ
(
2d(d + 3)

)
= ϕ(3d + 3), let x = d + 3 and y = 2d.

Since t > 1, x < y.

Graham’s original argument was based on the fact that if all of the
multiples of 3 are the same color, then one trivially gets arbitrarily large
x < y such that x + y and xy are the same color. Our slight improvement
is based on the fact that if all of the elements which are not multiples of 3
are the same color, the same conclusion holds.

Theorem 3.3. Let a ∈ N and let t = �a3
.

(1) If a = 3t, then SP2(a, 2) ≤ 72t4 + 72t3 − 6t2 − 12t.
(2) If a = 3t+ 1, then SP2(a, 2) ≤ 72t4 + 144t3 + 96t2 + 24t.
(3) If a = 3t+ 2, then SP2(a, 2) ≤ 72t4 + 216t3 + 234t2 + 108t+ 8.

Proof. We shall establish (2), the other proofs being very similar. (Again,
for (1), the case t = 1 needs separate verification.) Let k = 6t2 + 6t. We are
claiming that SP2(a, 2) ≤ 2k(k + 2). Let ϕ : {1, 2, . . . , 2k(k + 2)} → {1, 2}.

Case 1. There is some m ∈ {a, a + 1, . . . , k} such that ϕ(3m + 1) �=
ϕ(3m + 2). Then 2m(m + 1) < 2k(k + 2). If ϕ

(
2m(m + 1)

)
= ϕ(3m + 1),

let x = m + 1 and y = 2m. If ϕ
(
m(2m + 2)

)
= ϕ(3m + 2), let x = m and

y = 2m+ 2.

Case 2. There is some m ∈ {a, a + 1, . . . , k} such that ϕ(3m + 2) �=
ϕ(3m + 4). Then 2m(m + 2) ≤ 2k(k + 2). If ϕ

(
2m(m + 2)

)
= ϕ(3m + 2),

let x = m + 2 and y = 2m. If ϕ
(
m(2m + 4)

)
= ϕ(3m + 4), let x = m and

y = 2m+ 2.
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Case 3. For all m ∈ {a, a+1, . . . , k}, ϕ(3m+1) = ϕ(3m+2) and for all
m ∈ {a, a+1, . . . , k}, ϕ(3m+2) = ϕ(3m+4). Then ϕ(3a+1) = ϕ(3k+4).
Let x = a+ 1 and y = 2a.

As we noted earlier, in all computed cases, SP2(a, 2) is divisible by a2.
As a increases, this seems less likely to be a random occurrence. But we
have been unable even to prove that SP2(a, 2) is divisible by a.

Conjecture 3.4. For all a ∈ N, SP2(a, 2) is divisible by a.

We close with two experimental observations. The first, which allowed
us to compute SP2(a, 2) with very small time consumption, is the fact that
in each case the graph with edges {x + y, xy} for a ≤ x < y consisted of
the component of 2a + 1 together with a graph which is trivially bipar-
tite. (As a consequence, to verify on the laptop described previously that
{105, 106, . . . , 1543500} could not be two-colored without monochromatic
edges took less than 13 seconds of processor time while to show that the
graph on {105, 106, . . . , 1543499} is bipartite took 6 seconds of processor
time.) In most cases the remainder either consisted of a large number of
degree 0 vertices and a few (at most 15) isolated edges, or it consisted of
the degree 0 vertices, some isolated edges, and one or two disjoint stars. The
most complicated configuration of the remainder after deleting the compo-
nent of 2a + 1 occurred when a = 53. Then this remainder had 6 isolated
edges and stars centered at 129, 130, 131, and 133 whose centers had degrees
of 12, 12, 13, and 14 respectively. The stars centered at 129 and 130 had the
vertex 4104 in common; the stars centered at 130 and 131 had the vertex
4200 in common; the stars centered at 131 and 133 had the vertex 4104
in common; and the stars centered at 129 and 133 had the vertex 4158 in
common.

Our second experimental observation is that in most, but not all, cases
the 2-coloring A1, A2 of {a, a + 1, . . . , SP2(a, 2) − 1} which our program
found was very similar to the coloring in Theorem 3.1. That is, there was
some number m such that, letting k = SP2(a, 2), letting b = a + k

a , and
letting B = {xy : a ≤ x < y , x+ y ≤ m, and xy ≥ b}, one had

A1 =
(
{a, a+ 1, . . . ,m} ∪ {b, b+ 1, . . . , k − 1}

)
\B

and A2 = {m+ 1,m+ 2, . . . , b− 1} ∪B.
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